Advertisement

VGAMs

  • Thomas W. Yee
Chapter
Part of the Springer Series in Statistics book series (SSS)

Abstract

This chapter deals with the most pertinent details of the vector generalized additive model (VGAM) class. Building on the basic ideas of univariate smoothing from an earlier chapter, we develop it for vector smoothing a vector response. The two main methods (vector splines and local regression†) are described, including some inference, computational details (e.g., modified backfitting, O-splines), the vector additive model (VAM; the ‘backbone’ of VGAMs), and other topics such as using the VGAM package to fit them.

References

  1. Abramowitz, M. and I. A. Stegun (Eds.) 1964. Handbook of Mathematical Functions. New York: Dover.zbMATHGoogle Scholar
  2. Adams, N., M. Crowder, D. J. Hand, and D. Stephens (Eds.) 2004. Methods and Models in Statistics. London: Imperial College Press.zbMATHGoogle Scholar
  3. Adler, J. 2010. R in a Nutshell. Sebastopol: O’Reilly.Google Scholar
  4. Agresti, A. 2010. Analysis of Ordinal Categorical Data (2nd ed.). Hoboken: Wiley.zbMATHCrossRefGoogle Scholar
  5. Agresti, A. 2013. Categorical Data Analysis (Third ed.). Hoboken: Wiley.zbMATHGoogle Scholar
  6. Agresti, A. 2015. Foundations of Linear and Generalized Linear Models. Hoboken: Wiley.zbMATHGoogle Scholar
  7. Ahn, S. K. and G. C. Reinsel 1988. Nested reduced-rank autoregressive models for multiple time series. Journal of the American Statistical Association 83(403):849–856.zbMATHMathSciNetGoogle Scholar
  8. Ahsanullah, M. H. and G. G. Hamedani 2010. Exponential Distribution: Theory and Methods. New York: Nova Science.Google Scholar
  9. Aigner, D. J., T. Amemiya, and D. Poirer 1976. On the estimation of production frontiers: Maximum likelihood estimation of the parameters of a discontinuous density function. International Economic Review 17(2):377–396.zbMATHMathSciNetCrossRefGoogle Scholar
  10. Aitkin, M., B. Francis, J. Hinde, and R. Darnell 2009. Statistical Modelling in R. Oxford: Oxford University Press.zbMATHGoogle Scholar
  11. Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csáki (Eds.), Second International Symposium on Information Theory, pp. 267–281. Budapest: Akadémiai Kaidó.Google Scholar
  12. Albert, A. and J. A. Anderson 1984. On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71(1):1–10.zbMATHMathSciNetCrossRefGoogle Scholar
  13. Allison, P. 2004. Convergence problems in logistic regression. See Altman et al. (2004), pp. 238–252.Google Scholar
  14. Altman, M., J. Gill, and M. P. McDonald 2004. Numerical Issues in Statistical Computing for the Social Scientist. Hoboken: Wiley-Interscience.zbMATHGoogle Scholar
  15. Altman, M. and S. Jackman 2011. Nineteen ways of looking at statistical software. Journal of Statistical Software 42(2), 1–12.CrossRefGoogle Scholar
  16. Amemiya, T. 1984. Tobit models: a survey. Journal of Econometrics 24(1–2):3–61.zbMATHMathSciNetCrossRefGoogle Scholar
  17. Amemiya, T. 1985. Advanced Econometrics. Oxford: Blackwell.Google Scholar
  18. Amodei, L. and M. N. Benbourhim 1991. A vector spline approximation with application to meteorology. In P. J. Laurent, A. Le Méhauté, and L. L. Schumaker (Eds.), Curves and Surfaces, pp. 5–10. Boston: Academic Press.Google Scholar
  19. Amstrup, S. C., T. L. McDonald, and B. F. J. Manly 2005. Handbook of Capture–Recapture Analysis. Princeton: Princeton University Press.Google Scholar
  20. Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen 1999. LAPACK Users’ Guide (Third ed.). Philadelphia: SIAM Publications.CrossRefGoogle Scholar
  21. Anderson, J. A. 1984. Regression and ordered categorical variables. Journal of the Royal Statistical Society, Series B 46(1):1–30. With discussion.Google Scholar
  22. Anderson, T. W. 1951. Estimating linear restrictions on regression coefficients for multivariate normal distributions. Annals of Mathematical Statistics 22(3):327–351.zbMATHMathSciNetCrossRefGoogle Scholar
  23. Andrews, H. P., R. D. Snee, and M. H. Sarner 1980. Graphical display of means. American Statistician 34(4):195–199.Google Scholar
  24. Arnold, B. C. 2015. Pareto Distributions (Second ed.). Boca Raton: Chapman & Hall/CRC.zbMATHGoogle Scholar
  25. Aronszajn, N. 1950. Theory of reproducing kernels. Transactions of the American Mathematical Society 68(3):337–404.zbMATHMathSciNetCrossRefGoogle Scholar
  26. Ashford, J. R. and R. R. Sowden 1970. Multi-variate probit analysis. Biometrics 26(3):535–546.CrossRefGoogle Scholar
  27. Azzalini, A. 1996. Statistical Inference: Based on the Likelihood. London: Chapman & Hall.zbMATHGoogle Scholar
  28. Azzalini, A. 2014. The Skew-normal and Related Families. Cambridge: Cambridge University Press.Google Scholar
  29. Baillargeon, S. and L.-P. Rivest 2007. Rcapture: Loglinear models for capture–recapture in R. Journal of Statistical Software 19(5):1–31.CrossRefGoogle Scholar
  30. Baker, F. B. and S.-H. Kim 2004. Item Response Theory: Parameter Estimation Techniques (Second ed.). New York: Marcel Dekker.Google Scholar
  31. Balakrishnan, N. and A. P. Basu (Eds.) 1995. The Exponential Distribution: Theory, Methods, and Applications. Amsterdam: Gordon and Breach.zbMATHGoogle Scholar
  32. Balakrishnan, N. and C.-D. Lai 2009. Continuous Bivariate Distributions (Second ed.). New York: Springer.zbMATHGoogle Scholar
  33. Balakrishnan, N. and V. B. Nevzorov 2003. A Primer on Statistical Distributions. New York: Wiley-Interscience.zbMATHCrossRefGoogle Scholar
  34. Banerjee, S. and A. Roy 2014. Linear Algebra and Matrix Analysis for Statistics. Boca Raton: CRC Press.zbMATHGoogle Scholar
  35. Barndorff-Nielsen, O. E. and D. R. Cox 1994. Inference and Asymptotics. London: Chapman & Hall.zbMATHCrossRefGoogle Scholar
  36. Barrodale, I. and F. D. K. Roberts 1974. Solution of an overdetermined system of equations in the 1 norm. Communications of the ACM 17(6):319–320.CrossRefGoogle Scholar
  37. Beaton, A. E. and J. W. Tukey 1974. The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16(2):147–185.zbMATHCrossRefGoogle Scholar
  38. Beirlant, J., Y. Goegebeur, J. Segers, J. Teugels, D. De Waal, and C. Ferro 2004. Statistics of Extremes: Theory and Applications. Hoboken: Wiley.CrossRefGoogle Scholar
  39. Bellman, R. E. 1961. Adaptive Control Processes. Princeton: Princeton University Press.zbMATHGoogle Scholar
  40. Belsley, D. A., E. Kuh, and R. E. Welsch 1980. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: John Wiley & Sons.zbMATHCrossRefGoogle Scholar
  41. Berlinet, A. and C. Thomas-Agnan 2004. Reproducing Kernel Hilbert Spaces in Probability and Statistics. Boston: Kluwer Academic Publishers.zbMATHCrossRefGoogle Scholar
  42. Berndt, E. K., B. H. Hall, R. E. Hall, and J. A. Hausman 1974. Estimation and inference in nonlinear structural models. Ann. Econ. and Soc. Measur. 3–4: 653–665.Google Scholar
  43. Bickel, P. J. and K. A. Doksum 2001. Mathematical Statistics: Basic Ideas and Selected Topics (Second ed.). Upper Saddle River: Prentice Hall.Google Scholar
  44. Bilder, C. M. and T. M. Loughin 2015. Analysis of Categorical Data with R. Boca Raton: CRC Press.Google Scholar
  45. Birch, J. B. 1980. Some convergence properties of iterated least squares in the location model. Communications in Statistics B 9(4):359–369.CrossRefGoogle Scholar
  46. Bock, R. D. and M. Leiberman 1970. Fitting a response model for n dichotomously scored items. Psychometrika 35(2):179–197.CrossRefGoogle Scholar
  47. Boos, D. D. and L. A. Stefanski 2013. Essential Statistical Inference. New York: Springer.zbMATHCrossRefGoogle Scholar
  48. Bowman, K. O. and L. R. Shenton 1988. Properties of Estimators for the Gamma Distribution. New York: Marcel Dekker.zbMATHGoogle Scholar
  49. Braun, W. J. and D. J. Murdoch 2008. A First Course in Statistical Programming with R. Cambridge: Cambridge University Press.Google Scholar
  50. Buja, A., T. Hastie, and R. Tibshirani 1989. Linear smoothers and additive models. The Annals of Statistics 17(2):453–510. With discussion.Google Scholar
