This chapter gives a short survey of the whole statistical framework behind this book: VGLMs, VGAMs, RR-VGLMs, QRR-VGLMs, etc. Six regression models are used to illustrate them collectively and motivate some crucial concepts, e.g., constraint matrices, latent variables and the xij argument. Some elements of the S language are briefly summarized, especially those related to regression modelling as a whole.


Model Matrix Data Frame Negative Binomial Linear Predictor Proportional Odds Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson, J. A. 1984. Regression and ordered categorical variables. Journal of the Royal Statistical Society, Series B 46(1):1–30. With discussion.Google Scholar
  2. Anderson, T. W. 1951. Estimating linear restrictions on regression coefficients for multivariate normal distributions. Annals of Mathematical Statistics 22(3):327–351.zbMATHMathSciNetCrossRefGoogle Scholar
  3. Chambers, J. M. 1998. Programming with Data: A Guide to the S Language. New York: Springer.zbMATHCrossRefGoogle Scholar
  4. Chambers, J. M. 2008. Software for Data Analysis: Programming with R. Statistics and Computing. New York: Springer.Google Scholar
  5. Chambers, J. M. and T. J. Hastie (Eds.) 1991. Statistical Models in S. Pacific Grove: Wadsworth/Brooks Cole.Google Scholar
  6. de Vries, A. and J. Meys 2012. R for Dummies. Chichester: Wiley.Google Scholar
  7. Goodman, L. A. 1981. Association models and canonical correlation in the analysis of cross-classifications having ordered categories. Journal of the American Statistical Association 76(374):320–334.MathSciNetGoogle Scholar
  8. Hastie, T. J. and R. J. Tibshirani 1990. Generalized Additive Models. London: Chapman & Hall.zbMATHGoogle Scholar
  9. Huber, P. J. 2011. Data Analysis: What Can Be Learned From the Past 50 Years. Hoboken, NJ, USA: Wiley.CrossRefGoogle Scholar
  10. Ihaka, R. and R. Gentleman 1996. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5(3):299–314.Google Scholar
  11. Imai, K., G. King, and O. Lau 2008. Toward a common framework for statistical analysis and development. Journal of Computational and Graphical Statistics 17(4):892–913.MathSciNetCrossRefGoogle Scholar
  12. Izenman, A. J. 1975. Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis 5(2):248–264.zbMATHMathSciNetCrossRefGoogle Scholar
  13. James, G., D. Witten, T. Hastie, and R. Tibshirani 2013. An Introduction to Statistical Learning with Applications in R. New York, USA: Springer.zbMATHCrossRefGoogle Scholar
  14. Keogh, R. H. and D. R. Cox 2014. Case-Control Studies. New York, USA: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  15. McCullagh, P. and J. A. Nelder 1989. Generalized Linear Models (Second ed.). London: Chapman & Hall.Google Scholar
  16. Nelder, J. A. and R. W. M. Wedderburn 1972. Generalized linear models. Journal of the Royal Statistical Society, Series A 135(3):370–384.CrossRefGoogle Scholar
  17. Page, L. A., S. Hajat, and R. S. Kovats 2007. Relationship between daily suicide counts and temperature in England and Wales. British Journal of Psychiatry 191(2):106–112.CrossRefGoogle Scholar
  18. Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58(1):267–288.zbMATHMathSciNetGoogle Scholar
  19. Tutz, G. 2012. Regression for Categorical Data. Cambridge: Cambridge University Press.Google Scholar
  20. Wilkinson, G. N. and C. E. Rogers 1973. Symbolic description of factorial models for analysis of variance. Journal of the Royal Statistical Society, Series C 22(3):392–399.Google Scholar
  21. Yee, T. W. 2004a. A new technique for maximum-likelihood canonical Gaussian ordination. Ecological Monographs 74(4):685–701.MathSciNetCrossRefGoogle Scholar
  22. Yee, T. W. 2006. Constrained additive ordination. Ecology 87(1):203–213.CrossRefGoogle Scholar
  23. Yee, T. W. and A. F. Hadi 2014. Row-column interaction models, with an R implementation. Computational Statistics 29(6):1427–1445.zbMATHMathSciNetCrossRefGoogle Scholar
  24. Yee, T. W. and T. J. Hastie 2003. Reduced-rank vector generalized linear models. Statistical Modelling 3(1):15–41.zbMATHMathSciNetCrossRefGoogle Scholar
  25. Yee, T. W. and C. J. Wild 1996. Vector generalized additive models. Journal of the Royal Statistical Society, Series B 58(3):481–493.zbMATHMathSciNetGoogle Scholar
  26. Zuur, A. F., E. N. Ieno, and E. H. Meesters 2009. A Beginner’s Guide to R. New York, USA: Springer.zbMATHCrossRefGoogle Scholar

Copyright information

© Thomas Yee 2015

Authors and Affiliations

  • Thomas W. Yee
    • 1
  1. 1.Department of StatisticsUniversity of AucklandAucklandNew Zealand

Personalised recommendations