Skip to main content

Part of the book series: Springer Series in Statistics ((SSS))

  • 5918 Accesses

Abstract

This chapter deals with the most pertinent details of the vector generalized additive model (VGAM) class. Building on the basic ideas of univariate smoothing from an earlier chapter, we develop it for vector smoothing a vector response. The two main methods (vector splines and local regression†) are described, including some inference, computational details (e.g., modified backfitting, O-splines), the vector additive model (VAM; the ‘backbone’ of VGAMs), and other topics such as using the VGAM package to fit them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More strictly, \(\mathcal{V}\) is defined over a field, and the operators called ‘addition’ and ‘multiplication’, and there is an element called 0.

References

  • Abramowitz, M. and I. A. Stegun (Eds.) 1964. Handbook of Mathematical Functions. New York: Dover.

    MATH  Google Scholar 

  • Adams, N., M. Crowder, D. J. Hand, and D. Stephens (Eds.) 2004. Methods and Models in Statistics. London: Imperial College Press.

    MATH  Google Scholar 

  • Adler, J. 2010. R in a Nutshell. Sebastopol: O’Reilly.

    Google Scholar 

  • Agresti, A. 2010. Analysis of Ordinal Categorical Data (2nd ed.). Hoboken: Wiley.

    Book  MATH  Google Scholar 

  • Agresti, A. 2013. Categorical Data Analysis (Third ed.). Hoboken: Wiley.

    MATH  Google Scholar 

  • Agresti, A. 2015. Foundations of Linear and Generalized Linear Models. Hoboken: Wiley.

    MATH  Google Scholar 

  • Ahn, S. K. and G. C. Reinsel 1988. Nested reduced-rank autoregressive models for multiple time series. Journal of the American Statistical Association 83(403):849–856.

    MATH  MathSciNet  Google Scholar 

  • Ahsanullah, M. H. and G. G. Hamedani 2010. Exponential Distribution: Theory and Methods. New York: Nova Science.

    Google Scholar 

  • Aigner, D. J., T. Amemiya, and D. Poirer 1976. On the estimation of production frontiers: Maximum likelihood estimation of the parameters of a discontinuous density function. International Economic Review 17(2):377–396.

    Article  MATH  MathSciNet  Google Scholar 

  • Aitkin, M., B. Francis, J. Hinde, and R. Darnell 2009. Statistical Modelling in R. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csáki (Eds.), Second International Symposium on Information Theory, pp. 267–281. Budapest: Akadémiai Kaidó.

    Google Scholar 

  • Albert, A. and J. A. Anderson 1984. On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71(1):1–10.

    Article  MATH  MathSciNet  Google Scholar 

  • Allison, P. 2004. Convergence problems in logistic regression. See Altman et al. (2004), pp. 238–252.

    Google Scholar 

  • Altman, M., J. Gill, and M. P. McDonald 2004. Numerical Issues in Statistical Computing for the Social Scientist. Hoboken: Wiley-Interscience.

    MATH  Google Scholar 

  • Altman, M. and S. Jackman 2011. Nineteen ways of looking at statistical software. Journal of Statistical Software 42(2), 1–12.

    Article  Google Scholar 

  • Amemiya, T. 1984. Tobit models: a survey. Journal of Econometrics 24(1–2):3–61.

    Article  MATH  MathSciNet  Google Scholar 

  • Amemiya, T. 1985. Advanced Econometrics. Oxford: Blackwell.

    Google Scholar 

  • Amodei, L. and M. N. Benbourhim 1991. A vector spline approximation with application to meteorology. In P. J. Laurent, A. Le Méhauté, and L. L. Schumaker (Eds.), Curves and Surfaces, pp. 5–10. Boston: Academic Press.

    Google Scholar 

  • Amstrup, S. C., T. L. McDonald, and B. F. J. Manly 2005. Handbook of Capture–Recapture Analysis. Princeton: Princeton University Press.

    Google Scholar 

  • Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen 1999. LAPACK Users’ Guide (Third ed.). Philadelphia: SIAM Publications.

    Book  Google Scholar 

  • Anderson, J. A. 1984. Regression and ordered categorical variables. Journal of the Royal Statistical Society, Series B 46(1):1–30. With discussion.

    Google Scholar 

  • Anderson, T. W. 1951. Estimating linear restrictions on regression coefficients for multivariate normal distributions. Annals of Mathematical Statistics 22(3):327–351.

    Article  MATH  MathSciNet  Google Scholar 

  • Andrews, H. P., R. D. Snee, and M. H. Sarner 1980. Graphical display of means. American Statistician 34(4):195–199.

    Google Scholar 

  • Arnold, B. C. 2015. Pareto Distributions (Second ed.). Boca Raton: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Aronszajn, N. 1950. Theory of reproducing kernels. Transactions of the American Mathematical Society 68(3):337–404.

    Article  MATH  MathSciNet  Google Scholar 

  • Ashford, J. R. and R. R. Sowden 1970. Multi-variate probit analysis. Biometrics 26(3):535–546.

    Article  Google Scholar 

  • Azzalini, A. 1996. Statistical Inference: Based on the Likelihood. London: Chapman & Hall.

    MATH  Google Scholar 

  • Azzalini, A. 2014. The Skew-normal and Related Families. Cambridge: Cambridge University Press.

    Google Scholar 

  • Baillargeon, S. and L.-P. Rivest 2007. Rcapture: Loglinear models for capture–recapture in R. Journal of Statistical Software 19(5):1–31.

    Article  Google Scholar 

  • Baker, F. B. and S.-H. Kim 2004. Item Response Theory: Parameter Estimation Techniques (Second ed.). New York: Marcel Dekker.

    Google Scholar 

  • Balakrishnan, N. and A. P. Basu (Eds.) 1995. The Exponential Distribution: Theory, Methods, and Applications. Amsterdam: Gordon and Breach.

    MATH  Google Scholar 

  • Balakrishnan, N. and C.-D. Lai 2009. Continuous Bivariate Distributions (Second ed.). New York: Springer.

    MATH  Google Scholar 

  • Balakrishnan, N. and V. B. Nevzorov 2003. A Primer on Statistical Distributions. New York: Wiley-Interscience.

    Book  MATH  Google Scholar 

  • Banerjee, S. and A. Roy 2014. Linear Algebra and Matrix Analysis for Statistics. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Barndorff-Nielsen, O. E. and D. R. Cox 1994. Inference and Asymptotics. London: Chapman & Hall.

    Book  MATH  Google Scholar 

  • Barrodale, I. and F. D. K. Roberts 1974. Solution of an overdetermined system of equations in the 1 norm. Communications of the ACM 17(6):319–320.

    Article  Google Scholar 

  • Beaton, A. E. and J. W. Tukey 1974. The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16(2):147–185.

    Article  MATH  Google Scholar 

  • Beirlant, J., Y. Goegebeur, J. Segers, J. Teugels, D. De Waal, and C. Ferro 2004. Statistics of Extremes: Theory and Applications. Hoboken: Wiley.

    Book  Google Scholar 

  • Bellman, R. E. 1961. Adaptive Control Processes. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Belsley, D. A., E. Kuh, and R. E. Welsch 1980. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: John Wiley & Sons.

    Book  MATH  Google Scholar 

  • Berlinet, A. and C. Thomas-Agnan 2004. Reproducing Kernel Hilbert Spaces in Probability and Statistics. Boston: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  • Berndt, E. K., B. H. Hall, R. E. Hall, and J. A. Hausman 1974. Estimation and inference in nonlinear structural models. Ann. Econ. and Soc. Measur. 3–4: 653–665.

    Google Scholar 

  • Bickel, P. J. and K. A. Doksum 2001. Mathematical Statistics: Basic Ideas and Selected Topics (Second ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Bilder, C. M. and T. M. Loughin 2015. Analysis of Categorical Data with R. Boca Raton: CRC Press.

    Google Scholar 

  • Birch, J. B. 1980. Some convergence properties of iterated least squares in the location model. Communications in Statistics B 9(4):359–369.

    Article  Google Scholar 

  • Bock, R. D. and M. Leiberman 1970. Fitting a response model for n dichotomously scored items. Psychometrika 35(2):179–197.

    Article  Google Scholar 

  • Boos, D. D. and L. A. Stefanski 2013. Essential Statistical Inference. New York: Springer.

    Book  MATH  Google Scholar 

  • Bowman, K. O. and L. R. Shenton 1988. Properties of Estimators for the Gamma Distribution. New York: Marcel Dekker.

    MATH  Google Scholar 

  • Braun, W. J. and D. J. Murdoch 2008. A First Course in Statistical Programming with R. Cambridge: Cambridge University Press.