  51. Burnham, K. P. and D. R. Anderson 2002. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach (Second ed.). New York: Springer.Google Scholar
  52. Byrd, R. H. and D. A. Pyne 1979. Some results on the convergence of the iteratively reweighted least squares. In ASA Proc. Statist. Computat. Section, pp. 87–90.Google Scholar
  53. Cameron, A. C. and P. K. Trivedi 2013. Regression Analysis of Count Data (Second ed.). Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  54. Cantoni, E. and T. Hastie 2002. Degrees-of-freedom tests for smoothing splines. Biometrika 89(2):251–263.zbMATHMathSciNetCrossRefGoogle Scholar
  55. Carroll, R. J. and D. Ruppert 1988. Transformation and Weighting in Regression. New York: Chapman and Hall.zbMATHCrossRefGoogle Scholar
  56. Casella, G. and R. L. Berger 2002. Statistical Inference (Second ed.). Pacific Grove: Thomson Learning.Google Scholar
  57. Castillo, E., A. S. Hadi, N. Balakrishnan, and J. M. Sarabia 2005. Extreme Value and Related Models with Applications in Engineering and Science. Hoboken: Wiley.zbMATHGoogle Scholar
  58. Chambers, J. M. 1998. Programming with Data: A Guide to the S Language. New York: Springer.zbMATHCrossRefGoogle Scholar
  59. Chambers, J. M. 2008. Software for Data Analysis: Programming with R. Statistics and Computing. New York: Springer.Google Scholar
  60. Chambers, J. M. and T. J. Hastie (Eds.) 1991. Statistical Models in S. Pacific Grove: Wadsworth/Brooks Cole.Google Scholar
  61. Cheney, W. and D. Kincaid 2012. Numerical Mathematics and Computing (Seventh ed.). Boston: Brooks/Cole.Google Scholar
  62. Chotikapanich, D. (Ed.) 2008. Modeling Income Distributions and Lorenz Curves. New York: Springer.zbMATHGoogle Scholar
  63. Christensen, R. 1997. Log-linear Models and Logistic Regression (Second ed.). New York: Springer-Verlag.zbMATHGoogle Scholar
  64. Christensen, R. 2011. Plane Answers to Complex Questions: The Theory of Linear Models (4th ed.). New York: Springer-Verlag.CrossRefGoogle Scholar
  65. Christensen, R. H. B. 2013. Analysis of ordinal data with cumulative link models—estimation with the R-package ordinal. R package version 2013.9–30.Google Scholar
  66. Claeskens, G. and N. L. Hjort 2008. Model Selection and Model Averaging. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.Google Scholar
  67. Clayton, D. and M. Hills 1993. Statistical Models in Epidemiology. Oxford: Oxford University Press.zbMATHGoogle Scholar
  68. Cleveland, W. S. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74(368):829–836.zbMATHMathSciNetCrossRefGoogle Scholar
  69. Cleveland, W. S. and S. J. Devlin 1988. Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association 83(403):596–610.zbMATHCrossRefGoogle Scholar
  70. Cleveland, W. S., E. Grosse, and W. M. Shyu 1991. Local regression models. See Chambers and Hastie (1991), pp. 309–376.Google Scholar
  71. Cohen, Y. and J. Cohen 2008. Statistics and Data with R: An Applied Approach Through Examples. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
  72. Coles, S. 2001. An Introduction to Statistical Modeling of Extreme Values. London: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  73. Consul, P. C. and F. Famoye 2006. Lagrangian Probability Distributions. Boston: Birkhäuser.zbMATHGoogle Scholar
  74. Cook, R. D. and S. Weisberg 1982. Residuals and Influence in Regression. Monographs on Statistics and Applied Probability. London: Chapman & Hall.Google Scholar
  75. Cox, D. R. 2006. Principles of Statistical Inference. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  76. Cox, D. R. and D. V. Hinkley 1974. Theoretical Statistics. London: Chapman & Hall.zbMATHCrossRefGoogle Scholar
  77. Cox, D. R. and N. Reid 1987. Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society, Series B 49(1):1–39. With discussion.Google Scholar
  78. Crawley, M. J. 2005. Statistics: An Introduction using R. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
  79. Crowder, M. and T. Sweeting 1989. Bayesian inference for a bivariate binomial distribution. Biometrika 76(3):599–603.zbMATHMathSciNetCrossRefGoogle Scholar
  80. Dalgaard, P. 2008. Introductory Statistics with R (Second ed.). New York: Springer.zbMATHCrossRefGoogle Scholar
  81. Davino, C., C. Furno, and D. Vistocco 2014. Quantile Regression: Theory and Applications. Chichester: Wiley.Google Scholar
  82. Davison, A. C. 2003. Statistical Models. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  83. Davison, A. C. and E. J. Snell 1991. Residuals and diagnostics. See Hinkley et al. (1991), pp. 83–106.Google Scholar
  84. de Boor, C. 2001. A Practical Guide to Splines (Revised Edition). New York: Springer.Google Scholar
  85. de Gruijter, D. N. M. and L. J. T. Van der Kamp 2008. Statistical Test Theory for the Behavioral Sciences. Boca Raton, FL, USA: Chapman & Hall/CRC.Google Scholar
  86. de Haan, L. and A. Ferreira 2006. Extreme Value Theory. New York: Springer.zbMATHCrossRefGoogle Scholar
  87. de Vries, A. and J. Meys 2012. R for Dummies. Chichester: Wiley.Google Scholar
  88. De’ath, G. 1999. Principal curves: a new technique for indirect and direct gradient analysis. Ecology 80(7):2237–2253.CrossRefGoogle Scholar
  89. del Pino, G. 1989. The unifying role of iterative generalized least squares in statistical algorithms. Statistical Science 4(4):394–403.zbMATHMathSciNetCrossRefGoogle Scholar
  90. Dempster, A. P., N. M. Laird, and D. B. Rubin 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39(1):1–38. With discussion.Google Scholar
  91. Dempster, A. P., N. M. Laird, and D. B. Rubin 1980. Iteratively reweighted least squares for linear regression when errors are normal/independent distributed. In P. R. Krishnaiah (Ed.), Multivariate Analysis–V: Proceedings of the Fifth International Symposium on Multivariate Analysis, pp. 35–57. Amsterdam: North-Holland Publishing Company.Google Scholar
  92. Dennis, J. E. and R. B. Schnabel 1996. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  93. Devroye, L. 1986. Non-Uniform Random Variate Generation. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  94. Dobson, A. J. and A. Barnett 2008. An Introduction to Generalized Linear Models (Third ed.). Boca Raton: Chapman & Hall/CRC Press.zbMATHGoogle Scholar
  95. Dongarra, J. J., J. R. Bunch, C. B. Moler, and G. W. Stewart 1979. LINPACK User’s Guide. Philadelphia: SIAM Publications.CrossRefGoogle Scholar
  96. Edwards, A. W. F. 1972. Likelihood. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  97. Efron, B. 1986. Double exponential families and their use in generalized linear regression. Journal of the American Statistical Association 81(395):709–721.zbMATHMathSciNetCrossRefGoogle Scholar
  98. Efron, B. 1991. Regression percentiles using asymmetric squared error loss. Statistica Sinica 1(1):93–125.zbMATHMathSciNetGoogle Scholar
  99. Efron, B. 1992. Poisson overdispersion estimates based on the method of asymmetric maximum likelihood. Journal of the American Statistical Association 87(417):98–107.zbMATHMathSciNetCrossRefGoogle Scholar
  100. Efron, B. and D. V. Hinkley 1978. Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information. Biometrika 65(3):457–487. With discussion.Google Scholar
  101. Eilers, P. H. C. and B. D. Marx 1996. Flexible smoothing with B-splines and penalties. Statistical Science 11(2):89–121.zbMATHMathSciNetCrossRefGoogle Scholar
  102. Elandt-Johnson, R. C. 1971. Probability Models and Statistical Methods in Genetics. New York: Wiley.zbMATHGoogle Scholar
  103. Embrechts, P., C. Klüppelberg, and T. Mikosch 1997. Modelling Extremal Events for Insurance and Finance. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  104. Eubank, R. L. 1999. Spline Smoothing and Nonparametric Regression (Second ed.). New York: Marcel-Dekker.zbMATHGoogle Scholar
  105. Everitt, B. S. and D. J. Hand 1981. Finite Mixture Distributions. London: Chapman & Hall.zbMATHCrossRefGoogle Scholar
