Advertisement

Univariate Discrete Distributions

  • Thomas W. Yee
Part of the Springer Series in Statistics book series (SSS)

Abstract

This chapter and the next enumerates over 70 univariate discrete and continuous distributions as VGLMs/VGAMs which are currently implemented in VGAM. Other variants, such as positive (zero-truncated), zero-inflated and zero-altered models, are described in a later chapter. A section is devoted to negative binomial regression, and it is shown that the VGLM/VGAM framework allows quite a number of variants to be naturally fitted.

Keywords

Variance Function Negative Binomial Distribution Discrete Distribution Family Function Probability Mass Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Balakrishnan, N. and V. B. Nevzorov 2003. A Primer on Statistical Distributions. New York: Wiley-Interscience.zbMATHCrossRefGoogle Scholar
  2. Cameron, A. C. and P. K. Trivedi 2013. Regression Analysis of Count Data (Second ed.). Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  3. Consul, P. C. and F. Famoye 2006. Lagrangian Probability Distributions. Boston: Birkhäuser.zbMATHGoogle Scholar
  4. Devroye, L. 1986. Non-Uniform Random Variate Generation. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  5. Fishman, G. S. 1996. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  6. Forbes, C., M. Evans, N. Hastings, and B. Peacock 2011. Statistical Distributions (fouth ed.). Hoboken: John Wiley & Sons.zbMATHGoogle Scholar
  7. Hilbe, J. M. 2011. Negative Binomial Regression (Second ed.). Cambridge, UK; New York, USA: Cambridge University Press.Google Scholar
  8. Hörmann, W., J. Leydold, and G. Derflinger 2004. Automatic Nonuniform Random Variate Generation. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  9. Johnson, N. L., A. W. Kemp, and S. Kotz 2005. Univariate Discrete Distributions (Third ed.). Hoboken, NJ, USA: John Wiley & Sons.zbMATHCrossRefGoogle Scholar
  10. Jones, O., R. Maillardet, and A. Robinson 2014. Introduction to Scientific Programming and Simulation Using R (Second ed.). Boca Raton, FL, USA: Chapman and Hall/CRC.zbMATHGoogle Scholar
  11. Jørgensen, B. 1997. The Theory of Dispersion Models. London: Chapman & Hall.Google Scholar
  12. Lawless, J. F. 1987. Negative binomial and mixed Poisson regression. The Canadian Journal of Statistics 15(3):209–225.zbMATHMathSciNetCrossRefGoogle Scholar
  13. Leemis, L. M. and J. T. McQueston 2008. Univariate distribution relationships. American Statistician 62(1):45–53.MathSciNetCrossRefGoogle Scholar
  14. Morris, C. N. 1982. Natural exponential families with quadratic variance functions. The Annals of Statistics 10(1):65–80.zbMATHMathSciNetCrossRefGoogle Scholar
  15. Prentice, R. L. 1986. Binary regression using an extended beta-binomial distribution, with discussion of correlation induced by covariate measurement errors. Journal of the American Statistical Association 81(394):321–327.zbMATHCrossRefGoogle Scholar
  16. Williams, D. A. 1975. The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity. Biometrics 31(4):949–952.zbMATHCrossRefGoogle Scholar
  17. Yee, T. W. 2010b. VGLMs and VGAMs: an overview for applications in fisheries research. Fisheries Research 101(1–2):116–126.CrossRefGoogle Scholar
  18. Yee, T. W. 2014. Reduced-rank vector generalized linear models with two linear predictors. Computational Statistics & Data Analysis 71:889–902.MathSciNetCrossRefGoogle Scholar

Copyright information

© Thomas Yee 2015

Authors and Affiliations

  • Thomas W. Yee
    • 1
  1. 1.Department of StatisticsUniversity of AucklandAucklandNew Zealand

Personalised recommendations