Advertisement

Some LM and GLM Variants

  • Thomas W. Yee
Part of the Springer Series in Statistics book series (SSS)

Abstract

This chapter deals with several useful variants of LMs and binomial GLMs. For example, LMs have been generalized to varying coefficient models, seemingly unrelated regressions (SUR), the Tobit model (censored LM), and AR(1) time series model (correlated data over time). And for logistic regression, this can be extended to bivariate binary responses, a two-stage sequential binomial process, and double-exponential family models.

Keywords

Exponential Family Binary Response Tobit Model Loglinear Model Seemingly Unrelated Regression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agresti, A. 2013. Categorical Data Analysis (Third ed.). Hoboken: Wiley.zbMATHGoogle Scholar
  2. Amemiya, T. 1984. Tobit models: a survey. Journal of Econometrics 24(1–2):3–61.zbMATHMathSciNetCrossRefGoogle Scholar
  3. Amemiya, T. 1985. Advanced Econometrics. Oxford: Blackwell.Google Scholar
  4. Ashford, J. R. and R. R. Sowden 1970. Multi-variate probit analysis. Biometrics 26(3):535–546.CrossRefGoogle Scholar
  5. Christensen, R. 1997. Log-linear Models and Logistic Regression (Second ed.). New York: Springer-Verlag.zbMATHGoogle Scholar
  6. Crowder, M. and T. Sweeting 1989. Bayesian inference for a bivariate binomial distribution. Biometrika 76(3):599–603.zbMATHMathSciNetCrossRefGoogle Scholar
  7. Efron, B. 1986. Double exponential families and their use in generalized linear regression. Journal of the American Statistical Association 81(395):709–721.zbMATHMathSciNetCrossRefGoogle Scholar
  8. Fan, J. and Q. Yao 2003. Nonlinear Time Series: Nonparametric and Parametric Methods. New York: Springer.CrossRefGoogle Scholar
  9. Freedman, D. A. and J. S. Sekhon 2010. Endogeneity in probit response models. Political Analysis 18(2):138–150.CrossRefGoogle Scholar
  10. Goldberger, A. S. 1964. Econometric Theory. New York: Wiley.zbMATHGoogle Scholar
  11. Greene, W. H. 2012. Econometric Analysis (Seventh ed.). Upper Saddle River: Prentice Hall.Google Scholar
  12. Hastie, T. and R. Tibshirani 1993. Varying-coefficient models. Journal of the Royal Statistical Society, Series B 55(4):757–796.zbMATHMathSciNetGoogle Scholar
  13. Johnson, N. L., S. Kotz, and N. Balakrishnan 1994. Continuous Univariate Distributions (Second ed.), Volume 1. New York, USA: Wiley.Google Scholar
  14. McCullagh, P. and J. A. Nelder 1989. Generalized Linear Models (Second ed.). London: Chapman & Hall.zbMATHCrossRefGoogle Scholar
  15. Palmgren, J. 1989. Regression models for bivariate binary responses. Technical Report 101, Biostatistics Dept, University of Washington, Seattle, USA.Google Scholar
  16. Park, B. U., E. Mammen, Y. K. Lee, and E. R. Lee 2015. Varying coefficient regression models: a review and new developments. International Statistical Review 83(1):36–64.MathSciNetCrossRefGoogle Scholar
  17. Smith, M. and R. Kohn 2000. Nonparametric seemingly unrelated regression. Journal of Econometrics 98(2):257–281.zbMATHCrossRefGoogle Scholar
  18. Smithson, M. and E. C. Merkle 2013. Generalized Linear Models for Categorical and Continuous Limited Dependent Variables. London: Chapman & Hall/CRC.Google Scholar
  19. Smyth, G. K. 1989. Generalized linear models with varying dispersion. Journal of the Royal Statistical Society, Series B 51(1):47–60.MathSciNetGoogle Scholar
  20. Srivastava, V. K. and T. D. Dwivedi 1979. Estimation of seemingly unrelated regression equations: A brief survey. Journal of Econometrics 10(1):15–32.zbMATHMathSciNetCrossRefGoogle Scholar
  21. Srivastava, V. K. and D. E. A. Giles 1987. Seemingly Unrelated Regression Equations Models: Estimation and Inference. New York, USA: Marcel Dekker.zbMATHGoogle Scholar
  22. Tobin, J. 1958. Estimation of relationships for limited dependent variables. Econometrica 26(1):24–36.zbMATHMathSciNetCrossRefGoogle Scholar
  23. von Eye, A. and E.-E. Mun 2013. Log-linear Modeling: Concepts, Interpretation, and Application. Hoboken, NJ, USA: Wiley.Google Scholar
  24. Wooldridge, J. M. 2006. Introductory Econometrics: A Modern Approach (5th ed.). Mason, OH, USA: South-Western.Google Scholar
  25. Zellner, A. 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association 57(298):348–368.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Thomas Yee 2015

Authors and Affiliations

  • Thomas W. Yee
    • 1
  1. 1.Department of StatisticsUniversity of AucklandAucklandNew Zealand

Personalised recommendations