  106. Fahrmeir, L., T. Kneib, S. Lang, and B. Marx 2011. Regression: Models, Methods and Applications. Berlin: Springer.Google Scholar
  107. Fahrmeir, L. and G. Tutz 2001. Multivariate Statistical Modelling Based on Generalized Linear Models (Second ed.). New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  108. Fan, J. and I. Gijbels 1996. Local Polynomial Modelling and Its Applications. London: Chapman & Hall.zbMATHGoogle Scholar
  109. Fan, J. and J. Jiang 2005. Nonparametric inferences for additive models. Journal of the American Statistical Association 100(471):890–907.zbMATHMathSciNetCrossRefGoogle Scholar
  110. Fan, J. and Q. Yao 2003. Nonlinear Time Series: Nonparametric and Parametric Methods. New York: Springer.CrossRefGoogle Scholar
  111. Faraway, J. J. 2006. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Boca Raton: Chapman and Hall/CRC.Google Scholar
  112. Faraway, J. J. 2015. Linear Models with R (Second ed.). Boca Raton: Chapman & Hall/CRC.zbMATHGoogle Scholar
  113. Fessler, J. A. 1991. Nonparametric fixed-interval smoothing with vector splines. IEEE Transactions on Signal Processing 39(4):852–859.CrossRefGoogle Scholar
  114. Finkenstadt, B. and H. Rootzén (Eds.) 2003. Extreme Values in Finance, Telecommunications and the Environment. Boca Raton: Chapman & Hall/CRC.Google Scholar
  115. Firth, D. 1991. Generalized linear models. See Hinkley et al. (1991), pp. 55–82.Google Scholar
  116. Firth, D. 1993. Bias reduction of maximum likelihood estimates. Biometrika 80(1):27–38.zbMATHMathSciNetCrossRefGoogle Scholar
  117. Firth, D. 2003. Overcoming the reference category problem in the presentation of statistical models. Sociological Methodology 33(1):1–18.CrossRefGoogle Scholar
  118. Firth, D. and R. X. de Menezes 2004. Quasi-variances. Biometrika 91(1):65–80.zbMATHMathSciNetCrossRefGoogle Scholar
  119. Fishman, G. S. 1996. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  120. Fitzenberger, B., R. Koenker, and J. A. F. Machado (Eds.) 2002. Economic Applications of Quantile Regression. Berlin: Springer-Verlag.Google Scholar
  121. Forbes, C., M. Evans, N. Hastings, and B. Peacock 2011. Statistical Distributions (fouth ed.). Hoboken: John Wiley & Sons.zbMATHGoogle Scholar
  122. Fox, J. and S. Weisberg 2011. An R Companion to Applied Regression (Second ed.). Thousand Oaks: Sage Publications.Google Scholar
  123. Freedman, D. A. 2007. How can the score test be inconsistent? American Statistician 61(4):291–295.MathSciNetCrossRefGoogle Scholar
  124. Freedman, D. A. and J. S. Sekhon 2010. Endogeneity in probit response models. Political Analysis 18(2):138–150.CrossRefGoogle Scholar
  125. Freund, J. E. 1961. A bivariate extension of the exponential distribution. Journal of the American Statistical Association 56(296):971–977.zbMATHMathSciNetCrossRefGoogle Scholar
  126. Friedman, J. H. and W. Stuetzle 1981. Projection pursuit regression. Journal of the American Statistical Association 76(376):817–823.MathSciNetCrossRefGoogle Scholar
  127. Frühwirth-Schnatter, S. 2006. Finite Mixture and Markov Switching Models. New York: Springer.zbMATHGoogle Scholar
  128. Gabriel, K. R. and S. Zamir 1979. Lower rank approximation of matrices by least squares with any choice of weights. Technometrics 21(4):489–498.zbMATHCrossRefGoogle Scholar
  129. Gauch, Hugh G., J., G. B. Chase, and R. H. Whittaker 1974. Ordinations of vegetation samples by Gaussian species distributions. Ecology 55(6):1382–1390.Google Scholar
  130. Gentle, J. E., W. K. Härdle, and Y. Mori 2012. Handbook of Computational Statistics: Concepts and Methods (Second ed.). Berlin: Springer.CrossRefGoogle Scholar
  131. Gentleman, R. 2009. R Programming for Bioinformatics. Boca Raton: Chapman & Hall/CRC.Google Scholar
  132. Geraci, M. and M. Bottai 2007. Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8(1):140–154.zbMATHCrossRefGoogle Scholar
  133. Gil, A., J. Segura, and N. M. Temme 2007. Numerical Methods for Special Functions. Philadelphia: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  134. Gill, J. and G. King 2004. What to do when your Hessian is not invertible: Alternatives to model respecification in nonlinear estimation. Sociological Methods & Research 33(1):54–87.MathSciNetCrossRefGoogle Scholar
  135. Gilleland, E., M. Ribatet, and A. G. Stephenson 2013. A software review for extreme value analysis. Extremes 16(1):103–119.MathSciNetCrossRefGoogle Scholar
  136. Goldberger, A. S. 1964. Econometric Theory. New York: Wiley.zbMATHGoogle Scholar
  137. Golub, G. H. and C. F. Van Loan 2013. Matrix Computations (Fourth ed.). Baltimore: Johns Hopkins University Press.zbMATHGoogle Scholar
  138. Gomes, M.I., and A. Guillou. 2015. Extreme value theory and statistics of univariate extremes: a review. International Statistical Review 83(2):263–292.MathSciNetCrossRefGoogle Scholar
  139. Goodman, L. A. 1981. Association models and canonical correlation in the analysis of cross-classifications having ordered categories. Journal of the American Statistical Association 76(374):320–334.MathSciNetGoogle Scholar
  140. Gower, J. C. 1987. Introduction to ordination techniques. In P. Legendre and L. Legendre (Eds.), Developments in Numerical Ecology, pp. 3–64. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  141. Green, P. J. 1984. Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. Journal of the Royal Statistical Society, Series B 46(2):149–192. With discussion.Google Scholar
  142. Green, P. J. and B. W. Silverman 1994. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. London: Chapman & Hall.zbMATHCrossRefGoogle Scholar
  143. Greene, W. H. 2012. Econometric Analysis (Seventh ed.). Upper Saddle River: Prentice Hall.Google Scholar
  144. Greene, W. H. and D. A. Hensher 2010. Modeling Ordered Choices: A Primer. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  145. Gu, C. 2013. Smoothing Spline ANOVA Models (Second ed.). New York, USA: Springer.zbMATHCrossRefGoogle Scholar
  146. Gumbel, E. J. 1958. Statistics of Extremes. New York, USA: Columbia University Press.zbMATHGoogle Scholar
  147. Gupta, A. K. and S. Nadarajah (Eds.) 2004. Handbook of Beta Distribution and Its Applications. New York, USA: Marcel Dekker.zbMATHGoogle Scholar
  148. Hao, L. and D. Q. Naiman 2007. Quantile Regression. Thousand Oaks, CA, USA: Sage Publications.Google Scholar
  149. Härdle, W. 1987. Smoothing Techniques With Implementation in S. New York, USA: Springer-Verlag.Google Scholar
  150. Härdle, W. 1990. Applied Nonparametric Regression. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  151. Härdle, W., H. Liang, and J. Gao 2000. Partially Linear Models. New York, USA: Springer.zbMATHCrossRefGoogle Scholar
  152. Härdle, W., M. Müller, S. Sperlich, and A. Werwatz 2004. Nonparametric and Semiparametric Models. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  153. Harezlak, J., D. Ruppert, and M.P. Wand. 2016. Semiparametric regression in R. New York: Springer.Google Scholar
  154. Harper, W. V., T. G. Eschenbach, and T. R. James 2011. Concerns about maximum likelihood estimation for the three-parameter Weibull distribution: Case study of statistical software. American Statistician 65(1):44–54.CrossRefGoogle Scholar
  155. Harrell, F. E. 2001. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York, USA: Springer.CrossRefGoogle Scholar
  156. Harville, D. A. 1997. Matrix Algebra From a Statistician’s Perspective. New York, USA: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  157. Hastie, T. 1996. Pseudosplines. Journal of the Royal Statistical Society, Series B 58(2):379–396.zbMATHMathSciNetGoogle Scholar
  158. Hastie, T. and W. Stuetzle 1989. Principal curves. Journal of the American Statistical Association 84(406):502–516.zbMATHMathSciNetCrossRefGoogle Scholar
  159. Hastie, T. and R. Tibshirani 1993. Varying-coefficient models. Journal of the Royal Statistical Society, Series B 55(4):757–796.zbMATHMathSciNetGoogle Scholar
  160. Hastie, T. J. and D. Pregibon 1991. Generalized linear models. See Chambers and Hastie (1991), pp. 195–247.Google Scholar
