Skip to main content

Mathematics Fluency—More than the Weekly Timed Test

  • Chapter
  • First Online:
Book cover The Fluency Construct

Abstract

The purpose of this chapter is to provide an overview of the critical importance of mathematics fluency. We begin by providing an overview of the role of mathematics in today’s society, current shortcomings in the teaching of mathematics, operational definitions of fluency, and the critical role fluency plays in the development of mathematics proficiency. Next, we summarize current interventions designed to promote the development of fluency and assessments designed to measure student acquisition of mathematics fluency. We conclude by noting the potential steps for both researchers and practitioners to take to move the field forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker, S.K., Fien, H., & Baker, D. L. (2010). Robust reading instruction in the early grades: Conceptual and practical issues in the integration and evaluation of tier 1 and tier 2 instructional supports. Focus on Exceptional Children, 3(9), 1–21.

    Google Scholar 

  • Baroody, A. J. (2011). Learning: A framework. In F. Fennell (Ed.), Achieving fluency: Special education and mathematics (pp. 15–58). Reston: National Council of Teachers of Mathematics.

    Google Scholar 

  • Berch, D. B. (2005). Making sense of number sense: Implication for children with mathematical disabilities. Journal of Learning Disabilities, 38, 333–339. doi:10.1177/00222194050380040901.

    Article  PubMed  Google Scholar 

  • Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41, 189–201. doi:10.1037/0012-1649.41.6.189.

    Article  Google Scholar 

  • Bryant, D.P., Bryant, B.R., Gersten, R., Scammacca, N., & Chavez, M. (2008a). Mathematics intervention for first and second grade students with mathematics difficulties: The effects of tier 2 intervention delivered as booster lessons. Remedial and Special Education, 29(1), 20–32. doi:10.1177/0741932507309712.

    Article  Google Scholar 

  • Burns, M. K. (2005). Using incremental rehearsal to increase fluency of single-digit multiplication facts with children identified as learning disabled in mathematics computation. Education and Treatment of Children, 28(3), 237–249.

    Google Scholar 

  • Burns, M. K., Codding, R. S., Boice, C. H., & Lukito, G. (2010). Meta-analysis of acquisition and fluency math interventions with instructional and frustration level skills: Evidence for a skill-by-treatment interaction. School Psychology Review, 39, 69–83.

    Google Scholar 

  • Burns, M. K., Kanive, R., & DeGrande, M. (2012). Effect of a computer-delivered math fact intervention as a supplemental intervention for math in third and fourth grades. Remedial and Special Education, 33, 184–191. doi:10.1177/0741932510381652.

    Article  Google Scholar 

  • Cates, G. L. (2005). Effects of peer versus computer-assisted drill on mathematics response rates. Psychology in the Schools, 42, 637–646. doi:10.1002/pits.20105.

    Article  Google Scholar 

  • Clarke, B., & Shinn, M. (2004). A preliminary investigation into the identification and development of early mathematics curriculum-based measurement. School Psychology Review, 33, 234–248.

    Google Scholar 

  • Clarke, B., Baker, S., Smolkowski, K., & Chard, D. J. (2008). An analysis of early numeracy curriculum-based measurement: Examining the role of growth in student outcomes. Remedial and Special Education, 29, 46–57. doi:10.1177/0741932507309694.

    Article  Google Scholar 

  • Clarke, B., Gersten, R., & Newman-Gonchar, R. (2010). RTI in Mathematics: beginnings of a knowledge base. In S. Vaughn & T. Glover (Eds.), Advances in response to intervention. New York: Guilford.

    Google Scholar 

  • Clarke, B., Nese, J. F. T., Alonzo, J., Smith, J. L. M., Tindal, G., Kame’enui, E. J., & Baker, S. K. (2011). Classification accuracy of easy CBM first-grade mathematics measures: Findings and implications for the field. Assessment for Effective Intervention (Advance online publication). doi:10.1177/1534508411414153.

    Google Scholar 

  • Codding, R. S. (2003). Examining the efficacy of performance feedback and goal-setting interventions in children with AD/HD: A comparison of two methods of goal setting. (Doctoral dissertation). Retrieved from ProQuest Dissertations & Theses A&I database. (Accession No. 305246068).