    Google Scholar 

  • Buja, A., T. Hastie, and R. Tibshirani 1989. Linear smoothers and additive models. The Annals of Statistics 17(2):453–510. With discussion.

    Google Scholar 

  • Burnham, K. P. and D. R. Anderson 2002. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach (Second ed.). New York: Springer.

    Google Scholar 

  • Byrd, R. H. and D. A. Pyne 1979. Some results on the convergence of the iteratively reweighted least squares. In ASA Proc. Statist. Computat. Section, pp. 87–90.

    Google Scholar 

  • Cameron, A. C. and P. K. Trivedi 2013. Regression Analysis of Count Data (Second ed.). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Cantoni, E. and T. Hastie 2002. Degrees-of-freedom tests for smoothing splines. Biometrika 89(2):251–263.

    Article  MATH  MathSciNet  Google Scholar 

  • Carroll, R. J. and D. Ruppert 1988. Transformation and Weighting in Regression. New York: Chapman and Hall.

    Book  MATH  Google Scholar 

  • Casella, G. and R. L. Berger 2002. Statistical Inference (Second ed.). Pacific Grove: Thomson Learning.

    Google Scholar 

  • Castillo, E., A. S. Hadi, N. Balakrishnan, and J. M. Sarabia 2005. Extreme Value and Related Models with Applications in Engineering and Science. Hoboken: Wiley.

    MATH  Google Scholar 

  • Chambers, J. M. 1998. Programming with Data: A Guide to the S Language. New York: Springer.

    Book  MATH  Google Scholar 

  • Chambers, J. M. 2008. Software for Data Analysis: Programming with R. Statistics and Computing. New York: Springer.

    Google Scholar 

  • Chambers, J. M. and T. J. Hastie (Eds.) 1991. Statistical Models in S. Pacific Grove: Wadsworth/Brooks Cole.

    Google Scholar 

  • Cheney, W. and D. Kincaid 2012. Numerical Mathematics and Computing (Seventh ed.). Boston: Brooks/Cole.

    Google Scholar 

  • Chotikapanich, D. (Ed.) 2008. Modeling Income Distributions and Lorenz Curves. New York: Springer.

    MATH  Google Scholar 

  • Christensen, R. 1997. Log-linear Models and Logistic Regression (Second ed.). New York: Springer-Verlag.

    MATH  Google Scholar 

  • Christensen, R. 2011. Plane Answers to Complex Questions: The Theory of Linear Models (4th ed.). New York: Springer-Verlag.

    Book  Google Scholar 

  • Christensen, R. H. B. 2013. Analysis of ordinal data with cumulative link models—estimation with the R-package ordinal. R package version 2013.9–30.

    Google Scholar 

  • Claeskens, G. and N. L. Hjort 2008. Model Selection and Model Averaging. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Clayton, D. and M. Hills 1993. Statistical Models in Epidemiology. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Cleveland, W. S. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74(368):829–836.

    Article  MATH  MathSciNet  Google Scholar 

  • Cleveland, W. S. and S. J. Devlin 1988. Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association 83(403):596–610.

    Article  MATH  Google Scholar 

  • Cleveland, W. S., E. Grosse, and W. M. Shyu 1991. Local regression models. See Chambers and Hastie (1991), pp. 309–376.

    Google Scholar 

  • Cohen, Y. and J. Cohen 2008. Statistics and Data with R: An Applied Approach Through Examples. Chichester: John Wiley & Sons.

    Book  Google Scholar 

  • Coles, S. 2001. An Introduction to Statistical Modeling of Extreme Values. London: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Consul, P. C. and F. Famoye 2006. Lagrangian Probability Distributions. Boston: Birkhäuser.

    MATH  Google Scholar 

  • Cook, R. D. and S. Weisberg 1982. Residuals and Influence in Regression. Monographs on Statistics and Applied Probability. London: Chapman & Hall.

    Google Scholar 

  • Cox, D. R. 2006. Principles of Statistical Inference. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Cox, D. R. and D. V. Hinkley 1974. Theoretical Statistics. London: Chapman & Hall.

    Book  MATH  Google Scholar 

  • Cox, D. R. and N. Reid 1987. Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society, Series B 49(1):1–39. With discussion.

    Google Scholar 

  • Crawley, M. J. 2005. Statistics: An Introduction using R. Chichester: John Wiley & Sons.

    Book  Google Scholar 

  • Crowder, M. and T. Sweeting 1989. Bayesian inference for a bivariate binomial distribution. Biometrika 76(3):599–603.

    Article  MATH  MathSciNet  Google Scholar 

  • Dalgaard, P. 2008. Introductory Statistics with R (Second ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Davino, C., C. Furno, and D. Vistocco 2014. Quantile Regression: Theory and Applications. Chichester: Wiley.

    Google Scholar 

  • Davison, A. C. 2003. Statistical Models. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Davison, A. C. and E. J. Snell 1991. Residuals and diagnostics. See Hinkley et al. (1991), pp. 83–106.

    Google Scholar 

  • de Boor, C. 2001. A Practical Guide to Splines (Revised Edition). New York: Springer.

    Google Scholar 

  • de Gruijter, D. N. M. and L. J. T. Van der Kamp 2008. Statistical Test Theory for the Behavioral Sciences. Boca Raton, FL, USA: Chapman & Hall/CRC.

    Google Scholar 

  • de Haan, L. and A. Ferreira 2006. Extreme Value Theory. New York: Springer.

    Book  MATH  Google Scholar 

  • de Vries, A. and J. Meys 2012. R for Dummies. Chichester: Wiley.

    Google Scholar 

  • De’ath, G. 1999. Principal curves: a new technique for indirect and direct gradient analysis. Ecology 80(7):2237–2253.

    Article  Google Scholar 

  • del Pino, G. 1989. The unifying role of iterative generalized least squares in statistical algorithms. Statistical Science 4(4):394–403.

    Article  MATH  MathSciNet  Google Scholar 

  • Dempster, A. P., N. M. Laird, and D. B. Rubin 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39(1):1–38. With discussion.

    Google Scholar 

  • Dempster, A. P., N. M. Laird, and D. B. Rubin 1980. Iteratively reweighted least squares for linear regression when errors are normal/independent distributed. In P. R. Krishnaiah (Ed.), Multivariate Analysis–V: Proceedings of the Fifth International Symposium on Multivariate Analysis, pp. 35–57. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Dennis, J. E. and R. B. Schnabel 1996. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  • Devroye, L. 1986. Non-Uniform Random Variate Generation. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Dobson, A. J. and A. Barnett 2008. An Introduction to Generalized Linear Models (Third ed.). Boca Raton: Chapman & Hall/CRC Press.

    MATH  Google Scholar 

  • Dongarra, J. J., J. R. Bunch, C. B. Moler, and G. W. Stewart 1979. LINPACK User’s Guide. Philadelphia: SIAM Publications.

    Book  Google Scholar 

  • Edwards, A. W. F. 1972. Likelihood. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Efron, B. 1986. Double exponential families and their use in generalized linear regression. Journal of the American Statistical Association 81(395):709–721.

    Article  MATH  MathSciNet  Google Scholar 

  • Efron, B. 1991. Regression percentiles using asymmetric squared error loss. Statistica Sinica 1(1):93–125.

    MATH  MathSciNet  Google Scholar 

  • Efron, B. 1992. Poisson overdispersion estimates based on the method of asymmetric maximum likelihood. Journal of the American Statistical Association 87(417):98–107.

    Article  MATH  MathSciNet  Google Scholar 

  • Efron, B. and D. V. Hinkley 1978. Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information. Biometrika 65(3):457–487. With discussion.

    Google Scholar 

  • Eilers, P. H. C. and B. D. Marx 1996. Flexible smoothing with B-splines and penalties. Statistical Science 11(2):89–121.

    Article  MATH  MathSciNet  Google Scholar 

  • Elandt-Johnson, R. C. 1971. Probability Models and Statistical Methods in Genetics. New York: Wiley.

    MATH  Google Scholar 

  • Embrechts, P., C. Klüppelberg, and T. Mikosch 1997. Modelling Extremal Events for Insurance and Finance. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Eubank, R. L. 1999. Spline Smoothing and Nonparametric Regression (Second ed.). New York: Marcel-Dekker.

    MATH  Google Scholar 

  • Everitt, B. S. and D. J. Hand 1981. Finite Mixture Distributions. London: Chapman & Hall.

    Book  MATH  Google Scholar 

  • Fahrmeir, L., T. Kneib, S. Lang, and B. Marx 2011. Regression: Models, Methods and Applications. Berlin: Springer.

