Skip to main content

Polynomial Structure of Topological String Partition Functions

  • Chapter
Calabi-Yau Varieties: Arithmetic, Geometry and Physics

Part of the book series: Fields Institute Monographs ((FIM,volume 34))

Abstract

We review the polynomial structure of the topological string partition functions as solutions to the holomorphic anomaly equations. We also explain the connection between the ring of propagators defined from special Kähler geometry and the ring of almost-holomorphic modular forms defined on modular curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the note, we shall simply call it Kähler structure by abuse of language.

  2. 2.

    See also [38, 29, 30, 33, 45, 31, 27, 1, 26, 4, 19, 6, 22, 21, 42, 5, 32, 7] for related works.

  3. 3.

    The quantity \(\mathcal{F}^{(g)}\) is really a section rather than a function, but in the literature it is termed topological string partition function which we shall follow in this note.

  4. 4.

    In this note, we shall use \(\bar{\partial }_{\bar{\imath }}\) and \(\partial _{\bar{\imath }}\) interchangeably to denote \(\frac{\partial } {\partial \bar{z}^{\bar{\imath }}}\) for some local complex coordinates \(z =\{ z^{i}\}_{i=1}^{\mathrm{dim}\mathcal{M}}\) chosen on the moduli space \(\mathcal{M}\).

  5. 5.

    This assumption is reasonable since these quantities have different singular behaviors when written in the canonical coordinates at the large complex structure.

  6. 6.

    See also [38, 29, 30, 33, 45, 31, 27, 1, 26, 4, 19, 6, 22, 21, 42, 5, 32, 7] for related works.

  7. 7.

    This is due to properties of special Kähler geometry and the particular form for the Picard-Fuchs equation, see [10] for details.

  8. 8.

    This is related to the ψ coordinate in [11] by \(z = (5\psi )^{-5}\).

References

  1. Aganagic, M., Bouchard, V., Klemm, A.: Topological strings and (almost) modular forms. Commun. Math. Phys. 277, 771–819 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alim, M.: Lectures on Mirror Symmetry and Topological String Theory. arxiv: 1207.0496

    Google Scholar 

  3. Alim, M.: Polynomial Rings and Topological Strings. arxiv:1401.5537

    Google Scholar 

  4. Alim, M., Länge, J.D.: Polynomial structure of the (open) topological string partition function. JHEP 0710, 045 (2007)

    Article  Google Scholar 

  5. Alim, M., Scheidegger, E.: Topological strings on elliptic fibrations. Commun. Number Theory Phys. 8(4), 729–800 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alim, M., Länge, J.D., Mayr, P.: Global properties of topological string amplitudes and orbifold invariants. JHEP 1003, 113 (2010)

    Article  Google Scholar 

  7. Alim, M., Scheidegger, E., Yau, S.-T., Zhou, J.: Special polynomial rings, quasi modular forms and duality of topological strings. Adv. Theory Math. Phys. 18(2), 401–467 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Alg. Geom. 3, 493–545 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic anomalies in topological field theories. Nucl. Phys. B405, 279–304 (1993)

    Article  MathSciNet  Google Scholar 

  10. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–428 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Candelas, P., Xenia, C., de La Ossa, Green, P.S., Parkes, L.: A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B359, 21–74 (1991)

    Google Scholar 

  12. Cox, D.A., Katz, S.: Mirror Symmetry and Algebraic Geometry. Mathematical Surveys and Monographs, vol. 68. American Mathematical Society, Providence (1999). MR 1677117 (2000d:14048)

    Google Scholar 

  13. Chiang, T.M., Klemm, A., Yau, S.-T., Zaslow, E.: Local mirror symmetry: calculations and interpretations. Adv. Theor. Math. Phys. 3, 495–565 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Dijkgraaf, R.: Mirror symmetry and elliptic curves. In: The Moduli Space of Curves (Texel Island, 1994). Progress in Mathematics, vol. 129, pp. 149–163. Birkhäuser, Boston (1995). MR 1363055 (96m:14072)