    Google Scholar 

  • Codding, R. S., Shiyko, M., Russo, M., Birch, S., Fanning, E., & Jaspen, D. (2007). Comparing mathematics interventions: Does initial level of fluency predict intervention effectiveness?. Journal of School Psychology, 45, 603–617. doi:10.1016/j.jsp.2007.06.005

    Article  Google Scholar 

  • Codding, R. S., Burns, M. K., & Lukito, G. (2011). Meta-Analysis of mathematic basic-fact fluency interventions: A component analysis. Learning Disabilities Research and Practice, 26(1), 36–47. doi:10.1111/j.1540–5826.2010.00323.x.

    Article  Google Scholar 

  • Common Core State Standards Initiative. (2010). Common core standards for English language arts & literacy in history/social studies, science, and technical subjects. http://www.corestandards.org/assets/CCSSI_ELA%20Standards.pdf.

  • Coyne, M. D., Zipoli, R. P., & Ruby, M. F. (2006). Beginning reading instruction for students at risk for reading disabilities: What, how, and when. Intervention in School and Clinic, 41, 161–168. doi: 10.1177/10534512060410030601

    Google Scholar 

  • Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: Oxford University Press.

    Google Scholar 

  • Deno, S. L. (1985). Curriculum-based measurement: The emerging alternative. Exceptional Children, 52, 219–232.

    PubMed  Google Scholar 

  • Deno, S. L. (2003). Curriculum-based measures: Development and perspectives. Assessment for Effective Intervention, 28(3–4), 312. doi:10.1177/073724770302800302.

    Google Scholar 

  • Deno, S. L., & Mirkin, P. K. (1977). Data-based program modification: A manual. Reston: Council for Exceptional Children.

    Google Scholar 

  • Doggett, R. A., Henington, C., & Johnson-Gros, K. N. (2006). Math to mastery: A direct instruction remedial math intervention designed to increase student fluency with basic math facts. Unpublished manuscript, Mississippi State University, Mississippi State, MS.

    Google Scholar 

  • Doughty, S. S., Chase, P. N., & O’Shields, E. M. (2004). Effects of rate building on fluent performance: A review and commentary. The Behavior Analyst, 27, 7–23.

    PubMed Central  PubMed  Google Scholar 

  • Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., Japel, C., et al. (2007). School readiness and later achievement. Developmental Psychology, 43, 1428–1446.

    Article  PubMed  Google Scholar 

  • Farrell, A., & McDougall, D. (2008). Self-monitoring of pace to improve math fluency of high school students with disabilities. Behavior Analysis in Practice, 1(2), 2–35.

    Google Scholar 

  • Fennell, F. (2011). All means all. In F. Fennell (Ed.), Achieving fluency: Special education and mathematics (pp. 1–14). Reston: National Council of Teachers of Mathematics.

    Google Scholar 

  • Figarola, P. M., Gunter, P. L., Reffel, J. M., Worth, S. R., Hummel, J., & Gerber, B. L. (2008). Effects of self-graphing and goal setting on the math fact fluency of students with disabilities. Behavior Analysis in Practice, 1, 36–41.

    PubMed Central  PubMed  Google Scholar 

  • Foegen, A. (2008). Algebra progress monitoring and interventions for students with learning disabilities. Learning Disability Quarterly, 31, 65–78.

    Google Scholar 

  • Foegen, A., & Deno, S. (2001). Identifying growth indicators of low-achieving students in middle school mathematics. Journal of Special Education, 35(1), 4–16. doi:10.1177/002246690103500102.

    Article  Google Scholar 

  • Foegen, A., Jiban, C., & Deno, S. (2007). Progress monitoring measures in Mathematics. Journal of Special Education, 41, 121–139. doi:10.1177/00224669070410020101.

    Article  Google Scholar 

  • Freeman, T. J., & McLaughlin, T. F. (1984). Effects of a taped-words treatment procedure on learning disabled students’ sight-word oral reading. Learning Disability Quarterly, 7, 49–54. doi: 10.2307/1510261

    Article  Google Scholar 

  • Fuchs, L. S., Fuchs, D., Hosp, M. K., & Jenkins, J. R. (2001). Oral reading fluency as an indicator of reading competence: A theoretical, empirical, and historical analysis. Scientific Studies of Reading, 5, 239–256.

    Article  Google Scholar 

  • Fuchs, L. S., Compton, D. L., Fuchs, D., Paulsen, K., Bryant, J. D., & Hamlett, C. L. (2005). The prevention, identification, and cognitive determinants of math difficulty. Journal of Educational Psychology, 97, 493–513.

    Article  Google Scholar 

  • Fuchs, L. S., Fuchs, D., & Hollenbeck, K. N. (2007). Extending responsiveness to intervention to mathematics at first and third grades. Learning Disabilities Research and Practice, 22(1), 13–24. doi:10.1111/j.1540–5826.2007.00227.x.