    Google Scholar 

  • Fahrmeir, L. and G. Tutz 2001. Multivariate Statistical Modelling Based on Generalized Linear Models (Second ed.). New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Fan, J. and I. Gijbels 1996. Local Polynomial Modelling and Its Applications. London: Chapman & Hall.

    MATH  Google Scholar 

  • Fan, J. and J. Jiang 2005. Nonparametric inferences for additive models. Journal of the American Statistical Association 100(471):890–907.

    Article  MATH  MathSciNet  Google Scholar 

  • Fan, J. and Q. Yao 2003. Nonlinear Time Series: Nonparametric and Parametric Methods. New York: Springer.

    Book  Google Scholar 

  • Faraway, J. J. 2006. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • Faraway, J. J. 2015. Linear Models with R (Second ed.). Boca Raton: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Fessler, J. A. 1991. Nonparametric fixed-interval smoothing with vector splines. IEEE Transactions on Signal Processing 39(4):852–859.

    Article  Google Scholar 

  • Finkenstadt, B. and H. Rootzén (Eds.) 2003. Extreme Values in Finance, Telecommunications and the Environment. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Firth, D. 1991. Generalized linear models. See Hinkley et al. (1991), pp. 55–82.

    Google Scholar 

  • Firth, D. 1993. Bias reduction of maximum likelihood estimates. Biometrika 80(1):27–38.

    Article  MATH  MathSciNet  Google Scholar 

  • Firth, D. 2003. Overcoming the reference category problem in the presentation of statistical models. Sociological Methodology 33(1):1–18.

    Article  Google Scholar 

  • Firth, D. and R. X. de Menezes 2004. Quasi-variances. Biometrika 91(1):65–80.

    Article  MATH  MathSciNet  Google Scholar 

  • Fishman, G. S. 1996. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Fitzenberger, B., R. Koenker, and J. A. F. Machado (Eds.) 2002. Economic Applications of Quantile Regression. Berlin: Springer-Verlag.

    Google Scholar 

  • Forbes, C., M. Evans, N. Hastings, and B. Peacock 2011. Statistical Distributions (fouth ed.). Hoboken: John Wiley & Sons.

    MATH  Google Scholar 

  • Fox, J. and S. Weisberg 2011. An R Companion to Applied Regression (Second ed.). Thousand Oaks: Sage Publications.

    Google Scholar 

  • Freedman, D. A. 2007. How can the score test be inconsistent? American Statistician 61(4):291–295.

    Article  MathSciNet  Google Scholar 

  • Freedman, D. A. and J. S. Sekhon 2010. Endogeneity in probit response models. Political Analysis 18(2):138–150.

    Article  Google Scholar 

  • Freund, J. E. 1961. A bivariate extension of the exponential distribution. Journal of the American Statistical Association 56(296):971–977.

    Article  MATH  MathSciNet  Google Scholar 

  • Friedman, J. H. and W. Stuetzle 1981. Projection pursuit regression. Journal of the American Statistical Association 76(376):817–823.

    Article  MathSciNet  Google Scholar 

  • Frühwirth-Schnatter, S. 2006. Finite Mixture and Markov Switching Models. New York: Springer.

    MATH  Google Scholar 

  • Gabriel, K. R. and S. Zamir 1979. Lower rank approximation of matrices by least squares with any choice of weights. Technometrics 21(4):489–498.

    Article  MATH  Google Scholar 

  • Gauch, Hugh G., J., G. B. Chase, and R. H. Whittaker 1974. Ordinations of vegetation samples by Gaussian species distributions. Ecology 55(6):1382–1390.

    Google Scholar 

  • Gentle, J. E., W. K. Härdle, and Y. Mori 2012. Handbook of Computational Statistics: Concepts and Methods (Second ed.). Berlin: Springer.

    Book  Google Scholar 

  • Gentleman, R. 2009. R Programming for Bioinformatics. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Geraci, M. and M. Bottai 2007. Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8(1):140–154.

    Article  MATH  Google Scholar 

  • Gil, A., J. Segura, and N. M. Temme 2007. Numerical Methods for Special Functions. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  • Gill, J. and G. King 2004. What to do when your Hessian is not invertible: Alternatives to model respecification in nonlinear estimation. Sociological Methods & Research 33(1):54–87.

    Article  MathSciNet  Google Scholar 

  • Gilleland, E., M. Ribatet, and A. G. Stephenson 2013. A software review for extreme value analysis. Extremes 16(1):103–119.

    Article  MathSciNet  Google Scholar 

  • Goldberger, A. S. 1964. Econometric Theory. New York: Wiley.

    MATH  Google Scholar 

  • Golub, G. H. and C. F. Van Loan 2013. Matrix Computations (Fourth ed.). Baltimore: Johns Hopkins University Press.

    MATH  Google Scholar 

  • Gomes, M.I., and A. Guillou. 2015. Extreme value theory and statistics of univariate extremes: a review. International Statistical Review 83(2):263–292.

    Article  MathSciNet  Google Scholar 

  • Goodman, L. A. 1981. Association models and canonical correlation in the analysis of cross-classifications having ordered categories. Journal of the American Statistical Association 76(374):320–334.

    MathSciNet  Google Scholar 

  • Gower, J. C. 1987. Introduction to ordination techniques. In P. Legendre and L. Legendre (Eds.), Developments in Numerical Ecology, pp. 3–64. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Green, P. J. 1984. Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. Journal of the Royal Statistical Society, Series B 46(2):149–192. With discussion.

    Google Scholar 

  • Green, P. J. and B. W. Silverman 1994. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. London: Chapman & Hall.

    Book  MATH  Google Scholar 

  • Greene, W. H. 2012. Econometric Analysis (Seventh ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Greene, W. H. and D. A. Hensher 2010. Modeling Ordered Choices: A Primer. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gu, C. 2013. Smoothing Spline ANOVA Models (Second ed.). New York, USA: Springer.

    Book  MATH  Google Scholar 

  • Gumbel, E. J. 1958. Statistics of Extremes. New York, USA: Columbia University Press.

    MATH  Google Scholar 

  • Gupta, A. K. and S. Nadarajah (Eds.) 2004. Handbook of Beta Distribution and Its Applications. New York, USA: Marcel Dekker.

    MATH  Google Scholar 

  • Hao, L. and D. Q. Naiman 2007. Quantile Regression. Thousand Oaks, CA, USA: Sage Publications.

    Google Scholar 

  • Härdle, W. 1987. Smoothing Techniques With Implementation in S. New York, USA: Springer-Verlag.

    Google Scholar 

  • Härdle, W. 1990. Applied Nonparametric Regression. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Härdle, W., H. Liang, and J. Gao 2000. Partially Linear Models. New York, USA: Springer.

    Book  MATH  Google Scholar 

  • Härdle, W., M. Müller, S. Sperlich, and A. Werwatz 2004. Nonparametric and Semiparametric Models. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Harezlak, J., D. Ruppert, and M.P. Wand. 2016. Semiparametric regression in R. New York: Springer.

    Google Scholar 

  • Harper, W. V., T. G. Eschenbach, and T. R. James 2011. Concerns about maximum likelihood estimation for the three-parameter Weibull distribution: Case study of statistical software. American Statistician 65(1):44–54.

    Article  Google Scholar 

  • Harrell, F. E. 2001. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York, USA: Springer.

    Book  Google Scholar 

  • Harville, D. A. 1997. Matrix Algebra From a Statistician’s Perspective. New York, USA: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Hastie, T. 1996. Pseudosplines. Journal of the Royal Statistical Society, Series B 58(2):379–396.

    MATH  MathSciNet  Google Scholar 

  • Hastie, T. and W. Stuetzle 1989. Principal curves. Journal of the American Statistical Association 84(406):502–516.

    Article  MATH  MathSciNet  Google Scholar 

  • Hastie, T. and R. Tibshirani 1993. Varying-coefficient models. Journal of the Royal Statistical Society, Series B 55(4):757–796.

    MATH  MathSciNet  Google Scholar 

  • Hastie, T. J. and D. Pregibon 1991. Generalized linear models. See Chambers and Hastie (1991), pp. 195–247.

    Google Scholar 

  • Hastie, T. J. and R. J. Tibshirani 1990. Generalized Additive Models. London: Chapman & Hall.

    MATH  Google Scholar 

  • Hastie, T. J., R. J. Tibshirani, and J. H. Friedman 2009. The Elements of Statistical Learning: Data Mining, Inference and Prediction (Second ed.). New York, USA: Springer-Verlag.