    Google Scholar 

  15. Freed, D.S.: Special Kähler manifolds. Commun. Math. Phys. 203(1), 31–52 (1999). MR 1695113 (2000f:53060)

    Google Scholar 

  16. Ghoshal, D., Vafa, C.: C = 1 string as the topological theory of the conifold. Nucl. Phys. B453, 121–128 (1995)

    Google Scholar 

  17. Givental, A.: A mirror theorem for toric complete intersections. In: Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996). Progress in Mathematics, vol. 160, pp. 141–175. Birkhäuser, Boston (1998). MR 1653024 (2000a:14063)

    Google Scholar 

  18. Greene, B.R.: String theory on Calabi-Yau manifolds. arxiv:9702155

    Google Scholar 

  19. Grimm, T.W., Klemm, A., Marino, M., Weiss, M.: Direct integration of the topological string. JHEP 0708, 058 (2007)

    Article  MathSciNet  Google Scholar 

  20. Gross, M., Huybrechts, D., Joyce, D.: Calabi-Yau Manifolds and Related Geometries, Universitext. Lectures from the Summer School held in Nordfjordeid, June 2001. Springer, Berlin (2003). MR 1963559 (2004c:14075)

    Google Scholar 

  21. Haghighat, B., Klemm, A.: Solving the topological string on K3 fibrations. JHEP 1001, 009 (2010). With an appendix by Sheldon Katz

    Google Scholar 

  22. Haghighat, B., Klemm, A., Rauch, M.: Integrability of the holomorphic anomaly equations. JHEP 0810, 097 (2008)

    Article  MathSciNet  Google Scholar 

  23. Hori, K., Vafa, C.: Mirror symmetry. arxiv: 0002222

    Google Scholar 

  24. Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry. Clay Mathematics Monographs, vol. 1. American Mathematical Society, Providence; Clay Mathematics Institute, Cambridge (2003). With a preface by Vafa. MR 2003030 (2004g:14042)

    Google Scholar 

  25. Hosono, S.: BCOV ring and holomorphic anomaly equation. In: New Developments in Algebraic Geometry, Integrable Systems and Mirror Symmetry (RIMS, Kyoto, 2008). Advanced Studies in Pure Mathematics, vol. 59, pp. 79–110. Mathematical Society of Japan, Tokyo (2010). MR 2683207 (2011j:32014)

    Google Scholar 

  26. Huang, M.-x., Klemm, A.: Holomorphic anomaly in gauge theories and matrix models. JHEP 0709, 054 (2007)

    Google Scholar 

  27. Huang, M.-x., Klemm, A., Quackenbush, S.: Topological string theory on compact Calabi-Yau: modularity and boundary conditions. Lect. Notes Phys. 757, 45–102 (2009)

    Google Scholar 

  28. Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms. In: The Moduli Space of Curves (Texel Island, 1994). Progress in Mathematics, vol. 129, pp. 165–172. Birkhäuser, Boston (1995). MR 1363056 (96m:11030)

    Google Scholar 

  29. Katz, S.H., Klemm, A., Vafa, C.: M theory, topological strings and spinning black holes. Adv. Theory Math. Phys. 3, 1445–1537 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Klemm, A., Zaslow, E.: Local mirror symmetry at higher genus. arxiv: 9906046

    Google Scholar 

  31. Klemm. A., Marino, M.: Counting BPS states on the enriques Calabi-Yau. Commun. Math. Phys. 280, 27–76 (2008)

    Google Scholar 

  32. Klemm, A., Manschot, J., Wotschke, T.: Quantum geometry of elliptic Calabi-Yau manifolds. arxiv: 1205.1795

    Google Scholar 

  33. Klemm, A., Kreuzer, M., Riegler, E., Scheidegger, E.: Topological string amplitudes, complete intersection Calabi-Yau spaces and threshold corrections. JHEP 0505, 023 (2005)