    Article  Google Scholar 

  • Fuchs, L. S., Fuchs, D., Powell, S. R., Seethaler, P. M., Cirino, P. T., & Fletcher, J. M. (2008a). Intensive intervention for students with mathematics disabilities: Seven principles of effective practice. Learning Disability Quarterly: Journal of the Division for Children with Learning Disabilities, 31, 79–92.

    Google Scholar 

  • Fuchs, L.S., Fuchs, D., & Zumeta, R.O. (2008b). Response to intervention: A strategy for the prevention and identification of learning disabilities. In E. L. Grigorenko (Ed.), Educating individuals with disabilities: IDEIA 2004 and beyond (pp. 115–135). New York: Springer.

    Google Scholar 

  • Geary, D. C. (1994). Children’s mathematical development: Research and practical applications (1st ed.). Washington, DC: American Psychological Association.

    Book  Google Scholar 

  • Geary, D.C. (1996). Sexual selection and sex differences in mathematical abilities. Behavioral and Brain Sciences, 19, 229–284.

    Article  Google Scholar 

  • Geary, D. C. (2001). Numerical and arithmetical deficits in learning-disabled children: Relation to dyscalculia and dyslexia. Aphasiology, 15, 635–641. doi:10.1080/02687040143000113.

    Article  Google Scholar 

  • Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4–15. doi:10.1177/00222194040370010201.

    Article  PubMed  Google Scholar 

  • Geary, D. C., & Widaman, K. F. (1992). Numerical cognition: On the convergence of componential and psychometric models. Intelligence, 16, 47–80. doi:10.1016/0160–2896(92)90025-M.

    Article  Google Scholar 

  • Geary, D. C., Hoard, M. K., Byrd Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 1343–1359. doi:10.1111/j.1467–8624.2007.01069.x.

    Article  PubMed Central  PubMed  Google Scholar 

  • Geary D.C., Hoard M.K., Nugent L., Bailey D.H. (2013). Adolescents’ functional numeracy is predicted by their school entry number system knowledge. PLoS One, 8(1): e54651. doi:10.1371/journal.pone.0054651.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gersten, R., & Chard, D. (1999). Number sense: Rethinking arithmetic instruction for students with mathematical disabilities. The Journal of Special Education, 33(1), 18–28. doi:10.1177/002246699903300102.

    Article  Google Scholar 

  • Gersten, R., Jordan, N. C., & Flojo, J. R. (2005). Early identification and interventions for students with mathematics difficulties. Journal of Learning Disabilities, 38, 293–304. doi:10.1177/00222194050380040301.

    Article  PubMed  Google Scholar 

  • Gersten, R. M., Beckmann, S., Clarke, B., Foegen, A., March, L., Star, J. R., & Witzel, B. (2009). Assisting students struggling with mathematics: Response to intervention (RTI) for elementary and middle schools (Practice Guide Report No. NCEE 2009–4060). Washington, DC: U.S Department of Education, National Center for Education Evaluation and Regional Assistance.

    Google Scholar 

  • Gersten, R., Clarke, B., Dimino, J., & Rolfhus, E. (2010). Universal screening measures of number sense and number proficiency for K-1: Preliminary findings (Report No. 2010–1). Los Alamitos: Instructional Research Group.

    Google Scholar 

  • Gersten, R., Clarke, B., Jordan, N. C., Newman-Gonchar, R., Haymond, K., & Wilkins, C. (2012). Universal screening in mathematics for the primary grades: Beginnings of a research base. Exceptional Children, 78, 423–445.

    Google Scholar 

  • Goldman, S. R., Pellegrino, J. W., & Mertz, D. L. (1988). Extended practice of basic addition facts: Strategy changes in learning disabled students. Cognition and Instruction, 5, 223–265. doi:10.1207/s1532690xci0503_2.

    Article  Google Scholar 

  • Hanushek, E. A., Peterson, P. E., & Woessmann, L. (2010). U.S. math performance in global perspective: How well does each state do at producing high-achieving students? Cambridge: Program on Education Policy and Governance & Education, Harvard University Kennedy School.

    Google Scholar 

  • Hasselbring, T., Sherwood, R., Bransford, J., Fleenor, K., Griffith, D., & Goin, L. (1987). An evaluation of a level-one instructional videodisc program. Journal of Educational Technology Systems, 16, 151–169. doi:10.2190/BR31-J510-CXM4-K41E.