    Book  Google Scholar 

  • Hauck, J. W. W. and A. Donner 1977. Wald’s test as applied to hypotheses in logit analysis. Journal of the American Statistical Association 72(360):851–853.

    Article  MATH  MathSciNet  Google Scholar 

  • He, X. 1997. Quantile curves without crossing. American Statistician 51(2):186–192.

    Google Scholar 

  • Heinze, G. and M. Schemper 2002. A solution to the problem of separation in logistic regression. Statistics in Medicine 21(16):2409–2419.

    Article  Google Scholar 

  • Hensher, D. A., J. M. Rose, and W. H. Greene 2014. Applied Choice Analysis (Second ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hilbe, J. M. 2009. Logistic Regression Models. Boca Raton, FL, USA: Chapman & Hall/CRC.

    Google Scholar 

  • Hilbe, J. M. 2011. Negative Binomial Regression (Second ed.). Cambridge, UK; New York, USA: Cambridge University Press.

    Google Scholar 

  • Hinkley, D. V., N. Reid, and E. J. Snell (Eds.) 1991. Statistical Theory and Modelling. In Honour of Sir David Cox, FRS, London. Chapman & Hall.

    Google Scholar 

  • Hogben, L. (Ed.) 2014. Handbook of Linear Algebra (Second ed.). Boca Raton, FL, USA: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Hörmann, W., J. Leydold, and G. Derflinger 2004. Automatic Nonuniform Random Variate Generation. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Horvitz, D. G. and D. J. Thompson 1952. A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 47(260):663–685.

    Article  MATH  MathSciNet  Google Scholar 

  • Huber, P. J. 2011. Data Analysis: What Can Be Learned From the Past 50 Years. Hoboken, NJ, USA: Wiley.

    Book  Google Scholar 

  • Huber, P. J. and E. M. Ronchetti 2009. Robust Statistics (second ed.). New York, USA: Wiley.

    Book  MATH  Google Scholar 

  • Huggins, R. and W.-H. Hwang 2011. A review of the use of conditional likelihood in capture–recapture experiments. International Statistical Review 79(3):385–400.

    Article  MATH  Google Scholar 

  • Huggins, R. M. 1989. On the statistical analysis of capture experiments. Biometrika 76(1):133–140.

    Article  MATH  MathSciNet  Google Scholar 

  • Huggins, R. M. 1991. Some practical aspects of a conditional likelihood approach to capture experiments. Biometrics 47(2):725–732.

    Article  Google Scholar 

  • Hui, F. K. C., S. Taskinen, S. Pledger, S. D. Foster, and D. I. Warton 2015. Model-based approaches to unconstrained ordination. Methods in Ecology and Evolution 6(4):399–411.

    Article  Google Scholar 

  • Hurvich, C. M. and C.-L. Tsai 1989. Regression and time series model selection in small samples. Biometrika 76(2):297–307.

    Article  MATH  MathSciNet  Google Scholar 

  • Hutchinson, M. F. and F. R. de Hoog 1985. Smoothing noisy data with spline functions. Numerische Mathematik 47(1):99–106.

    Article  MATH  MathSciNet  Google Scholar 

  • Hwang, W.-H. and R. Huggins 2011. A semiparametric model for a functional behavioural response to capture in capture–recapture experiments. Australian & New Zealand Journal of Statistics 53(4):403–421.

    Article  MathSciNet  Google Scholar 

  • Ichimura, H. 1993. Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J. Econometrics 58(1–2):71–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Ihaka, R. and R. Gentleman 1996. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5(3):299–314.

    Google Scholar 

  • Imai, K., G. King, and O. Lau 2008. Toward a common framework for statistical analysis and development. Journal of Computational and Graphical Statistics 17(4):892–913.

    Article  MathSciNet  Google Scholar 

  • Izenman, A. J. 1975. Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis 5(2):248–264.

    Article  MATH  MathSciNet  Google Scholar 

  • Izenman, A. J. 2008. Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. New York, USA: Springer.

    Book  Google Scholar 

  • James, G., D. Witten, T. Hastie, and R. Tibshirani 2013. An Introduction to Statistical Learning with Applications in R. New York, USA: Springer.

    Book  MATH  Google Scholar 

  • Joe, H. 2014. Dependence Modeling with Copulas. Boca Raton, FL, USA: Chapman & Hall/CRC.

    Google Scholar 

  • Johnson, N. L., A. W. Kemp, and S. Kotz 2005. Univariate Discrete Distributions (Third ed.). Hoboken, NJ, USA: John Wiley & Sons.

    Book  MATH  Google Scholar 

  • Johnson, N. L., S. Kotz, and N. Balakrishnan 1994. Continuous Univariate Distributions (Second ed.), Volume 1. New York, USA: Wiley.

    Google Scholar 

  • Johnson, N. L., S. Kotz, and N. Balakrishnan 1995. Continuous Univariate Distributions (Second ed.), Volume 2. New York, USA: Wiley.

    Google Scholar 

  • Johnson, N. L., S. Kotz, and N. Balakrishnan 1997. Discrete Multivariate Distributions. New York, USA: John Wiley & Sons.

    MATH  Google Scholar 

  • Jones, M. C. 1994. Expectiles and M-quantiles are quantiles. Statistics & Probability Letters 20(2):149–153.

    Article  MATH  MathSciNet  Google Scholar 

  • Jones, M. C. 2002. Student’s simplest distribution. The Statistician 51(1):41–49.

    MathSciNet  Google Scholar 

  • Jones, M. C. 2009. Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages. Statistical Methodology 6(1):70–81.

    Article  MATH  MathSciNet  Google Scholar 

  • Jones, O., R. Maillardet, and A. Robinson 2014. Introduction to Scientific Programming and Simulation Using R (Second ed.). Boca Raton, FL, USA: Chapman and Hall/CRC.

    MATH  Google Scholar 

  • Jongman, R. H. G., C. J. F. ter Braak, and O. F. R. van Tongeren (Eds.) 1995. Data Analysis in Community and Landscape Ecology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jørgensen, B. 1984. The delta algorithm and GLIM. International Statistical Review 52(3):283–300.

    Article  MathSciNet  Google Scholar 

  • Jørgensen, B. 1997. The Theory of Dispersion Models. London: Chapman & Hall.

    Google Scholar 

  • Jorgensen, M. 2001. Iteratively reweighted least squares. In A. H. El-Shaarawi and W. W. Piegorsch (Eds.), Encyclopedia of Environmetrics, Volume 2, pp. 1084–1088. Chichester, New York, USA: Wiley.

    Google Scholar 

  • Kaas, R., M. Goovaerts, J. Dhaene, and M. Denuit 2008. Modern Actuarial Risk Theory Using R (Second ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Kateri, M. 2014. Contingency Table Analysis. Methods and Implementation Using R. New York, USA: Birkhäuser/Springer.

    Book  MATH  Google Scholar 

  • Kennedy, William J., J. and J. E. Gentle 1980. Statistical Computing. New York, USA: Marcel Dekker.

    Google Scholar 

  • Keogh, R. H. and D. R. Cox 2014. Case-Control Studies. New York, USA: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Kleiber, C. and S. Kotz 2003. Statistical Size Distributions in Economics and Actuarial Sciences. Hoboken, NJ, USA: Wiley-Interscience.

    Book  MATH  Google Scholar 

  • Kleiber, C. and A. Zeileis 2008. Applied Econometrics with R. New York, USA: Springer.

    Book  MATH  Google Scholar 

  • Klugman, S. A., H. H. Panjer, and G. E. Willmot 2012. Loss Models: From Data to Decisions (4th ed.). Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Klugman, S. A., H. H. Panjer, and G. E. Willmot 2013. Loss Models: Further Topics. Hoboken, NJ, USA: Wiley.

    Book  Google Scholar 

  • Knight, K. 2000. Mathematical Statistics. Boca Raton, FL, USA: Chapman & Hall/CRC.

    Google Scholar 

  • Kocherlakota, S. and K. Kocherlakota 1992. Bivariate Discrete Distributions. New York, USA: Marcel Dekker.

    MATH  Google Scholar 

  • Koenker, R. 1992. When are expectiles percentiles? (problem). Econometric Theory 8(3):423–424.

    Google Scholar 

  • Koenker, R. 2005. Quantile Regression. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Koenker, R. 2013. Discussion: Living beyond our means. Statistical Modelling 13(4):323–333.

    Article  MathSciNet  Google Scholar 

  • Koenker, R. and G. Bassett 1978. Regression quantiles. Econometrica 46(1):33–50.