  161. Hastie, T. J. and R. J. Tibshirani 1990. Generalized Additive Models. London: Chapman & Hall.zbMATHGoogle Scholar
  162. Hastie, T. J., R. J. Tibshirani, and J. H. Friedman 2009. The Elements of Statistical Learning: Data Mining, Inference and Prediction (Second ed.). New York, USA: Springer-Verlag.CrossRefGoogle Scholar
  163. Hauck, J. W. W. and A. Donner 1977. Wald’s test as applied to hypotheses in logit analysis. Journal of the American Statistical Association 72(360):851–853.zbMATHMathSciNetCrossRefGoogle Scholar
  164. He, X. 1997. Quantile curves without crossing. American Statistician 51(2):186–192.Google Scholar
  165. Heinze, G. and M. Schemper 2002. A solution to the problem of separation in logistic regression. Statistics in Medicine 21(16):2409–2419.CrossRefGoogle Scholar
  166. Hensher, D. A., J. M. Rose, and W. H. Greene 2014. Applied Choice Analysis (Second ed.). Cambridge: Cambridge University Press.Google Scholar
  167. Hilbe, J. M. 2009. Logistic Regression Models. Boca Raton, FL, USA: Chapman & Hall/CRC.Google Scholar
  168. Hilbe, J. M. 2011. Negative Binomial Regression (Second ed.). Cambridge, UK; New York, USA: Cambridge University Press.Google Scholar
  169. Hinkley, D. V., N. Reid, and E. J. Snell (Eds.) 1991. Statistical Theory and Modelling. In Honour of Sir David Cox, FRS, London. Chapman & Hall.Google Scholar
  170. Hogben, L. (Ed.) 2014. Handbook of Linear Algebra (Second ed.). Boca Raton, FL, USA: Chapman & Hall/CRC.zbMATHGoogle Scholar
  171. Hörmann, W., J. Leydold, and G. Derflinger 2004. Automatic Nonuniform Random Variate Generation. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  172. Horvitz, D. G. and D. J. Thompson 1952. A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 47(260):663–685.zbMATHMathSciNetCrossRefGoogle Scholar
  173. Huber, P. J. 2011. Data Analysis: What Can Be Learned From the Past 50 Years. Hoboken, NJ, USA: Wiley.CrossRefGoogle Scholar
  174. Huber, P. J. and E. M. Ronchetti 2009. Robust Statistics (second ed.). New York, USA: Wiley.zbMATHCrossRefGoogle Scholar
  175. Huggins, R. and W.-H. Hwang 2011. A review of the use of conditional likelihood in capture–recapture experiments. International Statistical Review 79(3):385–400.zbMATHCrossRefGoogle Scholar
  176. Huggins, R. M. 1989. On the statistical analysis of capture experiments. Biometrika 76(1):133–140.zbMATHMathSciNetCrossRefGoogle Scholar
  177. Huggins, R. M. 1991. Some practical aspects of a conditional likelihood approach to capture experiments. Biometrics 47(2):725–732.CrossRefGoogle Scholar
  178. Hui, F. K. C., S. Taskinen, S. Pledger, S. D. Foster, and D. I. Warton 2015. Model-based approaches to unconstrained ordination. Methods in Ecology and Evolution 6(4):399–411.CrossRefGoogle Scholar
  179. Hurvich, C. M. and C.-L. Tsai 1989. Regression and time series model selection in small samples. Biometrika 76(2):297–307.zbMATHMathSciNetCrossRefGoogle Scholar
  180. Hutchinson, M. F. and F. R. de Hoog 1985. Smoothing noisy data with spline functions. Numerische Mathematik 47(1):99–106.zbMATHMathSciNetCrossRefGoogle Scholar
  181. Hwang, W.-H. and R. Huggins 2011. A semiparametric model for a functional behavioural response to capture in capture–recapture experiments. Australian & New Zealand Journal of Statistics 53(4):403–421.MathSciNetCrossRefGoogle Scholar
  182. Ichimura, H. 1993. Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J. Econometrics 58(1–2):71–120.zbMATHMathSciNetCrossRefGoogle Scholar
  183. Ihaka, R. and R. Gentleman 1996. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5(3):299–314.Google Scholar
  184. Imai, K., G. King, and O. Lau 2008. Toward a common framework for statistical analysis and development. Journal of Computational and Graphical Statistics 17(4):892–913.MathSciNetCrossRefGoogle Scholar
  185. Izenman, A. J. 1975. Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis 5(2):248–264.zbMATHMathSciNetCrossRefGoogle Scholar
  186. Izenman, A. J. 2008. Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. New York, USA: Springer.CrossRefGoogle Scholar
  187. James, G., D. Witten, T. Hastie, and R. Tibshirani 2013. An Introduction to Statistical Learning with Applications in R. New York, USA: Springer.zbMATHCrossRefGoogle Scholar
  188. Joe, H. 2014. Dependence Modeling with Copulas. Boca Raton, FL, USA: Chapman & Hall/CRC.Google Scholar
  189. Johnson, N. L., A. W. Kemp, and S. Kotz 2005. Univariate Discrete Distributions (Third ed.). Hoboken, NJ, USA: John Wiley & Sons.zbMATHCrossRefGoogle Scholar
  190. Johnson, N. L., S. Kotz, and N. Balakrishnan 1994. Continuous Univariate Distributions (Second ed.), Volume 1. New York, USA: Wiley.Google Scholar
  191. Johnson, N. L., S. Kotz, and N. Balakrishnan 1995. Continuous Univariate Distributions (Second ed.), Volume 2. New York, USA: Wiley.Google Scholar
  192. Johnson, N. L., S. Kotz, and N. Balakrishnan 1997. Discrete Multivariate Distributions. New York, USA: John Wiley & Sons.zbMATHGoogle Scholar
  193. Jones, M. C. 1994. Expectiles and M-quantiles are quantiles. Statistics & Probability Letters 20(2):149–153.zbMATHMathSciNetCrossRefGoogle Scholar
  194. Jones, M. C. 2002. Student’s simplest distribution. The Statistician 51(1):41–49.MathSciNetGoogle Scholar
  195. Jones, M. C. 2009. Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages. Statistical Methodology 6(1):70–81.zbMATHMathSciNetCrossRefGoogle Scholar
  196. Jones, O., R. Maillardet, and A. Robinson 2014. Introduction to Scientific Programming and Simulation Using R (Second ed.). Boca Raton, FL, USA: Chapman and Hall/CRC.zbMATHGoogle Scholar
  197. Jongman, R. H. G., C. J. F. ter Braak, and O. F. R. van Tongeren (Eds.) 1995. Data Analysis in Community and Landscape Ecology. Cambridge: Cambridge University Press.Google Scholar
  198. Jørgensen, B. 1984. The delta algorithm and GLIM. International Statistical Review 52(3):283–300.MathSciNetCrossRefGoogle Scholar
  199. Jørgensen, B. 1997. The Theory of Dispersion Models. London: Chapman & Hall.Google Scholar
  200. Jorgensen, M. 2001. Iteratively reweighted least squares. In A. H. El-Shaarawi and W. W. Piegorsch (Eds.), Encyclopedia of Environmetrics, Volume 2, pp. 1084–1088. Chichester, New York, USA: Wiley.Google Scholar
  201. Kaas, R., M. Goovaerts, J. Dhaene, and M. Denuit 2008. Modern Actuarial Risk Theory Using R (Second ed.). Berlin: Springer.zbMATHCrossRefGoogle Scholar
  202. Kateri, M. 2014. Contingency Table Analysis. Methods and Implementation Using R. New York, USA: Birkhäuser/Springer.zbMATHCrossRefGoogle Scholar
  203. Kennedy, William J., J. and J. E. Gentle 1980. Statistical Computing. New York, USA: Marcel Dekker.Google Scholar
  204. Keogh, R. H. and D. R. Cox 2014. Case-Control Studies. New York, USA: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  205. Kleiber, C. and S. Kotz 2003. Statistical Size Distributions in Economics and Actuarial Sciences. Hoboken, NJ, USA: Wiley-Interscience.zbMATHCrossRefGoogle Scholar
  206. Kleiber, C. and A. Zeileis 2008. Applied Econometrics with R. New York, USA: Springer.zbMATHCrossRefGoogle Scholar
  207. Klugman, S. A., H. H. Panjer, and G. E. Willmot 2012. Loss Models: From Data to Decisions (4th ed.). Hoboken, NJ, USA: Wiley.Google Scholar
  208. Klugman, S. A., H. H. Panjer, and G. E. Willmot 2013. Loss Models: Further Topics. Hoboken, NJ, USA: Wiley.CrossRefGoogle Scholar
  209. Knight, K. 2000. Mathematical Statistics. Boca Raton, FL, USA: Chapman & Hall/CRC.Google Scholar
  210. Kocherlakota, S. and K. Kocherlakota 1992. Bivariate Discrete Distributions. New York, USA: Marcel Dekker.zbMATHGoogle Scholar
  211. Koenker, R. 1992. When are expectiles percentiles? (problem). Econometric Theory 8(3):423–424.Google Scholar
  212. Koenker, R. 2005. Quantile Regression. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  213. Koenker, R. 2013. Discussion: Living beyond our means. Statistical Modelling 13(4):323–333.MathSciNetCrossRefGoogle Scholar
