Advertisement

Univariate Continuous Distributions

  • Thomas W. Yee
Part of the Springer Series in Statistics book series (SSS)

Abstract

This chapter enumerates those univariate continuous distributions currently represented as VGLMs/VGAMs and implemented in VGAM. Most are grouped and tabulated according to their support, and/or the distribution from which they are derived (e.g., beta-type, gamma-type), and/or their purpose (e.g., statistical size distributions, actuarial distributions).

Keywords

Shape Parameter Scale Parameter Family Function Cauchy Distribution Univariate Continuous Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahsanullah, M. H. and G. G. Hamedani 2010. Exponential Distribution: Theory and Methods. New York: Nova Science.Google Scholar
  2. Arnold, B. C. 2015. Pareto Distributions (Second ed.). Boca Raton: Chapman & Hall/CRC.zbMATHGoogle Scholar
  3. Azzalini, A. 2014. The Skew-normal and Related Families. Cambridge: Cambridge University Press.Google Scholar
  4. Balakrishnan, N. and A. P. Basu (Eds.) 1995. The Exponential Distribution: Theory, Methods, and Applications. Amsterdam: Gordon and Breach.zbMATHGoogle Scholar
  5. Balakrishnan, N. and C.-D. Lai 2009. Continuous Bivariate Distributions (Second ed.). New York: Springer.zbMATHGoogle Scholar
  6. Balakrishnan, N. and V. B. Nevzorov 2003. A Primer on Statistical Distributions. New York: Wiley-Interscience.zbMATHCrossRefGoogle Scholar
  7. Bowman, K. O. and L. R. Shenton 1988. Properties of Estimators for the Gamma Distribution. New York: Marcel Dekker.zbMATHGoogle Scholar
  8. Chotikapanich, D. (Ed.) 2008. Modeling Income Distributions and Lorenz Curves. New York: Springer.zbMATHGoogle Scholar
  9. Consul, P. C. and F. Famoye 2006. Lagrangian Probability Distributions. Boston: Birkhäuser.zbMATHGoogle Scholar
  10. Everitt, B. S. and D. J. Hand 1981. Finite Mixture Distributions. London: Chapman & Hall.zbMATHCrossRefGoogle Scholar
  11. Forbes, C., M. Evans, N. Hastings, and B. Peacock 2011. Statistical Distributions (fouth ed.). Hoboken: John Wiley & Sons.zbMATHGoogle Scholar
  12. Frühwirth-Schnatter, S. 2006. Finite Mixture and Markov Switching Models. New York: Springer.zbMATHGoogle Scholar
  13. Gupta, A. K. and S. Nadarajah (Eds.) 2004. Handbook of Beta Distribution and Its Applications. New York, USA: Marcel Dekker.zbMATHGoogle Scholar
  14. Harper, W. V., T. G. Eschenbach, and T. R. James 2011. Concerns about maximum likelihood estimation for the three-parameter Weibull distribution: Case study of statistical software. American Statistician 65(1):44–54.CrossRefGoogle Scholar
  15. Joe, H. 2014. Dependence Modeling with Copulas. Boca Raton, FL, USA: Chapman & Hall/CRC.Google Scholar
  16. Johnson, N. L., S. Kotz, and N. Balakrishnan 1994. Continuous Univariate Distributions (Second ed.), Volume 1. New York, USA: Wiley.Google Scholar
  17. Johnson, N. L., S. Kotz, and N. Balakrishnan 1995. Continuous Univariate Distributions (Second ed.), Volume 2. New York, USA: Wiley.Google Scholar
  18. Jones, M. C. 2009. Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages. Statistical Methodology 6(1):70–81.zbMATHMathSciNetCrossRefGoogle Scholar
  19. Jørgensen, B. 1997. The Theory of Dispersion Models. London: Chapman & Hall.Google Scholar
  20. Kaas, R., M. Goovaerts, J. Dhaene, and M. Denuit 2008. Modern Actuarial Risk Theory Using R (Second ed.). Berlin: Springer.zbMATHCrossRefGoogle Scholar
  21. Kleiber, C. and S. Kotz 2003. Statistical Size Distributions in Economics and Actuarial Sciences. Hoboken, NJ, USA: Wiley-Interscience.zbMATHCrossRefGoogle Scholar
  22. Klugman, S. A., H. H. Panjer, and G. E. Willmot 2012. Loss Models: From Data to Decisions (4th ed.). Hoboken, NJ, USA: Wiley.Google Scholar
  23. Klugman, S. A., H. H. Panjer, and G. E. Willmot 2013. Loss Models: Further Topics. Hoboken, NJ, USA: Wiley.CrossRefGoogle Scholar
