Advertisement

Categorical Data Analysis

  • Thomas W. Yee
Part of the Springer Series in Statistics book series (SSS)

Abstract

This chapter looks at regression models where the response is categorical. Both nominal and ordinal cases are considered. These include the multinomial logit model for nominal responses; and for ordinal responses: the proportional and non-proportional-odds models, continuation and stopping ratio models, and the adjacent categories model. Some other topics includes the xij argument for allowing η j -specific covariates, the Poisson trick, marginal effects, and genetic models.

Keywords

Multinomial Logit Model Dirichlet Distribution Travel Mode Categorical Data Analysis Adjacent Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agresti, A. 2010. Analysis of Ordinal Categorical Data (2nd ed.). Hoboken: Wiley.zbMATHCrossRefGoogle Scholar
  2. Agresti, A. 2013. Categorical Data Analysis (Third ed.). Hoboken: Wiley.Google Scholar
  3. Agresti, A. 2015. Foundations of Linear and Generalized Linear Models. Hoboken: Wiley.zbMATHGoogle Scholar
  4. Aitkin, M., B. Francis, J. Hinde, and R. Darnell 2009. Statistical Modelling in R. Oxford: Oxford University Press.zbMATHGoogle Scholar
  5. Altman, M., J. Gill, and M. P. McDonald 2004. Numerical Issues in Statistical Computing for the Social Scientist. Hoboken: Wiley-Interscience.zbMATHGoogle Scholar
  6. Anderson, J. A. 1984. Regression and ordered categorical variables. Journal of the Royal Statistical Society, Series B 46(1):1–30. With discussion.Google Scholar
  7. Bilder, C. M. and T. M. Loughin 2015. Analysis of Categorical Data with R. Boca Raton: CRC Press.Google Scholar
  8. Christensen, R. H. B. 2013. Analysis of ordinal data with cumulative link models—estimation with the R-package ordinal. R package version 2013.9–30.Google Scholar
  9. Elandt-Johnson, R. C. 1971. Probability Models and Statistical Methods in Genetics. New York: Wiley.zbMATHGoogle Scholar
  10. Greene, W. H. 2012. Econometric Analysis (Seventh ed.). Upper Saddle River: Prentice Hall.Google Scholar
  11. Greene, W. H. and D. A. Hensher 2010. Modeling Ordered Choices: A Primer. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Harrell, F. E. 2001. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York, USA: Springer.CrossRefGoogle Scholar
  13. Hensher, D. A., J. M. Rose, and W. H. Greene 2014. Applied Choice Analysis (Second ed.). Cambridge: Cambridge University Press.Google Scholar
  14. Hilbe, J. M. 2009. Logistic Regression Models. Boca Raton, FL, USA: Chapman & Hall/CRC.Google Scholar
  15. Hilbe, J. M. 2011. Negative Binomial Regression (Second ed.). Cambridge, UK; New York, USA: Cambridge University Press.Google Scholar
  16. Kateri, M. 2014. Contingency Table Analysis. Methods and Implementation Using R. New York, USA: Birkhäuser/Springer.zbMATHCrossRefGoogle Scholar
  17. Kosmidis, I. 2014b. Improved estimation in cumulative link models. Journal of the Royal Statistical Society, Series B 76(1):169–196.MathSciNetCrossRefGoogle Scholar
  18. Lange, K. 2002. Mathematical and Statistical Methods for Genetic Analysis (Second ed.). New York, USA: Springer-Verlag.Google Scholar
  19. Liu, I. and A. Agresti 2005. The analysis of ordered categorical data: An overview and a survey of recent developments. Test 14(1):1–73.zbMATHMathSciNetCrossRefGoogle Scholar
  20. Lloyd, C. J. 1999. Statistical Analysis of Categorical Data. New York, USA: Wiley.zbMATHGoogle Scholar
  21. Maddala, G. S. 1983. Limited Dependent and Qualitative Variables in Econometrics. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  22. McCullagh, P. 1980. Regression models for ordinal data. Journal of the Royal Statistical Society, Series B 42(2):109–142. With discussion.Google Scholar
  23. McCullagh, P. and J. A. Nelder 1989. Generalized Linear Models (Second ed.). London: Chapman & Hall.Google Scholar
  24. McFadden, D. 1974. Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Conditional Logit Analysis of Qualitative Choice Behavior, pp. 105–142. New York, USA: Academic Press.Google Scholar
  25. Powers, D. A. and Y. Xie 2008. Statistical Methods for Categorical Data Analysis (Second ed.). Bingley, UK: Emerald.Google Scholar
  26. Randall, J. H. 1989. The analysis of sensory data by generalized linear model. Biometrics Journal 31(7):781–793.MathSciNetCrossRefGoogle Scholar
  27. Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  28. Self, S. G. and K.-Y. Liang 1987. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association 82(398):605–610.zbMATHMathSciNetCrossRefGoogle Scholar
  29. Simonoff, J. S. 2003. Analyzing Categorical Data. New York, USA: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  30. Smithson, M. and E. C. Merkle 2013. Generalized Linear Models for Categorical and Continuous Limited Dependent Variables. London: Chapman & Hall/CRC.Google Scholar
  31. Tutz, G. 2012. Regression for Categorical Data. Cambridge: Cambridge University Press.Google Scholar
  32. van den Boogaart, K. G. and R. Tolosana-Delgado 2013. Analyzing Compositional Data with R. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  33. Vuong, Q. H. 1989. Likelihood ratio tests for model selection and nonnested hypotheses. Econometrica 57(2):307–333.zbMATHMathSciNetCrossRefGoogle Scholar
  34. Weir, B. S. 1996. Genetic Data Analysis II. Sunderland, MA, USA: Sinauer.Google Scholar
  35. Yasuda, N. 1968. Estimation of the interbreeding coefficient from phenotype frequencies by a method of maximum likelihood scoring. Biometrics 24(4):915–934.MathSciNetCrossRefGoogle Scholar
  36. Yee, T. W. 2010a. The VGAM package for categorical data analysis. Journal of Statistical Software 32(10):1–34.MathSciNetCrossRefGoogle Scholar
  37. Yu, P. and C. A. Shaw 2014. An efficient algorithm for accurate computation of the Dirichlet-multinomial log-likelihood function. Bioinformatics 30(11):1547–54.CrossRefGoogle Scholar

Copyright information

© Thomas Yee 2015

Authors and Affiliations

  • Thomas W. Yee
    • 1
  1. 1.Department of StatisticsUniversity of AucklandAucklandNew Zealand

Personalised recommendations