    Article  MATH  MathSciNet  Google Scholar 

  • Kohn, R. and C. F. Ansley 1987. A new algorithm for spline smoothing based on smoothing a stochastic process. SIAM Journal on Scientific and Statistical Computing 8(1):33–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Konishi, S. and G. Kitagawa 2008. Information Criteria and Statistical Modeling. Springer Series in Statistics. New York, USA: Springer.

    Google Scholar 

  • Kooijman, S. A. L. M. 1977. Species abundance with optimum relations to environmental factors. Annals of Systems Research 6:123–138.

    Google Scholar 

  • Kosmidis, I. 2014a. Bias in parametric estimation: reduction and useful side-effects. WIREs Computational Statistics 6:185–196.

    Article  Google Scholar 

  • Kosmidis, I. 2014b. Improved estimation in cumulative link models. Journal of the Royal Statistical Society, Series B 76(1):169–196.

    Article  MathSciNet  Google Scholar 

  • Kosmidis, I. and D. Firth 2009. Bias reduction in exponential family nonlinear models. Biometrika 96(4):793–804.

    Article  MATH  MathSciNet  Google Scholar 

  • Kosmidis, I. and D. Firth 2010. A generic algorithm for reducing bias in parametric estimation. Electronic Journal of Statistics 4:1097–1112.

    Article  MATH  MathSciNet  Google Scholar 

  • Kotz, S., T. J. Kozubowski, and K. Podgórski 2001. The Laplace Distribution and Generalizations: a Revisit with Applications to Communications, Economics, Engineering, and Finance. Boston, MA, USA: Birkhäuser.

    Book  Google Scholar 

  • Kotz, S. and S. Nadarajah 2000. Extreme Value Distributions: Theory and Applications. London: Imperial College Press.

    Book  Google Scholar 

  • Kotz, S. and J. R. van Dorp 2004. Beyond Beta: Other Continuous Families of Distributions with Bounded Support and Applications. Singapore: World Scientific.

    Book  Google Scholar 

  • Kozubowski, T. J. and S. Nadarajah 2010. Multitude of Laplace distributions. Statistical Papers 51(1):127–148.

    Article  MATH  MathSciNet  Google Scholar 

  • Lange, K. 2002. Mathematical and Statistical Methods for Genetic Analysis (Second ed.). New York, USA: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Lange, K. 2010. Numerical Analysis for Statisticians (Second ed.). New York, USA: Springer.

    Book  MATH  Google Scholar 

  • Lange, K. 2013. Optimization (Second ed.). New York, USA: Springer.

    Book  MATH  Google Scholar 

  • Lawless, J. F. 1987. Negative binomial and mixed Poisson regression. The Canadian Journal of Statistics 15(3):209–225.

    Article  MATH  MathSciNet  Google Scholar 

  • Lawless, J. F. 2003. Statistical Models and Methods for Lifetime Data (Second ed.). Hoboken, NJ, USA: John Wiley & Sons.

    MATH  Google Scholar 

  • Leadbetter, M. R., G. Lindgren, and H. Rootzén 1983. Extremes and Related Properties of Random Sequences and Processes. New York, USA: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Leemis, L. M. and J. T. McQueston 2008. Univariate distribution relationships. American Statistician 62(1):45–53.

    Article  MathSciNet  Google Scholar 

  • Lehmann, E. L. and G. Casella 1998. Theory of Point Estimation (Second ed.). New York, USA: Springer.

    MATH  Google Scholar 

  • Lehmann, E. L. and J. P. Romano 2005. Testing Statistical Hypotheses (3rd ed.). New York, USA: Springer.

    MATH  Google Scholar 

  • Lesaffre, E. and A. Albert 1989. Partial separation in logistic discrimination. Journal of the Royal Statistical Society, Series B 51(1):109–116.

    MATH  MathSciNet  Google Scholar 

  • Libby, D. L. and M. R. Novick 1982. Multivariate generalized beta distributions with applications to utility assessment. Journal of Educational and Statistics 7(4):271–294.

    Article  Google Scholar 

  • Lindsay, B. G. 1995. Mixture Models: Theory, Geometry and Applications, Volume 5. Hayward CA, USA: NSF-CBMS Regional Conference Series in Probability and Statistics, IMS.

    Google Scholar 

  • Lindsey, J. K. 1996. Parametric Statistical Inference. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Lindsey, J. K. 1997. Applying Generalized Linear Models. New York, USA: Springer-Verlag.

    MATH  Google Scholar 

  • Liu, H. and K. S. Chan 2010. Introducing COZIGAM: An R package for unconstrained and constrained zero-inflated generalized additive model analysis. Journal of Statistical Software 35(11):1–26.

    Article  Google Scholar 

  • Liu, I. and A. Agresti 2005. The analysis of ordered categorical data: An overview and a survey of recent developments. Test 14(1):1–73.

    Article  MATH  MathSciNet  Google Scholar 

  • Lloyd, C. J. 1999. Statistical Analysis of Categorical Data. New York, USA: Wiley.

    MATH  Google Scholar 

  • Loader, C. 1999. Local Regression and Likelihood. New York, USA: Springer.

    MATH  Google Scholar 

  • Lopatatzidis, A. and P. J. Green 1998. Semiparametric quantile regression using the gamma distribution. Unpublished manuscript.

    Google Scholar 

  • Maddala, G. S. 1983. Limited Dependent and Qualitative Variables in Econometrics. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Mai, J.-F. and M. Scherer 2012. Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications. London: Imperial College Press.

    Book  Google Scholar 

  • Maindonald, J. H. and W. J. Braun 2010. Data Analysis and Graphics Using R: An Example-Based Approach (Third ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Marra, G. and R. Radice 2010. Penalised regression splines: theory and application to medical research. Statistical Methods in Medical Research 19(2):107–125.

    Article  MathSciNet  Google Scholar 

  • Marshall, A. W. and I. Olkin 2007. Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families. New York, USA: Springer.

    Google Scholar 

  • McCrea, R. S. and B. J. T. Morgan 2015. Analysis of Capture–Recapture Data. Boca Raton, FL, USA: Chapman & Hall/CRC.

    Google Scholar 

  • McCullagh, P. 1980. Regression models for ordinal data. Journal of the Royal Statistical Society, Series B 42(2):109–142. With discussion.

    Google Scholar 

  • McCullagh, P. 1989. Some statistical properties of a family of continuous univariate distributions. Journal of the American Statistical Association 84(405):125–129.

    Article  MATH  MathSciNet  Google Scholar 

  • McCullagh, P. and J. A. Nelder 1989. Generalized Linear Models (Second ed.). London: Chapman & Hall.

    Book  MATH  Google Scholar 

  • McFadden, D. 1974. Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Conditional Logit Analysis of Qualitative Choice Behavior, pp. 105–142. New York, USA: Academic Press.

    Google Scholar 

  • McLachlan, G. J. and D. Peel 2000. Finite Mixture Models. New York, USA: Wiley.

    Book  MATH  Google Scholar 

  • Mikosch, T. 2006. Copulas: tales and facts (with rejoinder). Extremes 9(1): 3–20,55–62.

    Google Scholar 

  • Miller, A. 2002. Subset Selection in Regression (Second ed.). Boca Raton, FL, USA: Chapman & Hall/CRC.

    Book  MATH  Google Scholar 

  • Miller, J. J. and E. J. Wegman 1987. Vector function estimation using splines. Journal of Statistical Planning and Inference 17:173–180.

    Article  MATH  MathSciNet  Google Scholar 

  • Morris, C. N. 1982. Natural exponential families with quadratic variance functions. The Annals of Statistics 10(1):65–80.

    Article  MATH  MathSciNet  Google Scholar 

  • Mosteller, F. and J. W. Tukey 1977. Data Analysis and Regression. Reading, MA, USA: Addison-Wesley.

    Google Scholar 

  • Murthy, D. N. P., M. Xie, and R. Jiang 2004. Weibull Models. Hoboken, NJ, USA: Wiley.

    MATH  Google Scholar 

  • Myers, R. H., D. C. Montgomery, G. G. Vining, and T. J. Robinson 2010. Generalized Linear Models With Applications in Engineering and the Sciences (Second ed.). Hoboken, NJ, USA: Wiley.

    Book  MATH  Google Scholar 

  • Nadarajah, S. and S. A. A. Bakar 2013. A new R package for actuarial survival models. Computational Statistics 28(5):2139–2160.

    Article  MATH  MathSciNet  Google Scholar 

  • Nelder, J. A. and R. W. M. Wedderburn 1972. Generalized linear models. Journal of the Royal Statistical Society, Series A 135(3):370–384.

    Article  Google Scholar 

  • Nelsen, R. B. 2006. An Introduction to Copulas (Second ed.). New York, USA: Springer.

