Skip to main content

Part of the book series: Fields Institute Monographs ((FIM,volume 34))

Abstract

For the last decade, Mark Gross and Bernd Siebert have worked with a number of collaborators to push forward a program whose aim is an understanding of mirror symmetry. In this chapter, we’ll present certain elements of the “Gross-Siebert” program. We begin by sketching its main themes and goals. Next, we review the basic definitions and results of two main tools of the program, logarithmic and tropical geometry. These tools are then used to give tropical interpretations of certain enumerative invariants. We study in detail the tropical pencil of elliptic curves in a toric del Pezzo surface. We move on to a basic illustration of mirror symmetry, Gross’s tropical construction for \(\mathbb{P}^{2}\). On the A-model side, we present the proof of Siebert and Nishinou that tropical geometry invariants coincide with classical geometry invariants via toric degenerations. We then summarize Gross’s tropical B-model and the theorem that links the two constructions, emphasizing the common tropical structures underlying both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If we strove for maximal generality, we would assume π to be flat and locally finitely presented.

References

  1. Abramovich, D., Chen, Q.: Stable logarithmic maps to Deligne-Faltings pairs II. Asian J. Math. 18(3), 465–488 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allermann, L., Rau, J.: First steps in tropical intersection theory. Mathematische zeitschrift 264(3), 633–670 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auroux, D.: Mirror symmetry and T-duality in the complement of an anticanonical divisor. J. Gökova Geometry Topology 1, 51–91

    Google Scholar 

  4. Barannikov, S.: Semi-infinite hodge structures and mirror symmetry for projective spaces. arXiv preprint math/0010157 (2000)

    Google Scholar 

  5. Batyrev, V.V., Borisov, L.A.: On Calabi-Yau complete intersections in toric varieties. In: Higher-Dimensional Complex Varieties, Trento, 1994, pp. 39–65 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Boehm, J., Bringmann, K., Buchholz, A., Markwig, H.: Tropical mirror symmetry for elliptic curves. arXiv preprint arXiv:1309.5893 (2013)

    Google Scholar 

  7. Chen, Q.: Stable logarithmic maps to Deligne-Faltings pairs I. Ann. Math. 180(2), 455–521 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fukaya, K.: Multivalued morse theory, asymptotic analysis and mirror symmetry. Graphs Patterns Math. Theor. Phys. 73, 205–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory on compact toric manifolds II: bulk deformations. Sel. Math. 17(3), 609–711 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fulton, W.: Introduction to toric varieties, vol. 131. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  11. Gathmann, A.: Tropical algebraic geometry. Jahresbericht der DMV 108(1), 3–32

    Google Scholar 

  12. Gathmann, A., Kerber, M., Markwig, H.: Tropical fans and the moduli spaces of tropical curves. Compos. Math. 145(01), 173–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Givental, A.B.: Equivariant Gromov-Witten invariants. Int. Math. Res. Not. 1996(13), 613–663 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gross, M.: Toric degenerations and Batyrev-Borisov duality. Math. Ann. 333(3), 645–688 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gross, M.: Mirror symmetry for \(\mathbb{P}^{2}\) and tropical geometry. Adv. Math. 224(1), 169–245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gross, M.: Tropical Geometry and Mirror Symmetry, Volume 114 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC (2011)

    Google Scholar 

  17. Gross, M.: Mirror symmetry and the Strominger-Yau-Zaslow conjecture. In: Current Developments in Mathematics. Intl. Press, Boston

    Google Scholar 

  18. Gross, M., Siebert, B.: Affine manifolds, log structures, and mirror symmetry. Turk. J. Math. 27, 33–60 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Gross, M., Siebert, B.: Mirror symmetry via logarithmic degeneration data, II. J. Algebr. Geom. 19(4), 679–780 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gross, M., Siebert, B.: From real affine geometry to complex geometry. Ann. Math. 174(3), 1301–1428 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gross, M., Siebert, B.: Logarithmic Gromov-Witten invariants. J. Am. Math. Soc. 26(2), 451–510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gross, M., Siebert, B., et al.: Mirror symmetry via logarithmic degeneration data I. J. Differ. Geom. 72(2), 169–338 (2006)