  214. Koenker, R. and G. Bassett 1978. Regression quantiles. Econometrica 46(1):33–50.zbMATHMathSciNetCrossRefGoogle Scholar
  215. Kohn, R. and C. F. Ansley 1987. A new algorithm for spline smoothing based on smoothing a stochastic process. SIAM Journal on Scientific and Statistical Computing 8(1):33–48.zbMATHMathSciNetCrossRefGoogle Scholar
  216. Konishi, S. and G. Kitagawa 2008. Information Criteria and Statistical Modeling. Springer Series in Statistics. New York, USA: Springer.Google Scholar
  217. Kooijman, S. A. L. M. 1977. Species abundance with optimum relations to environmental factors. Annals of Systems Research 6:123–138.Google Scholar
  218. Kosmidis, I. 2014a. Bias in parametric estimation: reduction and useful side-effects. WIREs Computational Statistics 6:185–196.CrossRefGoogle Scholar
  219. Kosmidis, I. 2014b. Improved estimation in cumulative link models. Journal of the Royal Statistical Society, Series B 76(1):169–196.MathSciNetCrossRefGoogle Scholar
  220. Kosmidis, I. and D. Firth 2009. Bias reduction in exponential family nonlinear models. Biometrika 96(4):793–804.zbMATHMathSciNetCrossRefGoogle Scholar
  221. Kosmidis, I. and D. Firth 2010. A generic algorithm for reducing bias in parametric estimation. Electronic Journal of Statistics 4:1097–1112.zbMATHMathSciNetCrossRefGoogle Scholar
  222. Kotz, S., T. J. Kozubowski, and K. Podgórski 2001. The Laplace Distribution and Generalizations: a Revisit with Applications to Communications, Economics, Engineering, and Finance. Boston, MA, USA: Birkhäuser.CrossRefGoogle Scholar
  223. Kotz, S. and S. Nadarajah 2000. Extreme Value Distributions: Theory and Applications. London: Imperial College Press.CrossRefGoogle Scholar
  224. Kotz, S. and J. R. van Dorp 2004. Beyond Beta: Other Continuous Families of Distributions with Bounded Support and Applications. Singapore: World Scientific.CrossRefGoogle Scholar
  225. Kozubowski, T. J. and S. Nadarajah 2010. Multitude of Laplace distributions. Statistical Papers 51(1):127–148.zbMATHMathSciNetCrossRefGoogle Scholar
  226. Lange, K. 2002. Mathematical and Statistical Methods for Genetic Analysis (Second ed.). New York, USA: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  227. Lange, K. 2010. Numerical Analysis for Statisticians (Second ed.). New York, USA: Springer.zbMATHCrossRefGoogle Scholar
  228. Lange, K. 2013. Optimization (Second ed.). New York, USA: Springer.zbMATHCrossRefGoogle Scholar
  229. Lawless, J. F. 1987. Negative binomial and mixed Poisson regression. The Canadian Journal of Statistics 15(3):209–225.zbMATHMathSciNetCrossRefGoogle Scholar
  230. Lawless, J. F. 2003. Statistical Models and Methods for Lifetime Data (Second ed.). Hoboken, NJ, USA: John Wiley & Sons.zbMATHGoogle Scholar
  231. Leadbetter, M. R., G. Lindgren, and H. Rootzén 1983. Extremes and Related Properties of Random Sequences and Processes. New York, USA: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  232. Leemis, L. M. and J. T. McQueston 2008. Univariate distribution relationships. American Statistician 62(1):45–53.MathSciNetCrossRefGoogle Scholar
  233. Lehmann, E. L. and G. Casella 1998. Theory of Point Estimation (Second ed.). New York, USA: Springer.zbMATHGoogle Scholar
  234. Lehmann, E. L. and J. P. Romano 2005. Testing Statistical Hypotheses (3rd ed.). New York, USA: Springer.zbMATHGoogle Scholar
  235. Lesaffre, E. and A. Albert 1989. Partial separation in logistic discrimination. Journal of the Royal Statistical Society, Series B 51(1):109–116.zbMATHMathSciNetGoogle Scholar
  236. Libby, D. L. and M. R. Novick 1982. Multivariate generalized beta distributions with applications to utility assessment. Journal of Educational and Statistics 7(4):271–294.CrossRefGoogle Scholar
  237. Lindsay, B. G. 1995. Mixture Models: Theory, Geometry and Applications, Volume 5. Hayward CA, USA: NSF-CBMS Regional Conference Series in Probability and Statistics, IMS.Google Scholar
  238. Lindsey, J. K. 1996. Parametric Statistical Inference. Oxford: Clarendon Press.zbMATHGoogle Scholar
  239. Lindsey, J. K. 1997. Applying Generalized Linear Models. New York, USA: Springer-Verlag.zbMATHGoogle Scholar
  240. Liu, H. and K. S. Chan 2010. Introducing COZIGAM: An R package for unconstrained and constrained zero-inflated generalized additive model analysis. Journal of Statistical Software 35(11):1–26.CrossRefGoogle Scholar
  241. Liu, I. and A. Agresti 2005. The analysis of ordered categorical data: An overview and a survey of recent developments. Test 14(1):1–73.zbMATHMathSciNetCrossRefGoogle Scholar
  242. Lloyd, C. J. 1999. Statistical Analysis of Categorical Data. New York, USA: Wiley.zbMATHGoogle Scholar
  243. Loader, C. 1999. Local Regression and Likelihood. New York, USA: Springer.zbMATHGoogle Scholar
  244. Lopatatzidis, A. and P. J. Green 1998. Semiparametric quantile regression using the gamma distribution. Unpublished manuscript.Google Scholar
  245. Maddala, G. S. 1983. Limited Dependent and Qualitative Variables in Econometrics. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  246. Mai, J.-F. and M. Scherer 2012. Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications. London: Imperial College Press.CrossRefGoogle Scholar
  247. Maindonald, J. H. and W. J. Braun 2010. Data Analysis and Graphics Using R: An Example-Based Approach (Third ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  248. Marra, G. and R. Radice 2010. Penalised regression splines: theory and application to medical research. Statistical Methods in Medical Research 19(2):107–125.MathSciNetCrossRefGoogle Scholar
  249. Marshall, A. W. and I. Olkin 2007. Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families. New York, USA: Springer.Google Scholar
  250. McCrea, R. S. and B. J. T. Morgan 2015. Analysis of Capture–Recapture Data. Boca Raton, FL, USA: Chapman & Hall/CRC.Google Scholar
  251. McCullagh, P. 1980. Regression models for ordinal data. Journal of the Royal Statistical Society, Series B 42(2):109–142. With discussion.Google Scholar
  252. McCullagh, P. 1989. Some statistical properties of a family of continuous univariate distributions. Journal of the American Statistical Association 84(405):125–129.zbMATHMathSciNetCrossRefGoogle Scholar
  253. McCullagh, P. and J. A. Nelder 1989. Generalized Linear Models (Second ed.). London: Chapman & Hall.zbMATHCrossRefGoogle Scholar
  254. McFadden, D. 1974. Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Conditional Logit Analysis of Qualitative Choice Behavior, pp. 105–142. New York, USA: Academic Press.Google Scholar
  255. McLachlan, G. J. and D. Peel 2000. Finite Mixture Models. New York, USA: Wiley.zbMATHCrossRefGoogle Scholar
  256. Mikosch, T. 2006. Copulas: tales and facts (with rejoinder). Extremes 9(1): 3–20,55–62.Google Scholar
  257. Miller, A. 2002. Subset Selection in Regression (Second ed.). Boca Raton, FL, USA: Chapman & Hall/CRC.zbMATHCrossRefGoogle Scholar
  258. Miller, J. J. and E. J. Wegman 1987. Vector function estimation using splines. Journal of Statistical Planning and Inference 17:173–180.zbMATHMathSciNetCrossRefGoogle Scholar
  259. Morris, C. N. 1982. Natural exponential families with quadratic variance functions. The Annals of Statistics 10(1):65–80.zbMATHMathSciNetCrossRefGoogle Scholar
  260. Mosteller, F. and J. W. Tukey 1977. Data Analysis and Regression. Reading, MA, USA: Addison-Wesley.Google Scholar
  261. Murthy, D. N. P., M. Xie, and R. Jiang 2004. Weibull Models. Hoboken, NJ, USA: Wiley.zbMATHGoogle Scholar
  262. Myers, R. H., D. C. Montgomery, G. G. Vining, and T. J. Robinson 2010. Generalized Linear Models With Applications in Engineering and the Sciences (Second ed.). Hoboken, NJ, USA: Wiley.zbMATHCrossRefGoogle Scholar
  263. Nadarajah, S. and S. A. A. Bakar 2013. A new R package for actuarial survival models. Computational Statistics 28(5):2139–2160.zbMATHMathSciNetCrossRefGoogle Scholar