    MATH  Google Scholar 

  • Newey, W. K. and J. L. Powell 1987. Asymmetric least squares estimation and testing. Econometrica 55(4):819–847.

    Article  MATH  MathSciNet  Google Scholar 

  • Neyman, J. and E. L. Scott 1948. Consistent estimates based on partially consistent observations. Econometrica 16(1):1–32.

    Article  MathSciNet  Google Scholar 

  • Nocedal, J. and S. J. Wright 2006. Numerical Optimization (Second ed.). New York, USA: Springer.

    MATH  Google Scholar 

  • Nosedal-Sanchez, A., C. B. Storlie, T. C. M. Lee, and R. Christensen 2012. Reproducing kernel Hilbert spaces for penalized regression: A tutorial. American Statistician 66(1):50–60.

    Article  MathSciNet  Google Scholar 

  • Novak, S. Y. 2012. Extreme Value Methods with Applications to Finance. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Olver, F. W. J., D. W. Lozier, R. F. Boisvert, and C. W. Clark (Eds.) 2010. NIST Handbook of Mathematical Functions. New York, USA: National Institute of Standards and Technology, and Cambridge University Press.

    MATH  Google Scholar 

  • Osborne, M. R. 1992. Fisher’s method of scoring. International Statistical Review 60(1):99–117.

    Article  MATH  Google Scholar 

  • Osborne, M. R. 2006. Least squares methods in maximum likelihood problems. Optimization Methods and Software 21(6):943–959.

    Article  MATH  MathSciNet  Google Scholar 

  • Otis, D. L., K. P. Burnham, G. C. White, and D. R. Anderson 1978. Statistical inference from capture data on closed animal populations. Wildlife Monographs 62:3–135.

    Google Scholar 

  • Owen, A. B. 2001. Empirical Likelihood. Boca Raton, FL, USA: Chapman & Hall/CRC.

    Google Scholar 

  • Page, L. A., S. Hajat, and R. S. Kovats 2007. Relationship between daily suicide counts and temperature in England and Wales. British Journal of Psychiatry 191(2):106–112.

    Article  Google Scholar 

  • Pal, N., C. Jin, and W. K. Lim 2006. Handbook of Exponential and Related Distributions for Engineers and Scientists. Boca Raton, FL, USA: Chapman & Hall/CRC.

    Google Scholar 

  • Palmer, M. 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74(8):2215–2230.

    Article  Google Scholar 

  • Palmgren, J. 1989. Regression models for bivariate binary responses. Technical Report 101, Biostatistics Dept, University of Washington, Seattle, USA.

    Google Scholar 

  • Park, B. U., E. Mammen, Y. K. Lee, and E. R. Lee 2015. Varying coefficient regression models: a review and new developments. International Statistical Review 83(1):36–64.

    Article  MathSciNet  Google Scholar 

  • Pickands, J. 1975. Statistical inference using extreme order statistics. The Annals of Statistics 3(1):119–131.

    Article  MATH  MathSciNet  Google Scholar 

  • Plackett, R. L. 1965. A class of bivariate distributions. Journal of the American Statistical Association 60(310):516–522.

    Article  MathSciNet  Google Scholar 

  • Poiraud-Casanova, S. and C. Thomas-Agnan 2000. About monotone regression quantiles. Statistics & Probability Letters 48(1):101–104.

    Article  MATH  MathSciNet  Google Scholar 

  • Powers, D. A. and Y. Xie 2008. Statistical Methods for Categorical Data Analysis (Second ed.). Bingley, UK: Emerald.

    Google Scholar 

  • Pratt, J. W. 1981. Concavity of the log likelihood. Journal of the American Statistical Association 76(373):103–106. Correction p.954, Vol 77.

    Google Scholar 

  • Prentice, R. L. 1974. A log gamma model and its maximum likelihood estimation. Biometrika 61(3):539–544.

    Article  MATH  MathSciNet  Google Scholar 

  • Prentice, R. L. 1986. Binary regression using an extended beta-binomial distribution, with discussion of correlation induced by covariate measurement errors. Journal of the American Statistical Association 81(394):321–327.

    Article  MATH  Google Scholar 

  • Prescott, P. and A. T. Walden 1980. Maximum likelihood estimation of the parameters of the generalized extreme-value distribution. Biometrika 67(3):723–724.

    Article  MathSciNet  Google Scholar 

  • Randall, J. H. 1989. The analysis of sensory data by generalized linear model. Biometrics Journal 31(7):781–793.

    Article  MathSciNet  Google Scholar 

  • Rao, C. R. 1948. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Mathematical Proceedings of the Cambridge Philosophical Society 44(1):50–57.

    Article  MATH  Google Scholar 

  • Rao, C. R. 1973. Linear Statistical Inference and its Applications (Second ed.). New York, USA: Wiley.

    Book  MATH  Google Scholar 

  • Rasch, G. 1961. On general laws and the meaning of measurement in psychology. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability 4:321–333.

    Google Scholar 

  • Reinsch, C. H. 1967. Smoothing by spline functions. Numerische Mathematik 10(3):177–183.

    Article  MATH  MathSciNet  Google Scholar 

  • Reinsel, G. C. and R. P. Velu 1998. Multivariate Reduced-Rank Regression: Theory and Applications. New York, USA: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Reinsel, G. C. and R. P. Velu 2006. Partically reduced-rank multivariate regression models. Statistica Sinica 16(3):899–917.

    MATH  MathSciNet  Google Scholar 

  • Reiss, R.-D. and M. Thomas 2007. Statistical Analysis of Extreme Values: with Applications to Insurance, Finance, Hydrology and Other Fields (Third ed.). Basel, Switzerland: Birkhäuser.

    Google Scholar 

  • Rencher, A. C. and G. B. Schaalje 2008. Linear Models in Statistics (second ed.). New York, USA: John Wiley & Sons.

    MATH  Google Scholar 

  • Richards, F. S. G. 1961. A method of maximum-likelihood estimation. Journal of the Royal Statistical Society, Series B 23(2):469–475.

    MATH  MathSciNet  Google Scholar 

  • Richards, S. J. 2012. A handbook of parametric survival models for actuarial use. Scandinavian Actuarial Journal 2012(4):233–257.

    Article  MATH  MathSciNet  Google Scholar 

  • Ridout, M. S. 1990. Non-convergence of Fisher’s method of scoring—a simple example. GLIM Newsletter 20(6).

    Google Scholar 

  • Rinne, H. 2009. The Weibull Distribution. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Ripley, B. D. 2004. Selecting amongst large classes of models. See Adams et al. (2004), pp. 155–170.

    Google Scholar 

  • Rose, C. and M. D. Smith 2002. Mathematical Statistics with Mathematica. New York, USA: Springer.

    Book  MATH  Google Scholar 

  • Rose, C. and M. D. Smith 2013. Mathematical Statistics with Mathematica. eBook.

    Google Scholar 

  • Rubin, D. B. 2006. Iteratively reweighted least squares. In Encyclopedia of Statistical Sciences, Volume 6. Wiley.

    Google Scholar 

  • Ruppert, D., M. P. Wand, and R. J. Carroll 2003. Semiparametric Regression. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Ruppert, D., M. P. Wand, and R. J. Carroll 2009. Semiparametric regression during 2003–2007. Electronic Journal of Statistics 3(1):1193–1256.

    Article  MATH  MathSciNet  Google Scholar 

  • Sakamoto, Y., M. Ishiguro, and G. Kitagawa 1986. Akaike Information Criterion Statistics. Dordrecht, Netherlands: D. Reidel Publishing Company.

    MATH  Google Scholar 

  • Schenker, N. and J. F. Gentleman 2001. On judging the significance of differences by examining the overlap between confidence intervals. American Statistician 55(3):182–186.

    Article  MathSciNet  Google Scholar 

  • Schepsmeier, U. and J. Stöber 2014. Derivatives and Fisher information of bivariate copulas. Statistical Papers 55(2):525–542.

    Article  MATH  MathSciNet  Google Scholar 

  • Schimek, M. G. (Ed.) 2000. Smoothing and Regression: Approaches, Computation, and Application. New York, USA: Wiley.

    Google Scholar 

  • Schnabel, S. K. and P. H. C. Eilers 2009. Optimal expectile smoothing. Computational Statistics & Data Analysis 53(12):4168–4177.

    Article  MATH  MathSciNet  Google Scholar 

  • Schumaker, L. L. 2007. Spline Functions: Basic Theory (Third ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics 6(2):461–464.