  24. Kotz, S., T. J. Kozubowski, and K. Podgórski 2001. The Laplace Distribution and Generalizations: a Revisit with Applications to Communications, Economics, Engineering, and Finance. Boston, MA, USA: Birkhäuser.CrossRefGoogle Scholar
  25. Kotz, S. and J. R. van Dorp 2004. Beyond Beta: Other Continuous Families of Distributions with Bounded Support and Applications. Singapore: World Scientific.CrossRefGoogle Scholar
  26. Kozubowski, T. J. and S. Nadarajah 2010. Multitude of Laplace distributions. Statistical Papers 51(1):127–148.zbMATHMathSciNetCrossRefGoogle Scholar
  27. Lawless, J. F. 2003. Statistical Models and Methods for Lifetime Data (Second ed.). Hoboken, NJ, USA: John Wiley & Sons.zbMATHGoogle Scholar
  28. Leemis, L. M. and J. T. McQueston 2008. Univariate distribution relationships. American Statistician 62(1):45–53.MathSciNetCrossRefGoogle Scholar
  29. Lehmann, E. L. and G. Casella 1998. Theory of Point Estimation (Second ed.). New York, USA: Springer.zbMATHGoogle Scholar
  30. Libby, D. L. and M. R. Novick 1982. Multivariate generalized beta distributions with applications to utility assessment. Journal of Educational and Statistics 7(4):271–294.CrossRefGoogle Scholar
  31. Lindsay, B. G. 1995. Mixture Models: Theory, Geometry and Applications, Volume 5. Hayward CA, USA: NSF-CBMS Regional Conference Series in Probability and Statistics, IMS.Google Scholar
  32. Mai, J.-F. and M. Scherer 2012. Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications. London: Imperial College Press.CrossRefGoogle Scholar
  33. Marshall, A. W. and I. Olkin 2007. Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families. New York, USA: Springer.Google Scholar
  34. McCullagh, P. 1989. Some statistical properties of a family of continuous univariate distributions. Journal of the American Statistical Association 84(405):125–129.zbMATHMathSciNetCrossRefGoogle Scholar
  35. McLachlan, G. J. and D. Peel 2000. Finite Mixture Models. New York, USA: Wiley.zbMATHCrossRefGoogle Scholar
  36. Murthy, D. N. P., M. Xie, and R. Jiang 2004. Weibull Models. Hoboken, NJ, USA: Wiley.zbMATHGoogle Scholar
  37. Nadarajah, S. and S. A. A. Bakar 2013. A new R package for actuarial survival models. Computational Statistics 28(5):2139–2160.zbMATHMathSciNetCrossRefGoogle Scholar
  38. Nelsen, R. B. 2006. An Introduction to Copulas (Second ed.). New York, USA: Springer.zbMATHGoogle Scholar
  39. Pal, N., C. Jin, and W. K. Lim 2006. Handbook of Exponential and Related Distributions for Engineers and Scientists. Boca Raton, FL, USA: Chapman & Hall/CRC.Google Scholar
  40. Prentice, R. L. 1974. A log gamma model and its maximum likelihood estimation. Biometrika 61(3):539–544.zbMATHMathSciNetCrossRefGoogle Scholar
  41. Richards, S. J. 2012. A handbook of parametric survival models for actuarial use. Scandinavian Actuarial Journal 2012(4):233–257.zbMATHMathSciNetCrossRefGoogle Scholar
  42. Rinne, H. 2009. The Weibull Distribution. Boca Raton, FL, USA: CRC Press.Google Scholar
  43. Schepsmeier, U. and J. Stöber 2014. Derivatives and Fisher information of bivariate copulas. Statistical Papers 55(2):525–542.zbMATHMathSciNetCrossRefGoogle Scholar
  44. Shao, J. 2005. Mathematical Statistics: Exercises and Solutions. New York, USA: Springer.Google Scholar
  45. Stacy, E. W. 1962. A generalization of the gamma distribution. Annals of Mathematical Statistics 33(3):1187–1192.zbMATHMathSciNetCrossRefGoogle Scholar
  46. Titterington, D. M., A. F. M. Smith, and U. E. Makov 1985. Statistical Analysis of Finite Mixture Distributions. New York, USA: Wiley.zbMATHGoogle Scholar
  47. Trivedi, P. K. and D. M. Zimmer 2005. Copula modeling: An introduction for practitioners. Foundations and Trends in Econometrics 1(1):1–111.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Thomas Yee 2015

Authors and Affiliations

  • Thomas W. Yee
    • 1
  1. 1.Department of StatisticsUniversity of AucklandAucklandNew Zealand

Personalised recommendations