  264. Nelder, J. A. and R. W. M. Wedderburn 1972. Generalized linear models. Journal of the Royal Statistical Society, Series A 135(3):370–384.CrossRefGoogle Scholar
  265. Nelsen, R. B. 2006. An Introduction to Copulas (Second ed.). New York, USA: Springer.zbMATHGoogle Scholar
  266. Newey, W. K. and J. L. Powell 1987. Asymmetric least squares estimation and testing. Econometrica 55(4):819–847.zbMATHMathSciNetCrossRefGoogle Scholar
  267. Neyman, J. and E. L. Scott 1948. Consistent estimates based on partially consistent observations. Econometrica 16(1):1–32.MathSciNetCrossRefGoogle Scholar
  268. Nocedal, J. and S. J. Wright 2006. Numerical Optimization (Second ed.). New York, USA: Springer.zbMATHGoogle Scholar
  269. Nosedal-Sanchez, A., C. B. Storlie, T. C. M. Lee, and R. Christensen 2012. Reproducing kernel Hilbert spaces for penalized regression: A tutorial. American Statistician 66(1):50–60.MathSciNetCrossRefGoogle Scholar
  270. Novak, S. Y. 2012. Extreme Value Methods with Applications to Finance. Boca Raton, FL, USA: CRC Press.Google Scholar
  271. Olver, F. W. J., D. W. Lozier, R. F. Boisvert, and C. W. Clark (Eds.) 2010. NIST Handbook of Mathematical Functions. New York, USA: National Institute of Standards and Technology, and Cambridge University Press.zbMATHGoogle Scholar
  272. Osborne, M. R. 1992. Fisher’s method of scoring. International Statistical Review 60(1):99–117.zbMATHCrossRefGoogle Scholar
  273. Osborne, M. R. 2006. Least squares methods in maximum likelihood problems. Optimization Methods and Software 21(6):943–959.zbMATHMathSciNetCrossRefGoogle Scholar
  274. Otis, D. L., K. P. Burnham, G. C. White, and D. R. Anderson 1978. Statistical inference from capture data on closed animal populations. Wildlife Monographs 62:3–135.Google Scholar
  275. Owen, A. B. 2001. Empirical Likelihood. Boca Raton, FL, USA: Chapman & Hall/CRC.Google Scholar
  276. Page, L. A., S. Hajat, and R. S. Kovats 2007. Relationship between daily suicide counts and temperature in England and Wales. British Journal of Psychiatry 191(2):106–112.CrossRefGoogle Scholar
  277. Pal, N., C. Jin, and W. K. Lim 2006. Handbook of Exponential and Related Distributions for Engineers and Scientists. Boca Raton, FL, USA: Chapman & Hall/CRC.Google Scholar
  278. Palmer, M. 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74(8):2215–2230.CrossRefGoogle Scholar
  279. Palmgren, J. 1989. Regression models for bivariate binary responses. Technical Report 101, Biostatistics Dept, University of Washington, Seattle, USA.Google Scholar
  280. Park, B. U., E. Mammen, Y. K. Lee, and E. R. Lee 2015. Varying coefficient regression models: a review and new developments. International Statistical Review 83(1):36–64.MathSciNetCrossRefGoogle Scholar
  281. Pickands, J. 1975. Statistical inference using extreme order statistics. The Annals of Statistics 3(1):119–131.zbMATHMathSciNetCrossRefGoogle Scholar
  282. Plackett, R. L. 1965. A class of bivariate distributions. Journal of the American Statistical Association 60(310):516–522.MathSciNetCrossRefGoogle Scholar
  283. Poiraud-Casanova, S. and C. Thomas-Agnan 2000. About monotone regression quantiles. Statistics & Probability Letters 48(1):101–104.zbMATHMathSciNetCrossRefGoogle Scholar
  284. Powers, D. A. and Y. Xie 2008. Statistical Methods for Categorical Data Analysis (Second ed.). Bingley, UK: Emerald.Google Scholar
  285. Pratt, J. W. 1981. Concavity of the log likelihood. Journal of the American Statistical Association 76(373):103–106. Correction p.954, Vol 77.Google Scholar
  286. Prentice, R. L. 1974. A log gamma model and its maximum likelihood estimation. Biometrika 61(3):539–544.zbMATHMathSciNetCrossRefGoogle Scholar
  287. Prentice, R. L. 1986. Binary regression using an extended beta-binomial distribution, with discussion of correlation induced by covariate measurement errors. Journal of the American Statistical Association 81(394):321–327.zbMATHCrossRefGoogle Scholar
  288. Prescott, P. and A. T. Walden 1980. Maximum likelihood estimation of the parameters of the generalized extreme-value distribution. Biometrika 67(3):723–724.MathSciNetCrossRefGoogle Scholar
  289. Randall, J. H. 1989. The analysis of sensory data by generalized linear model. Biometrics Journal 31(7):781–793.MathSciNetCrossRefGoogle Scholar
  290. Rao, C. R. 1948. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Mathematical Proceedings of the Cambridge Philosophical Society 44(1):50–57.zbMATHCrossRefGoogle Scholar
  291. Rao, C. R. 1973. Linear Statistical Inference and its Applications (Second ed.). New York, USA: Wiley.zbMATHCrossRefGoogle Scholar
  292. Rasch, G. 1961. On general laws and the meaning of measurement in psychology. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability 4:321–333.Google Scholar
  293. Reinsch, C. H. 1967. Smoothing by spline functions. Numerische Mathematik 10(3):177–183.zbMATHMathSciNetCrossRefGoogle Scholar
  294. Reinsel, G. C. and R. P. Velu 1998. Multivariate Reduced-Rank Regression: Theory and Applications. New York, USA: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  295. Reinsel, G. C. and R. P. Velu 2006. Partically reduced-rank multivariate regression models. Statistica Sinica 16(3):899–917.zbMATHMathSciNetGoogle Scholar
  296. Reiss, R.-D. and M. Thomas 2007. Statistical Analysis of Extreme Values: with Applications to Insurance, Finance, Hydrology and Other Fields (Third ed.). Basel, Switzerland: Birkhäuser.Google Scholar
  297. Rencher, A. C. and G. B. Schaalje 2008. Linear Models in Statistics (second ed.). New York, USA: John Wiley & Sons.zbMATHGoogle Scholar
  298. Richards, F. S. G. 1961. A method of maximum-likelihood estimation. Journal of the Royal Statistical Society, Series B 23(2):469–475.zbMATHMathSciNetGoogle Scholar
  299. Richards, S. J. 2012. A handbook of parametric survival models for actuarial use. Scandinavian Actuarial Journal 2012(4):233–257.zbMATHMathSciNetCrossRefGoogle Scholar
  300. Ridout, M. S. 1990. Non-convergence of Fisher’s method of scoring—a simple example. GLIM Newsletter 20(6).Google Scholar
  301. Rinne, H. 2009. The Weibull Distribution. Boca Raton, FL, USA: CRC Press.Google Scholar
  302. Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  303. Ripley, B. D. 2004. Selecting amongst large classes of models. See Adams et al. (2004), pp. 155–170.Google Scholar
  304. Rose, C. and M. D. Smith 2002. Mathematical Statistics with Mathematica. New York, USA: Springer.zbMATHCrossRefGoogle Scholar
  305. Rose, C. and M. D. Smith 2013. Mathematical Statistics with Mathematica. eBook.Google Scholar
  306. Rubin, D. B. 2006. Iteratively reweighted least squares. In Encyclopedia of Statistical Sciences, Volume 6. Wiley.Google Scholar
  307. Ruppert, D., M. P. Wand, and R. J. Carroll 2003. Semiparametric Regression. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  308. Ruppert, D., M. P. Wand, and R. J. Carroll 2009. Semiparametric regression during 2003–2007. Electronic Journal of Statistics 3(1):1193–1256.zbMATHMathSciNetCrossRefGoogle Scholar
  309. Sakamoto, Y., M. Ishiguro, and G. Kitagawa 1986. Akaike Information Criterion Statistics. Dordrecht, Netherlands: D. Reidel Publishing Company.zbMATHGoogle Scholar
  310. Schenker, N. and J. F. Gentleman 2001. On judging the significance of differences by examining the overlap between confidence intervals. American Statistician 55(3):182–186.MathSciNetCrossRefGoogle Scholar
  311. Schepsmeier, U. and J. Stöber 2014. Derivatives and Fisher information of bivariate copulas. Statistical Papers 55(2):525–542.zbMATHMathSciNetCrossRefGoogle Scholar
  312. Schimek, M. G. (Ed.) 2000. Smoothing and Regression: Approaches, Computation, and Application. New York, USA: Wiley.Google Scholar
  313. Schnabel, S. K. and P. H. C. Eilers 2009. Optimal expectile smoothing. Computational Statistics & Data Analysis 53(12):4168–4177.zbMATHMathSciNetCrossRefGoogle Scholar
  314. Schumaker, L. L. 2007. Spline Functions: Basic Theory (Third ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  315. Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics 6(2):461–464.zbMATHMathSciNetCrossRefGoogle Scholar