    Article  MATH  MathSciNet  Google Scholar 

  • Seber, G. A. F. 2008. A Matrix Handbook for Statisticians. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Seber, G. A. F. and A. J. Lee 2003. Linear Regression Analysis (Second ed.). New York, USA: Wiley.

    Book  MATH  Google Scholar 

  • Seber, G. A. F. and C. J. Wild 1989. Nonlinear Regression. New York, USA: Wiley.

    Book  MATH  Google Scholar 

  • Self, S. G. and K.-Y. Liang 1987. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association 82(398):605–610.

    Article  MATH  MathSciNet  Google Scholar 

  • Senn, S. 2004. John Nelder: From general balance to generalised models (both linear and hierarchical). See Adams et al. (2004), pp. 1–12.

    Google Scholar 

  • Severini, T. A. 2000. Likelihood Methods in Statistics. New York, USA: Oxford University Press.

    MATH  Google Scholar 

  • Shao, J. 2003. Mathematical Statistics (Second ed.). New York, USA: Springer.

    Book  MATH  Google Scholar 

  • Shao, J. 2005. Mathematical Statistics: Exercises and Solutions. New York, USA: Springer.

    Google Scholar 

  • Silverman, B. W. 1984. Spline smoothing: The equivalent variable kernel method. The Annals of Statistics 12(3):898–916.

    Article  MATH  MathSciNet  Google Scholar 

  • Silverman, B. W. 1985. Some aspects of the spline smoothing approach to nonparametric regression curve fitting. Journal of the Royal Statistical Society, Series B 47(1):1–21. With discussion.

    Google Scholar 

  • Silvey, S. D. 1975. Statistical Inference. London: Chapman & Hall.

    MATH  Google Scholar 

  • Simonoff, J. S. 2003. Analyzing Categorical Data. New York, USA: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Sklar, A. 1959. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris 8:229–231.

    MathSciNet  Google Scholar 

  • Small, C. G. and D. L. McLeish 1994. Hilbert Space Methods in Probability and Statistical Inference. New York, USA: Wiley.

    Book  MATH  Google Scholar 

  • Smith, M. and R. Kohn 2000. Nonparametric seemingly unrelated regression. Journal of Econometrics 98(2):257–281.

    Article  MATH  Google Scholar 

  • Smith, R. L. 1985. Maximum likelihood estimation in a class of nonregular cases. Biometrika 72(1):67–90.

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, R. L. 1986. Extreme value theory based on the r largest annual events. Journal of Hydrology 86(1–2):27–43.

    Article  Google Scholar 

  • Smith, R. L. 2003. Statistics of extremes, with applications in environment, insurance and finance. See Finkenstadt and Rootzén (2003), pp. 1–78.

    Google Scholar 

  • Smithson, M. and E. C. Merkle 2013. Generalized Linear Models for Categorical and Continuous Limited Dependent Variables. London: Chapman & Hall/CRC.

    Google Scholar 

  • Smyth, G. K. 1989. Generalized linear models with varying dispersion. Journal of the Royal Statistical Society, Series B 51(1):47–60.

    MathSciNet  Google Scholar 

  • Smyth, G. K. 1996. Partitioned algorithms for maximum likelihood and other nonlinear estimation. Statistics and Computing 6(3):201–216.

    Article  Google Scholar 

  • Smyth, G. K., A. F. Huele, and A. P. Verbyla 2001. Exact and approximate REML for heteroscedastic regression. Statistical Modelling 1(3):161–175.

    Article  MATH  Google Scholar 

  • Spector, P. 2008. Data Manipulation with R. New York, USA: Springer Verlag.

    MATH  Google Scholar 

  • Srivastava, V. K. and T. D. Dwivedi 1979. Estimation of seemingly unrelated regression equations: A brief survey. Journal of Econometrics 10(1):15–32.

    Article  MATH  MathSciNet  Google Scholar 

  • Srivastava, V. K. and D. E. A. Giles 1987. Seemingly Unrelated Regression Equations Models: Estimation and Inference. New York, USA: Marcel Dekker.

    MATH  Google Scholar 

  • Stacy, E. W. 1962. A generalization of the gamma distribution. Annals of Mathematical Statistics 33(3):1187–1192.

    Article  MATH  MathSciNet  Google Scholar 

  • Takane, Y., H. Yanai, and S. Mayekawa 1991. Relationships among several methods of linearly constrained correspondence analysis. Psychometrika 56(4):667–684.

    Article  MATH  MathSciNet  Google Scholar 

  • Tawn, J. A. 1988. An extreme-value theory model for dependent observations. Journal of Hydrology 101(1–4):227–250.

    Article  Google Scholar 

  • Taylor, J. W. 2008. Estimating value at risk and expected shortfall using expectiles. Journal of Financial Econometrics 6(2):231–252.

    Article  Google Scholar 

  • Taylor, L. R. 1961. Aggregation, variance and the mean. Nature 189(4766): 732–735.

    Article  Google Scholar 

  • ter Braak, C. J. F. 1986. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5):1167–1179.

    Article  Google Scholar 

  • ter Braak, C. J. F. 1995. Calibration. See Jongman et al. (1995), pp. 78–90.

    Google Scholar 

  • ter Braak, C. J. F. and I. C. Prentice 1988. A theory of gradient analysis. In Advances in Ecological Research, Volume 18, pp. 271–317. London: Academic Press.

    Chapter  Google Scholar 

  • ter Braak, C. J. F. and P. F. M. Verdonschot 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57(3):255–289.

    Article  Google Scholar 

  • ter Braak, C. J. F., and P. Šmilauer 2015. Topics in constrained and unconstrained ordination. Plant Ecology 216(5):683–696.

    Article  Google Scholar 

  • Thompson, R. and R. J. Baker 1981. Composite link functions in generalized linear models. Journal of the Royal Statistical Society, Series C 30(2):125–131.

    MATH  MathSciNet  Google Scholar 

  • Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58(1):267–288.

    MATH  MathSciNet  Google Scholar 

  • Titterington, D. M., A. F. M. Smith, and U. E. Makov 1985. Statistical Analysis of Finite Mixture Distributions. New York, USA: Wiley.

    MATH  Google Scholar 

  • Tobin, J. 1958. Estimation of relationships for limited dependent variables. Econometrica 26(1):24–36.

    Article  MATH  MathSciNet  Google Scholar 

  • Trivedi, P. K. and D. M. Zimmer 2005. Copula modeling: An introduction for practitioners. Foundations and Trends in Econometrics 1(1):1–111.

    Article  MATH  MathSciNet  Google Scholar 

  • Tutz, G. 2012. Regression for Categorical Data. Cambridge: Cambridge University Press.

    Google Scholar 

  • van den Boogaart, K. G. and R. Tolosana-Delgado 2013. Analyzing Compositional Data with R. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Venables, W. N. and B. D. Ripley 2002. Modern Applied Statistics With S (4th ed.). New York, USA: Springer-Verlag.

    Book  MATH  Google Scholar 

  • von Eye, A. and E.-E. Mun 2013. Log-linear Modeling: Concepts, Interpretation, and Application. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Vuong, Q. H. 1989. Likelihood ratio tests for model selection and nonnested hypotheses. Econometrica 57(2):307–333.

    Article  MATH  MathSciNet  Google Scholar 

  • Wahba, G. 1982. Vector splines on the sphere, with application to the estimation of vorticity and divergence from discrete, noisy data. In W. S. K. Zeller (Ed.), Multivarate Approximation Theory, Volume 2, pp. 407–429. Birkhäuser: Verlag.

    Google Scholar 

  • Wahba, G. 1990. Spline models for observational data, Volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics (SIAM).

    Google Scholar 

  • Wand, M. P. and M. C. Jones 1995. Kernel Smoothing. London: Chapman & Hall.

    Book  MATH  Google Scholar 

  • Wand, M. P. and J. T. Ormerod 2008. On semiparametric regression with O’Sullivan penalized splines. Australian & New Zealand Journal of Statistics 50(2):179–198.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, Y. 2011. Smoothing Splines: Methods and Applications. Boca Raton, FL, USA: Chapman & Hall/CRC.

    Google Scholar 

  • Webb, M. H., S. Wotherspoon, D. Stojanovic, R. Heinsohn, R. Cunningham, P. Bell, and A. Terauds 2014. Location matters: Using spatially explicit occupancy models to predict the distribution of the highly mobile, endangered swift parrot. Biological Conservation 176:99–108.

    Article  Google Scholar 

  • Wecker, W. E. and C. F. Ansley 1983. The signal extraction approach to nonlinear regression and spline smoothing. Journal of the American Statistical Association 78(381):81–89.

