Advertisement

Constrained Quadratic Ordination

  • Thomas W. Yee
Part of the Springer Series in Statistics book series (SSS)

Abstract

This chapter describes an extension of the RR-VGLM class, called quadratic reduced-rank vector generalized linear models (QRR-VGLMs), which allow for constrained quadratic ordination (CQO). QRR-VGLMs have a lot of potential applications in ecology where species–site data are collected. Topics include the basic ideas of ordination, the species packing model, latent variables as gradients, CQO estimation and interpretation, biplots, and calibration. Unconstrained QO (indirect gradient analysis) is also described. Some real-data examples are given.

Keywords

Environmental Variable Brown Trout Ordination Axis Niche Width Reference Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson, T. W. 1951. Estimating linear restrictions on regression coefficients for multivariate normal distributions. Annals of Mathematical Statistics 22(3):327–351.zbMATHMathSciNetCrossRefGoogle Scholar
  2. De’ath, G. 1999. Principal curves: a new technique for indirect and direct gradient analysis. Ecology 80(7):2237–2253.CrossRefGoogle Scholar
  3. Friedman, J. H. and W. Stuetzle 1981. Projection pursuit regression. Journal of the American Statistical Association 76(376):817–823.MathSciNetCrossRefGoogle Scholar
  4. Gauch, Hugh G., J., G. B. Chase, and R. H. Whittaker 1974. Ordinations of vegetation samples by Gaussian species distributions. Ecology 55(6):1382–1390.Google Scholar
  5. Goodman, L. A. 1981. Association models and canonical correlation in the analysis of cross-classifications having ordered categories. Journal of the American Statistical Association 76(374):320–334.MathSciNetGoogle Scholar
  6. Gower, J. C. 1987. Introduction to ordination techniques. In P. Legendre and L. Legendre (Eds.), Developments in Numerical Ecology, pp. 3–64. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  7. Hastie, T. and W. Stuetzle 1989. Principal curves. Journal of the American Statistical Association 84(406):502–516.zbMATHMathSciNetCrossRefGoogle Scholar
  8. Hui, F. K. C., S. Taskinen, S. Pledger, S. D. Foster, and D. I. Warton 2015. Model-based approaches to unconstrained ordination. Methods in Ecology and Evolution 6(4):399–411.CrossRefGoogle Scholar
  9. Jongman, R. H. G., C. J. F. ter Braak, and O. F. R. van Tongeren (Eds.) 1995. Data Analysis in Community and Landscape Ecology. Cambridge: Cambridge University Press.Google Scholar
  10. Kooijman, S. A. L. M. 1977. Species abundance with optimum relations to environmental factors. Annals of Systems Research 6:123–138.Google Scholar
  11. Palmer, M. 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74(8):2215–2230.CrossRefGoogle Scholar
  12. Takane, Y., H. Yanai, and S. Mayekawa 1991. Relationships among several methods of linearly constrained correspondence analysis. Psychometrika 56(4):667–684.zbMATHMathSciNetCrossRefGoogle Scholar
  13. ter Braak, C. J. F. 1986. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5):1167–1179.CrossRefGoogle Scholar
  14. ter Braak, C. J. F. 1995. Calibration. See Jongman et al. (1995), pp. 78–90.Google Scholar
  15. ter Braak, C. J. F. and I. C. Prentice 1988. A theory of gradient analysis. In Advances in Ecological Research, Volume 18, pp. 271–317. London: Academic Press.CrossRefGoogle Scholar
  16. ter Braak, C. J. F. and P. F. M. Verdonschot 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57(3):255–289.CrossRefGoogle Scholar
  17. ter Braak, C. J. F., and P. Šmilauer 2015. Topics in constrained and unconstrained ordination. Plant Ecology 216(5):683–696.CrossRefGoogle Scholar
  18. Yee, T. W. 2004a. A new technique for maximum-likelihood canonical Gaussian ordination. Ecological Monographs 74(4):685–701.MathSciNetCrossRefGoogle Scholar
  19. Yee, T. W. 2006. Constrained additive ordination. Ecology 87(1):203–213.CrossRefGoogle Scholar
  20. Yee, T. W. and A. F. Hadi 2014. Row-column interaction models, with an R implementation. Computational Statistics 29(6):1427–1445.zbMATHMathSciNetCrossRefGoogle Scholar
  21. Yee, T. W. and T. J. Hastie 2003. Reduced-rank vector generalized linear models. Statistical Modelling 3(1):15–41.zbMATHMathSciNetCrossRefGoogle Scholar
  22. Zhang, Y. and O. Thas 2012. Constrained ordination analysis in the presence of zero inflation. Statistical Modelling 12(6):463–485.MathSciNetCrossRefGoogle Scholar
  23. Zhu, M., T. J. Hastie, and G. Walther 2005. Constrained ordination analysis with flexible response functions. Ecological Modelling 187(4):524–536.CrossRefGoogle Scholar

Copyright information

© Thomas Yee 2015

Authors and Affiliations

  • Thomas W. Yee
    • 1
  1. 1.Department of StatisticsUniversity of AucklandAucklandNew Zealand

Personalised recommendations