  316. Seber, G. A. F. 2008. A Matrix Handbook for Statisticians. Hoboken, NJ, USA: Wiley.Google Scholar
  317. Seber, G. A. F. and A. J. Lee 2003. Linear Regression Analysis (Second ed.). New York, USA: Wiley.zbMATHCrossRefGoogle Scholar
  318. Seber, G. A. F. and C. J. Wild 1989. Nonlinear Regression. New York, USA: Wiley.zbMATHCrossRefGoogle Scholar
  319. Self, S. G. and K.-Y. Liang 1987. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association 82(398):605–610.zbMATHMathSciNetCrossRefGoogle Scholar
  320. Senn, S. 2004. John Nelder: From general balance to generalised models (both linear and hierarchical). See Adams et al. (2004), pp. 1–12.Google Scholar
  321. Severini, T. A. 2000. Likelihood Methods in Statistics. New York, USA: Oxford University Press.zbMATHGoogle Scholar
  322. Shao, J. 2003. Mathematical Statistics (Second ed.). New York, USA: Springer.zbMATHCrossRefGoogle Scholar
  323. Shao, J. 2005. Mathematical Statistics: Exercises and Solutions. New York, USA: Springer.Google Scholar
  324. Silverman, B. W. 1984. Spline smoothing: The equivalent variable kernel method. The Annals of Statistics 12(3):898–916.zbMATHMathSciNetCrossRefGoogle Scholar
  325. Silverman, B. W. 1985. Some aspects of the spline smoothing approach to nonparametric regression curve fitting. Journal of the Royal Statistical Society, Series B 47(1):1–21. With discussion.Google Scholar
  326. Silvey, S. D. 1975. Statistical Inference. London: Chapman & Hall.zbMATHGoogle Scholar
  327. Simonoff, J. S. 2003. Analyzing Categorical Data. New York, USA: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  328. Sklar, A. 1959. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris 8:229–231.MathSciNetGoogle Scholar
  329. Small, C. G. and D. L. McLeish 1994. Hilbert Space Methods in Probability and Statistical Inference. New York, USA: Wiley.zbMATHCrossRefGoogle Scholar
  330. Smith, M. and R. Kohn 2000. Nonparametric seemingly unrelated regression. Journal of Econometrics 98(2):257–281.zbMATHCrossRefGoogle Scholar
  331. Smith, R. L. 1985. Maximum likelihood estimation in a class of nonregular cases. Biometrika 72(1):67–90.zbMATHMathSciNetCrossRefGoogle Scholar
  332. Smith, R. L. 1986. Extreme value theory based on the r largest annual events. Journal of Hydrology 86(1–2):27–43.CrossRefGoogle Scholar
  333. Smith, R. L. 2003. Statistics of extremes, with applications in environment, insurance and finance. See Finkenstadt and Rootzén (2003), pp. 1–78.Google Scholar
  334. Smithson, M. and E. C. Merkle 2013. Generalized Linear Models for Categorical and Continuous Limited Dependent Variables. London: Chapman & Hall/CRC.Google Scholar
  335. Smyth, G. K. 1989. Generalized linear models with varying dispersion. Journal of the Royal Statistical Society, Series B 51(1):47–60.MathSciNetGoogle Scholar
  336. Smyth, G. K. 1996. Partitioned algorithms for maximum likelihood and other nonlinear estimation. Statistics and Computing 6(3):201–216.CrossRefGoogle Scholar
  337. Smyth, G. K., A. F. Huele, and A. P. Verbyla 2001. Exact and approximate REML for heteroscedastic regression. Statistical Modelling 1(3):161–175.zbMATHCrossRefGoogle Scholar
  338. Spector, P. 2008. Data Manipulation with R. New York, USA: Springer Verlag.zbMATHGoogle Scholar
  339. Srivastava, V. K. and T. D. Dwivedi 1979. Estimation of seemingly unrelated regression equations: A brief survey. Journal of Econometrics 10(1):15–32.zbMATHMathSciNetCrossRefGoogle Scholar
  340. Srivastava, V. K. and D. E. A. Giles 1987. Seemingly Unrelated Regression Equations Models: Estimation and Inference. New York, USA: Marcel Dekker.zbMATHGoogle Scholar
  341. Stacy, E. W. 1962. A generalization of the gamma distribution. Annals of Mathematical Statistics 33(3):1187–1192.zbMATHMathSciNetCrossRefGoogle Scholar
  342. Takane, Y., H. Yanai, and S. Mayekawa 1991. Relationships among several methods of linearly constrained correspondence analysis. Psychometrika 56(4):667–684.zbMATHMathSciNetCrossRefGoogle Scholar
  343. Tawn, J. A. 1988. An extreme-value theory model for dependent observations. Journal of Hydrology 101(1–4):227–250.CrossRefGoogle Scholar
  344. Taylor, J. W. 2008. Estimating value at risk and expected shortfall using expectiles. Journal of Financial Econometrics 6(2):231–252.CrossRefGoogle Scholar
  345. Taylor, L. R. 1961. Aggregation, variance and the mean. Nature 189(4766): 732–735.CrossRefGoogle Scholar
  346. ter Braak, C. J. F. 1986. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5):1167–1179.CrossRefGoogle Scholar
  347. ter Braak, C. J. F. 1995. Calibration. See Jongman et al. (1995), pp. 78–90.Google Scholar
  348. ter Braak, C. J. F. and I. C. Prentice 1988. A theory of gradient analysis. In Advances in Ecological Research, Volume 18, pp. 271–317. London: Academic Press.CrossRefGoogle Scholar
  349. ter Braak, C. J. F. and P. F. M. Verdonschot 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57(3):255–289.CrossRefGoogle Scholar
  350. ter Braak, C. J. F., and P. Šmilauer 2015. Topics in constrained and unconstrained ordination. Plant Ecology 216(5):683–696.CrossRefGoogle Scholar
  351. Thompson, R. and R. J. Baker 1981. Composite link functions in generalized linear models. Journal of the Royal Statistical Society, Series C 30(2):125–131.zbMATHMathSciNetGoogle Scholar
  352. Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58(1):267–288.zbMATHMathSciNetGoogle Scholar
  353. Titterington, D. M., A. F. M. Smith, and U. E. Makov 1985. Statistical Analysis of Finite Mixture Distributions. New York, USA: Wiley.zbMATHGoogle Scholar
  354. Tobin, J. 1958. Estimation of relationships for limited dependent variables. Econometrica 26(1):24–36.zbMATHMathSciNetCrossRefGoogle Scholar
  355. Trivedi, P. K. and D. M. Zimmer 2005. Copula modeling: An introduction for practitioners. Foundations and Trends in Econometrics 1(1):1–111.zbMATHMathSciNetCrossRefGoogle Scholar
  356. Tutz, G. 2012. Regression for Categorical Data. Cambridge: Cambridge University Press.Google Scholar
  357. van den Boogaart, K. G. and R. Tolosana-Delgado 2013. Analyzing Compositional Data with R. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  358. Venables, W. N. and B. D. Ripley 2002. Modern Applied Statistics With S (4th ed.). New York, USA: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  359. von Eye, A. and E.-E. Mun 2013. Log-linear Modeling: Concepts, Interpretation, and Application. Hoboken, NJ, USA: Wiley.Google Scholar
  360. Vuong, Q. H. 1989. Likelihood ratio tests for model selection and nonnested hypotheses. Econometrica 57(2):307–333.zbMATHMathSciNetCrossRefGoogle Scholar
  361. Wahba, G. 1982. Vector splines on the sphere, with application to the estimation of vorticity and divergence from discrete, noisy data. In W. S. K. Zeller (Ed.), Multivarate Approximation Theory, Volume 2, pp. 407–429. Birkhäuser: Verlag.Google Scholar
  362. Wahba, G. 1990. Spline models for observational data, Volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics (SIAM).Google Scholar
  363. Wand, M. P. and M. C. Jones 1995. Kernel Smoothing. London: Chapman & Hall.zbMATHCrossRefGoogle Scholar
  364. Wand, M. P. and J. T. Ormerod 2008. On semiparametric regression with O’Sullivan penalized splines. Australian & New Zealand Journal of Statistics 50(2):179–198.zbMATHMathSciNetCrossRefGoogle Scholar
  365. Wang, Y. 2011. Smoothing Splines: Methods and Applications. Boca Raton, FL, USA: Chapman & Hall/CRC.Google Scholar
  366. Webb, M. H., S. Wotherspoon, D. Stojanovic, R. Heinsohn, R. Cunningham, P. Bell, and A. Terauds 2014. Location matters: Using spatially explicit occupancy models to predict the distribution of the highly mobile, endangered swift parrot. Biological Conservation 176:99–108.CrossRefGoogle Scholar
  367. Wecker, W. E. and C. F. Ansley 1983. The signal extraction approach to nonlinear regression and spline smoothing. Journal of the American Statistical Association 78(381):81–89.zbMATHMathSciNetCrossRefGoogle Scholar