    Article  MATH  MathSciNet  Google Scholar 

  • Wedderburn, R. W. M. 1974. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61(3):439–447.

    MATH  MathSciNet  Google Scholar 

  • Wegman, E. J. 1981. Vector splines and the estimation of filter functions. Technometrics 23(1):83–89.

    Article  MATH  MathSciNet  Google Scholar 

  • Weihs, C., O. Mersmann, and U. Ligges 2014. Foundations of Statistical Algorithms: With References to R Packages. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Weir, B. S. 1996. Genetic Data Analysis II. Sunderland, MA, USA: Sinauer.

    Google Scholar 

  • Welsh, A. H. 1996. Robust estimation of smooth regression and spread functions and their derivatives. Statistica Sinica 6:347–366.

    MATH  MathSciNet  Google Scholar 

  • Welsh, A. H., R. B. Cunningham, C. F. Donnelly, and D. B. Lindenmayer 1996. Modelling the abundances of rare species: statistical models for counts with extra zeros. Ecological Modelling 88(1–3):297–308.

    Article  Google Scholar 

  • Welsh, A. H., D. B. Lindenmayer, and C. F. Donnelly 2013. Fitting and interpreting occupancy models. PLOS One 8(1):1–21.

    Article  Google Scholar 

  • Welsh, A. H. and T. W. Yee 2006. Local regression for vector responses. Journal of Statistical Planning and Inference 136(9):3007–3031.

    Article  MATH  MathSciNet  Google Scholar 

  • Wickham, H. 2015. Advanced R. Boca Raton, FL, USA: Chapman & Hall/CRC.

    Google Scholar 

  • Wild, C. J. and T. W. Yee 1996. Additive extensions to generalized estimating equation methods. Journal of the Royal Statistical Society, Series B 58(4):711–725.

    MATH  MathSciNet  Google Scholar 

  • Wilkinson, G. N. and C. E. Rogers 1973. Symbolic description of factorial models for analysis of variance. Journal of the Royal Statistical Society, Series C 22(3):392–399.

    Google Scholar 

  • Williams, B. K., J. D. Nichols, and M. J. Conroy 2002. Analysis and Management of Animal Populations. London: Academic Press.

    Google Scholar 

  • Williams, D. A. 1975. The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity. Biometrics 31(4):949–952.

    Article  MATH  Google Scholar 

  • Winkelmann, R. 2008. Econometric Analysis of Count Data (5th ed.). Berlin: Springer.

    Google Scholar 

  • Winkelmann, R. and S. Boes 2006. Analysis of Microdata. Berlin: Springer.

    MATH  Google Scholar 

  • Withers, C. S. and S. Nadarajah 2009. The asymptotic behaviour of the maximum of a random sample subject to trends in location and scale. Random Operators and Stochastic Equations 17(1):55–60.

    Article  MATH  MathSciNet  Google Scholar 

  • Wold, S. 1974. Spline functions in data analysis. Technometrics 16(1):1–11.

    Article  MATH  MathSciNet  Google Scholar 

  • Wood, S. N. 2006. Generalized Additive Models: An Introduction with R. London: Chapman and Hall.

    Google Scholar 

  • Wooldridge, J. M. 2006. Introductory Econometrics: A Modern Approach (5th ed.). Mason, OH, USA: South-Western.

    Google Scholar 

  • Yanai, H., K. Takeuchi, and Y. Takane 2011. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. New York, USA: Springer.

    Book  MATH  Google Scholar 

  • Yang, H.-C. and A. Chao 2005. Modeling animals’ behavioral response by Markov chain models for capture–recapture experiments. Biometrics 61(4):1010–1017.

    Article  MATH  MathSciNet  Google Scholar 

  • Yasuda, N. 1968. Estimation of the interbreeding coefficient from phenotype frequencies by a method of maximum likelihood scoring. Biometrics 24(4):915–934.

    Article  MathSciNet  Google Scholar 

  • Yatchew, A. 2003. Semiparametric Regression for the Applied Econometrician. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Yee, T. W. 1998. On an alternative solution to the vector spline problem. Journal of the Royal Statistical Society, Series B 60(1):183–188.

    Article  MATH  Google Scholar 

  • Yee, T. W. 2000. Vector splines and other vector smoothers. In J. G. Bethlehem and P. G. M. van der Heijden (Eds.), Proceedings in Computational Statistics COMPSTAT 2000, pp. 529–534. Heidelberg: Physica-Verlag.

    Google Scholar 

  • Yee, T. W. 2004a. A new technique for maximum-likelihood canonical Gaussian ordination. Ecological Monographs 74(4):685–701.

    Article  MathSciNet  Google Scholar 

  • Yee, T. W. 2004b. Quantile regression via vector generalized additive models. Statistics in Medicine 23(14):2295–2315.

    Article  Google Scholar 

  • Yee, T. W. 2006. Constrained additive ordination. Ecology 87(1):203–213.

    Article  Google Scholar 

  • Yee, T. W. 2010a. The VGAM package for categorical data analysis. Journal of Statistical Software 32(10):1–34.

    Article  MathSciNet  Google Scholar 

  • Yee, T. W. 2010b. VGLMs and VGAMs: an overview for applications in fisheries research. Fisheries Research 101(1–2):116–126.

    Article  Google Scholar 

  • Yee, T. W. 2014. Reduced-rank vector generalized linear models with two linear predictors. Computational Statistics & Data Analysis 71:889–902.

    Article  MathSciNet  Google Scholar 

  • Yee, T. W. and A. F. Hadi 2014. Row-column interaction models, with an R implementation. Computational Statistics 29(6):1427–1445.

    Article  MATH  MathSciNet  Google Scholar 

  • Yee, T. W. and T. J. Hastie 2003. Reduced-rank vector generalized linear models. Statistical Modelling 3(1):15–41.

    Article  MATH  MathSciNet  Google Scholar 

  • Yee, T. W. and N. D. Mitchell 1991. Generalized additive models in plant ecology. Journal of Vegetation Science 2(5):587–602.

    Article  Google Scholar 

  • Yee, T. W. and A. G. Stephenson 2007. Vector generalized linear and additive extreme value models. Extremes 10(1–2):1–19.

    Article  MATH  MathSciNet  Google Scholar 

  • Yee, T. W., J. Stoklosa, and R. M. Huggins 2015. The VGAM package for capture–recapture data using the conditional likelihood. Journal of Statistical Software 65(5):1–33.

    Article  Google Scholar 

  • Yee, T. W. and C. J. Wild 1996. Vector generalized additive models. Journal of the Royal Statistical Society, Series B 58(3):481–493.

    MATH  MathSciNet  Google Scholar 

  • Yeo, I.-K. and R. A. Johnson 2000. A new family of power transformations to improve normality or symmetry. Biometrika 87(4):954–959.

    Article  MATH  MathSciNet  Google Scholar 

  • Young, G. A. and R. L. Smith 2005. Essentials of Statistical Inference. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Yu, K. and J. Zhang 2005. A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics - Theory and Methods 34(9–10):1867–1879.

    Article  MATH  MathSciNet  Google Scholar 

  • Yu, P. and C. A. Shaw 2014. An efficient algorithm for accurate computation of the Dirichlet-multinomial log-likelihood function. Bioinformatics 30(11):1547–54.

    Article  Google Scholar 

  • Zellner, A. 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association 57(298):348–368.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, C. 2003. Calibrating the degrees of freedom for automatic data smoothing and effective curve checking. Journal of the American Statistical Association 98(463):609–628.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, Y. and O. Thas 2012. Constrained ordination analysis in the presence of zero inflation. Statistical Modelling 12(6):463–485.

    Article  MathSciNet  Google Scholar 

  • Zhu, M., T. J. Hastie, and G. Walther 2005. Constrained ordination analysis with flexible response functions. Ecological Modelling 187(4):524–536.

    Article  Google Scholar 

  • Zuur, A. F. 2012. A Beginner’s Guide to Generalized Additive Models with R. Newburgh, UK: Highland Statistics Ltd.

    Google Scholar 

  • Zuur, A. F., E. N. Ieno, and E. H. Meesters 2009. A Beginner’s Guide to R. New York, USA: Springer.

    Book  MATH  Google Scholar 

  • Zuur, A. F., A. A. Saveliev, and E. N. Ieno 2012. Zero Inflated Models and Generalized Linear Mixed Models with R. Newburgh, UK: Highland Statistics Ltd.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Thomas Yee

About this chapter

Cite this chapter

Yee, T.W. (2015). VGAMs. In: Vector Generalized Linear and Additive Models. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2818-7_4

Download citation

Publish with us

Policies and ethics