    Article  MathSciNet  Google Scholar 

  34. Kontsevich, M.: Enumeration of rational curves via torus actions. In: The Moduli Space of Curves (Texel Island, 1994). Progress in Mathematics, vol. 129, pp. 335–368. Birkhäuser, Boston (1995). MR 1363062 (97d:14077)

    Google Scholar 

  35. Li, Si.: Feynman graph integrals and almost modular forms. Commun. Number Theory Phys. 6, 129–157 (2012)

    Google Scholar 

  36. Lian, B.H., Liu, K., Yau, S.-T.: Mirror principle. I [MR1621573 (99e:14062)]. In: Surveys in Differential Geometry: Differential Geometry Inspired by String Theory. Surveys in Differential Geometry, vol. 5, pp. 405–454. International Press, Boston (1999). MR 1772275

    Google Scholar 

  37. Maier, R.S.: On rationally parametrized modular equations. J. Ramanujan Math. Soc. 24(1), 1–73 (2009). MR 2514149 (2010f:11060)

    Google Scholar 

  38. Marino, M., Moore, G.W.: Counting higher genus curves in a Calabi-Yau manifold. Nucl. Phys. B543, 592–614 (1999)

    Article  MathSciNet  Google Scholar 

  39. Milanov, T., Ruan, Y.: Gromov-Witten theory of elliptic orbifold Pˆ1 and quasi-modular forms. arxiv: 1106.2321

    Google Scholar 

  40. Morrison, D.R.: Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians. J. Am. Math. Soc. 6(1), 223–247 (1993). MR 1179538 (93j:14047)

    Google Scholar 

  41. Movasati, H.: Eisenstein type series for Calabi-Yau varieties. Nucl. Phys. B847, 460–484 (2011)

    Article  MathSciNet  Google Scholar 

  42. Sakai, K.: Topological string amplitudes for the local half K3 surface. arxiv: 1111.3967

    Google Scholar 

  43. Schmid, W.: Variation of Hodge structure: the singularities of the period mapping. Invent. Math. 22, 211–319 (1973). MR 0382272 (52 #3157)

    Google Scholar 

  44. Strominger, A.: Special geometry. Commun. Math. Phys. 133, 163–180 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yamaguchi, S., Yau, S.-T.: Topological string partition functions as polynomials. JHEP 0407, 047 (2004)

    Article  MathSciNet  Google Scholar 

  46. Zagier, D.: Elliptic modular forms and their applications. In: The 1-2-3 of modular forms, Universitext, pp. 1–103. Springer, Berlin (2008). MR 2409678 (2010b:11047)

    Google Scholar 

  47. Zhou, J.: Differential rings from special Kähler geometry. arxiv: 1310.3555

    Google Scholar 

  48. Zhou, J.: Arithmetic properties of moduli spaces and topological string partition functions of some Calabi-Yau threefolds. Ph.D. thesis, Harvard University (2014)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Murad Alim, Emanuel Scheidegger and Shing-Tung Yau for valuable collaborations and inspiring discussions on related projects. Thanks also goes to Murad Alim, Emanuel Scheidegger, Teng Fei and Atsushi Kanazawa for carefully reading the draft and giving very helpful comments. He also wants to thank Professor Noriko Yui and the other organizers for inviting him to the thematic program Calabi-Yau Varieties: Arithmetic, Geometry and Physics at the Fields Institute, and the Fields Institute for providing excellent research atmosphere and partial financial support during his visiting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhou, J. (2015). Polynomial Structure of Topological String Partition Functions. In: Laza, R., Schütt, M., Yui, N. (eds) Calabi-Yau Varieties: Arithmetic, Geometry and Physics. Fields Institute Monographs, vol 34. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2830-9_14

Download citation

Publish with us

Policies and ethics