This chapter covers the most important class of models, viz. vector generalized linear models (VGLMs). It includes the basic ideas of (parameter) link functions, constraint matrices, the xij argument, inference, computational details, (e.g., QR decomposition, Cholesky), residuals and diagnostics. Some basic details on software usage is given.


  1. Beaton, A. E. and J. W. Tukey 1974. The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16(2):147–185.zbMATHCrossRefGoogle Scholar
  2. Birch, J. B. 1980. Some convergence properties of iterated least squares in the location model. Communications in Statistics B 9(4):359–369.CrossRefGoogle Scholar
  3. Byrd, R. H. and D. A. Pyne 1979. Some results on the convergence of the iteratively reweighted least squares. In ASA Proc. Statist. Computat. Section, pp. 87–90.Google Scholar
  4. Chambers, J. M. and T. J. Hastie (Eds.) 1991. Statistical Models in S. Pacific Grove: Wadsworth/Brooks Cole.Google Scholar
  5. Davison, A. C. and E. J. Snell 1991. Residuals and diagnostics. See Hinkley et al. (1991), pp. 83–106.Google Scholar
  6. del Pino, G. 1989. The unifying role of iterative generalized least squares in statistical algorithms. Statistical Science 4(4):394–403.zbMATHMathSciNetCrossRefGoogle Scholar
  7. Dempster, A. P., N. M. Laird, and D. B. Rubin 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39(1):1–38. With discussion.Google Scholar
  8. Dempster, A. P., N. M. Laird, and D. B. Rubin 1980. Iteratively reweighted least squares for linear regression when errors are normal/independent distributed. In P. R. Krishnaiah (Ed.), Multivariate Analysis–V: Proceedings of the Fifth International Symposium on Multivariate Analysis, pp. 35–57. Amsterdam: North-Holland Publishing Company.Google Scholar
  9. Fahrmeir, L. and G. Tutz 2001. Multivariate Statistical Modelling Based on Generalized Linear Models (Second ed.). New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  10. Faraway, J. J. 2006. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Boca Raton: Chapman and Hall/CRC.Google Scholar
  11. Firth, D. 1991. Generalized linear models. See Hinkley et al. (1991), pp. 55–82.Google Scholar
  12. Fox, J. and S. Weisberg 2011. An R Companion to Applied Regression (Second ed.). Thousand Oaks: Sage Publications.Google Scholar
  13. Green, P. J. 1984. Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. Journal of the Royal Statistical Society, Series B 46(2):149–192. With discussion.Google Scholar
  14. Jørgensen, B. 1984. The delta algorithm and GLIM. International Statistical Review 52(3):283–300.MathSciNetCrossRefGoogle Scholar
  15. Jorgensen, M. 2001. Iteratively reweighted least squares. In A. H. El-Shaarawi and W. W. Piegorsch (Eds.), Encyclopedia of Environmetrics, Volume 2, pp. 1084–1088. Chichester, New York, USA: Wiley.Google Scholar
  16. McCullagh, P. and J. A. Nelder 1989. Generalized Linear Models (Second ed.). London: Chapman & Hall.zbMATHCrossRefGoogle Scholar
  17. McFadden, D. 1974. Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Conditional Logit Analysis of Qualitative Choice Behavior, pp. 105–142. New York, USA: Academic Press.Google Scholar
  18. Osborne, M. R. 1992. Fisher’s method of scoring. International Statistical Review 60(1):99–117.zbMATHCrossRefGoogle Scholar
  19. Ridout, M. S. 1990. Non-convergence of Fisher’s method of scoring—a simple example. GLIM Newsletter 20(6).Google Scholar
  20. Rubin, D. B. 2006. Iteratively reweighted least squares. In Encyclopedia of Statistical Sciences, Volume 6. Wiley.Google Scholar
  21. Yee, T. W. and T. J. Hastie 2003. Reduced-rank vector generalized linear models. Statistical Modelling 3(1):15–41.zbMATHMathSciNetCrossRefGoogle Scholar
  22. Yee, T. W. and C. J. Wild 1996. Vector generalized additive models. Journal of the Royal Statistical Society, Series B 58(3):481–493.zbMATHMathSciNetGoogle Scholar
  23. Zuur, A. F. 2012. A Beginner’s Guide to Generalized Additive Models with R. Newburgh, UK: Highland Statistics Ltd.Google Scholar

Copyright information

© Thomas Yee 2015

Authors and Affiliations

  • Thomas W. Yee
    • 1
  1. 1.Department of StatisticsUniversity of AucklandAucklandNew Zealand

Personalised recommendations