    Article  Google Scholar 

  • Jitendra, A. K., Rodriguez, M., Kanive, R., Huang, J. P., Church, C., Corroy, K. A., & Zaslofsky, A. (2013). Impact of small-group tutoring interventions on the mathematical problem solving and achievement of third-grade students with mathematics difficulties. Learning Disability Quarterly, 36(1), 21–35. doi:10.1177/0731948712457561.

    Article  Google Scholar 

  • Jordan, N. C., & Montani, T. O. (1997). Cognitive arithmetic and problem solving: A comparison of children with specific and general mathematics difficulties. Journal of Learning Disabilities, 30, 624–634. doi:10.1177/002221949703000606.

    Article  PubMed  Google Scholar 

  • Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). Arithmetic fact mastery in young children: A longitudinal investigation. Journal of Experimental Child Psychology, 85, 103–119. doi:10.1016/S0022-0965(03)00032-8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45, 850–867. doi:10.1037/a0014939.

    Article  PubMed Central  PubMed  Google Scholar 

  • Joseph, L. M., Konrad, M., Cates, G., Vajcner, T., Eveleigh, E., & Fishley, K. M. (2012). A meta-analytic review of the cover-copy-compare and variations of this self-management procedure. Psychology in the Schools, 49, 122–136. doi:10.1002/pits.20622.

    Article  Google Scholar 

  • Ketterlin-Geller, L. R., Chard, D. J., & Fien, H. (2008). Making connections in mathematics conceptual mathematics intervention for low-performing students. Remedial and Special Education, 29(1), 33–45. doi:10.1177/0741932507309711.

    Article  Google Scholar 

  • LaBerge, D., & Samuels, S.J. (1974). Toward a theory of automatic information processing in reading. Cognitive Psychology, 6, 293–323. doi:10.1016/0010–0285(74)90015-2.

    Article  Google Scholar 

  • Lembke, E. S., & Foegen, A. (2009). Identifying early numeracy indicators for kindergarten and grade 1 students. Learning Disabilities Research and Practice, 24, 12–20. doi:10.1111/j.1540–5826.2008.01273.x.

    Article  Google Scholar 

  • Lin, F. Y., & Kubina, R. M. (2005). A preliminary investigation of the relationship between fluency and application for multiplication. Journal of Behavioral Education, 14, 73–87. doi:10.1007/s10864-005-2703-z.

    Article  Google Scholar 

  • Lockard, C. B., & Wolf, M. (2012). Occupational employment projections to 2020. Monthly Labor Review, 135, 84–108.

    Google Scholar 

  • Locuniak, M. N., & Jordan, N. C. (2008). Using kindergarten number sense to predict calculation fluency in second grade. Journal of Learning Disabilities, 41, 451–459. doi:10.1177/0022219408321126.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mautone, J. A., DuPaul, G. J., & Jitendra, A. K. (2005). The effects of computer-assisted instruction on the mathematics performance and classroom behavior of children with ADHD. Journal of Attention Disorders, 9, 301–312. doi:10.1177/1087054705278832.

    Article  PubMed  Google Scholar 

  • McCallum, E., Skinner, C. H., & Hutchins, H. (2004). The taped-problems intervention. Journal of Applied School Psychology, 20, 129–147.

    Article  Google Scholar 

  • McDougall, D., & Brady, M. P. (1998). Initiating and fading self-management interventions to increase math fluency in general education classes. Exceptional Children, 64, 151–166.

    Google Scholar 

  • Mercer, C. D., Mercer, K. D., & Campbell, K. U. (2002). Great leaps math. Gainesville: Diarmuid.

    Google Scholar 

  • Miller, A. D., & Heward, W. L. (1992). Do your students really know their math facts? Using daily time trials to build fluency. Intervention in School and Clinic, 28, 98–104.

    Article  Google Scholar 

  • Montague, M., Penfield, R. D., Enders, C., & Huang, J. (2010). Curriculum-based measurement of math problem solving: A methodology and rationale for establishing equivalence of scores. Journal of School Psychology, 48, 39–52. doi:10.1016/j.jsp.2009.08.002.

    Article  PubMed  Google Scholar 

  • Morgan, P. L., Farkas, G., & Wu, Q. (2009). Five-year growth trajectories of kindergarten children with learning difficulties in mathematics. Journal of Learning Disabilities, 42, 306–321. doi:10.1177/0022219408331037.