    Google Scholar 

  23. Gross, M., Wilson, P.M.H., et al. Large complex structure limits of K3 surfaces. J. Differ. Geom. 55(3), 475–546 (2000)

    Google Scholar 

  24. Hitchin, N.: The moduli space of special Lagrangian submanifolds. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 25(3–4), 503–515 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Illusie, L.: Logarithmic spaces (according to K. Kato), volume 15 of perspectives in mathematics. In: Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991). Academic, San Diego (1994)

    Google Scholar 

  26. Iritani, H.: Quantum D-modules and generalized mirror transformations. Topology 47(4), 225–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Itenberg, I., Kharlamov, V., Shustin, E.: Welschinger invariant and enumeration of real rational curves. Int. Math. Res. Not. 2003(49), 2639–2653 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kato, F.: Log smooth deformation and moduli of log smooth curves. Int. J. Math 11(2), 215–232 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kato, K.: Logarithmic structures of Fontaine-Illusie. In: Algebraic Analysis, Geometry, and Number Theory, Baltimore, 1988. Johns Hopkins University Press, Baltimore (1989)

    Google Scholar 

  30. Konishi, Y., Minabe, S.: Local B-model and mixed Hodge structure. Adv. Theor. Math. Phys. 14(4), 1089–1145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kontsevich, M.: What is tropical mathematics? Oct 2013. http://www.fields.utoronto.ca/video-archive/2013/10/22-2221

  32. Kontsevich, M., Soibelman, Y.: Affine structures and non-Archimedean analytic spaces. In: The Unity of Mathematics, pp. 321–385. Springer, New York (2006)

    Google Scholar 

  33. Kontsevich, M., Soibelman, Y.: Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry. arXiv preprint arXiv:1303.3253 (2013)

    Google Scholar 

  34. Li, J.: Stable morphisms to singular schemes and relative stable morphisms. J. Differ. Geom. 57(3), 509–578 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Manin, IU I.: Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, vol. 47. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  36. Markwig, H., Rau, J.: Tropical descendant Gromov-Witten invariants. Manuscr. Math. 129(3), 293–335 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mikhalkin, G.: Amoebas of algebraic varieties and tropical geometry. In: Different Faces of Geometry, pp. 257–300. Springer, New York (2004)

    Google Scholar 

  38. Mikhalkin, G.: Enumerative tropical algebraic geometry in \(\mathbb{R}^{2}\). J. Am. Math. Soc. 18(2), 313–377 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Milne, J.: Étale Cohomology. Volume 33 of Princeton Mathematical Series. Princeton University Press, Princeton (1980)

    Google Scholar 

  40. Nishinou, T.: Disc counting on toric varieties via tropical curves. arXiv preprint math/0610660 (2006)

    Google Scholar 

  41. Nishinou, T., Siebert, B.: Toric degenerations of toric varieties and tropical curves. Duke Math. J. 135(1), 1–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ruddat, H.: Log Hodge groups on a toric Calabi-Yau degeneration. Mirror Symmetry Trop. Geom. Contemp. Math. 527, 113–164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ruddat, H., Siebert, B.: Canonical coordinates in toric degenerations (2014)

    Google Scholar 

  44. Shustin, E.: A tropical calculation of the Welschinger invariants of real toric Del Pezzo surfaces. arXiv preprint math/0406099 (2004)

    Google Scholar 

  45. Steenbrink, J.: Limits of Hodge structures. Invent. Math. 31(3), 229–257 (1975/1976)

    Google Scholar 

  46. Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B 479(1), 243–259 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. Welschinger, J.-Y.: Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry. C. R. Math. Acad. Sci. Paris 336(4), 341–344 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michel van Garrel , D. Peter Overholser or Helge Ruddat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Garrel, M., Overholser, D.P., Ruddat, H. (2015). Enumerative Aspects of the Gross-Siebert Program. In: Laza, R., Schütt, M., Yui, N. (eds) Calabi-Yau Varieties: Arithmetic, Geometry and Physics. Fields Institute Monographs, vol 34. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2830-9_11

Download citation

Publish with us

Policies and ethics