  368. Wedderburn, R. W. M. 1974. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61(3):439–447.zbMATHMathSciNetGoogle Scholar
  369. Wegman, E. J. 1981. Vector splines and the estimation of filter functions. Technometrics 23(1):83–89.zbMATHMathSciNetCrossRefGoogle Scholar
  370. Weihs, C., O. Mersmann, and U. Ligges 2014. Foundations of Statistical Algorithms: With References to R Packages. Boca Raton, FL, USA: CRC Press.Google Scholar
  371. Weir, B. S. 1996. Genetic Data Analysis II. Sunderland, MA, USA: Sinauer.Google Scholar
  372. Welsh, A. H. 1996. Robust estimation of smooth regression and spread functions and their derivatives. Statistica Sinica 6:347–366.zbMATHMathSciNetGoogle Scholar
  373. Welsh, A. H., R. B. Cunningham, C. F. Donnelly, and D. B. Lindenmayer 1996. Modelling the abundances of rare species: statistical models for counts with extra zeros. Ecological Modelling 88(1–3):297–308.CrossRefGoogle Scholar
  374. Welsh, A. H., D. B. Lindenmayer, and C. F. Donnelly 2013. Fitting and interpreting occupancy models. PLOS One 8(1):1–21.CrossRefGoogle Scholar
  375. Welsh, A. H. and T. W. Yee 2006. Local regression for vector responses. Journal of Statistical Planning and Inference 136(9):3007–3031.zbMATHMathSciNetCrossRefGoogle Scholar
  376. Wickham, H. 2015. Advanced R. Boca Raton, FL, USA: Chapman & Hall/CRC.Google Scholar
  377. Wild, C. J. and T. W. Yee 1996. Additive extensions to generalized estimating equation methods. Journal of the Royal Statistical Society, Series B 58(4):711–725.zbMATHMathSciNetGoogle Scholar
  378. Wilkinson, G. N. and C. E. Rogers 1973. Symbolic description of factorial models for analysis of variance. Journal of the Royal Statistical Society, Series C 22(3):392–399.Google Scholar
  379. Williams, B. K., J. D. Nichols, and M. J. Conroy 2002. Analysis and Management of Animal Populations. London: Academic Press.Google Scholar
  380. Williams, D. A. 1975. The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity. Biometrics 31(4):949–952.zbMATHCrossRefGoogle Scholar
  381. Winkelmann, R. 2008. Econometric Analysis of Count Data (5th ed.). Berlin: Springer.Google Scholar
  382. Winkelmann, R. and S. Boes 2006. Analysis of Microdata. Berlin: Springer.zbMATHGoogle Scholar
  383. Withers, C. S. and S. Nadarajah 2009. The asymptotic behaviour of the maximum of a random sample subject to trends in location and scale. Random Operators and Stochastic Equations 17(1):55–60.zbMATHMathSciNetCrossRefGoogle Scholar
  384. Wold, S. 1974. Spline functions in data analysis. Technometrics 16(1):1–11.zbMATHMathSciNetCrossRefGoogle Scholar
  385. Wood, S. N. 2006. Generalized Additive Models: An Introduction with R. London: Chapman and Hall.Google Scholar
  386. Wooldridge, J. M. 2006. Introductory Econometrics: A Modern Approach (5th ed.). Mason, OH, USA: South-Western.Google Scholar
  387. Yanai, H., K. Takeuchi, and Y. Takane 2011. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. New York, USA: Springer.zbMATHCrossRefGoogle Scholar
  388. Yang, H.-C. and A. Chao 2005. Modeling animals’ behavioral response by Markov chain models for capture–recapture experiments. Biometrics 61(4):1010–1017.zbMATHMathSciNetCrossRefGoogle Scholar
  389. Yasuda, N. 1968. Estimation of the interbreeding coefficient from phenotype frequencies by a method of maximum likelihood scoring. Biometrics 24(4):915–934.MathSciNetCrossRefGoogle Scholar
  390. Yatchew, A. 2003. Semiparametric Regression for the Applied Econometrician. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  391. Yee, T. W. 1998. On an alternative solution to the vector spline problem. Journal of the Royal Statistical Society, Series B 60(1):183–188.zbMATHCrossRefGoogle Scholar
  392. Yee, T. W. 2000. Vector splines and other vector smoothers. In J. G. Bethlehem and P. G. M. van der Heijden (Eds.), Proceedings in Computational Statistics COMPSTAT 2000, pp. 529–534. Heidelberg: Physica-Verlag.Google Scholar
  393. Yee, T. W. 2004a. A new technique for maximum-likelihood canonical Gaussian ordination. Ecological Monographs 74(4):685–701.MathSciNetCrossRefGoogle Scholar
  394. Yee, T. W. 2004b. Quantile regression via vector generalized additive models. Statistics in Medicine 23(14):2295–2315.CrossRefGoogle Scholar
  395. Yee, T. W. 2006. Constrained additive ordination. Ecology 87(1):203–213.CrossRefGoogle Scholar
  396. Yee, T. W. 2010a. The VGAM package for categorical data analysis. Journal of Statistical Software 32(10):1–34.MathSciNetCrossRefGoogle Scholar
  397. Yee, T. W. 2010b. VGLMs and VGAMs: an overview for applications in fisheries research. Fisheries Research 101(1–2):116–126.CrossRefGoogle Scholar
  398. Yee, T. W. 2014. Reduced-rank vector generalized linear models with two linear predictors. Computational Statistics & Data Analysis 71:889–902.MathSciNetCrossRefGoogle Scholar
  399. Yee, T. W. and A. F. Hadi 2014. Row-column interaction models, with an R implementation. Computational Statistics 29(6):1427–1445.zbMATHMathSciNetCrossRefGoogle Scholar
  400. Yee, T. W. and T. J. Hastie 2003. Reduced-rank vector generalized linear models. Statistical Modelling 3(1):15–41.zbMATHMathSciNetCrossRefGoogle Scholar
  401. Yee, T. W. and N. D. Mitchell 1991. Generalized additive models in plant ecology. Journal of Vegetation Science 2(5):587–602.CrossRefGoogle Scholar
  402. Yee, T. W. and A. G. Stephenson 2007. Vector generalized linear and additive extreme value models. Extremes 10(1–2):1–19.zbMATHMathSciNetCrossRefGoogle Scholar
  403. Yee, T. W., J. Stoklosa, and R. M. Huggins 2015. The VGAM package for capture–recapture data using the conditional likelihood. Journal of Statistical Software 65(5):1–33.CrossRefGoogle Scholar
  404. Yee, T. W. and C. J. Wild 1996. Vector generalized additive models. Journal of the Royal Statistical Society, Series B 58(3):481–493.zbMATHMathSciNetGoogle Scholar
  405. Yeo, I.-K. and R. A. Johnson 2000. A new family of power transformations to improve normality or symmetry. Biometrika 87(4):954–959.zbMATHMathSciNetCrossRefGoogle Scholar
  406. Young, G. A. and R. L. Smith 2005. Essentials of Statistical Inference. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  407. Yu, K. and J. Zhang 2005. A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics - Theory and Methods 34(9–10):1867–1879.zbMATHMathSciNetCrossRefGoogle Scholar
  408. Yu, P. and C. A. Shaw 2014. An efficient algorithm for accurate computation of the Dirichlet-multinomial log-likelihood function. Bioinformatics 30(11):1547–54.CrossRefGoogle Scholar
  409. Zellner, A. 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association 57(298):348–368.zbMATHMathSciNetCrossRefGoogle Scholar
  410. Zhang, C. 2003. Calibrating the degrees of freedom for automatic data smoothing and effective curve checking. Journal of the American Statistical Association 98(463):609–628.zbMATHMathSciNetCrossRefGoogle Scholar
  411. Zhang, Y. and O. Thas 2012. Constrained ordination analysis in the presence of zero inflation. Statistical Modelling 12(6):463–485.MathSciNetCrossRefGoogle Scholar
  412. Zhu, M., T. J. Hastie, and G. Walther 2005. Constrained ordination analysis with flexible response functions. Ecological Modelling 187(4):524–536.CrossRefGoogle Scholar
  413. Zuur, A. F. 2012. A Beginner’s Guide to Generalized Additive Models with R. Newburgh, UK: Highland Statistics Ltd.Google Scholar
  414. Zuur, A. F., E. N. Ieno, and E. H. Meesters 2009. A Beginner’s Guide to R. New York, USA: Springer.zbMATHCrossRefGoogle Scholar
  415. Zuur, A. F., A. A. Saveliev, and E. N. Ieno 2012. Zero Inflated Models and Generalized Linear Mixed Models with R. Newburgh, UK: Highland Statistics Ltd.Google Scholar

Copyright information

© Thomas Yee 2015

Authors and Affiliations

  • Thomas W. Yee
    • 1
  1. 1.Department of StatisticsUniversity of AucklandAucklandNew Zealand

Personalised recommendations