    Article  PubMed  Google Scholar 

  • National Academy of Sciences. (2007). Is America falling off the flat earth? In N. R. Augustine (Ed.), Rising Above the Gathering Storm Committee, National Academy of Sciences, National Academy of Engineering, and Institute of Medicine of the National Academies. Washington, DC: National Academies Press. Retrieved from http://www.nap.edu/catalog/12021/is-america-falling-off-the-flat-earth

    Google Scholar 

  • National Center for Education Statistics. (2011a). National Assessment of Educational Progress (NAEP). District of Columbia: Washington, DC.: U.S. Dept. of Education, Institute of Education Sciences.

    Google Scholar 

  • National Center for Education Statistics. (2011b). Trends in International Mathematics and Science Study (TIMSS). District of Columbia: Washington, DC: U.S. Dept. of Education, Institute of Education Sciences.

    Google Scholar 

  • National Council of Teachers of Mathematics. (2000). Standards 2000 project. http://standards.nctm.org/document/index.htm.

  • National Council of Teachers of Mathematics. (2006). Curriculum focal points for prekindergarten through grade 8 mathematics: A quest for coherence. http://www.nctm.org/standards/focalpoints.aspx?id=282.

  • National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, DC: US Department of Education.

    Google Scholar 

  • National Reading Panel. (2000). Report of the National Reading Panel: Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction. Washington, DC: National Institute of Child Health and Human Development.

    Google Scholar 

  • National Research Council. (2001). Adding it up: Helping children learn mathematics. Washington, DC: Mathematics Learning Study Committee.

    Google Scholar 

  • National Research Council. (2009). Mathematics learning in early childhood: Paths toward excellence and equity. Washington, DC: National Academies Press. Retrieved from http://www.nap.edu/catalog.php?record_id=12519

    Google Scholar 

  • Parker, R. I., & Hagan-Burke, S. (2007). Useful effect size interpretations for single-case research. Behavior Therapy, 38, 95–105. doi:10.1016/j.beth.2006.05.002.

    Article  PubMed  Google Scholar 

  • Parker, R. I., Hagan-Burke, S., & Vannest, K. (2007). Percentage of all non-overlapping data (PAND): An alternative to PND. The Journal of Special Education, 40, 194–204. doi:10.1177/00224669070400040101.

    Article  Google Scholar 

  • Poncy, B. C., Skinner, C. H., & O’Mara, T. (2006). Detect, practice, and repair: The effects of a classwide intervention on elementary students’ math-fact fluency. Journal of Evidence-Based Practices for Schools; Journal of Evidence-Based Practices for Schools, 7, 47–68.

    Google Scholar 

  • Poncy, B. C., Duhon, G. J., Lee, S. B., & Key, A. (2010). Evaluation of techniques to promote generalization with basic math fact skills. Journal of Behavioral Education, 19(1), 76–92. doi:10.1007/s10864-010-9101-x.

    Article  Google Scholar 

  • Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110–122.

    Article  Google Scholar 

  • Renaissance Learning. (2003). Math facts in a flash. Wisconsin Rapids: Renaissance Learning.

    Google Scholar 

  • Seethaler, P. M., & Fuchs, L. S. (2010). The predictive utility of kindergarten screening for math difficulty. Exceptional Children, 77, 37–60.

    Google Scholar 

  • Siegler, R. S., & Robinson, M. (1982). The development of numerical understandings. In H. W. Reese & L. P. Lipsitt (Eds.), Advances in child development and behavior (pp. 241–311). New York: Academic.

    Google Scholar 

  • Siegler, R., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., Thompson, L., & Wray, J. (2010). Developing effective fractions instruction for kindergarten through 8th grade: A practice guide (NCEE #2010–4039). Washington, DC: National Center for Education Evaluation and Rgional Assistance, Institute of Education Sciences, U.S. Department of Education. whatworks.ed.gov/publications/practiceguides.

    Google Scholar 

  • Skinner, C. H., Turco, T. L., Beatty, K. L., & Rasavage, C. (1989). Cover, copy, and compare: An intervention for increasing multiplication performance. School Psychology Review, 18, 212–220.

    Google Scholar 

  • Slocum, T. A., Street, E. M., & Gilberts, G. (1995). A review of research and theory on the relation between oral reading rate and reading comprehension. Journal of Behavioral Education, 5, 377–398. doi:10.1007/BF02114539.

    Article  Google Scholar 

  • Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 96, 471–491.

    Article  Google Scholar 

  • The White House. (2012, January). [Official web site of the White House and President Barack Obama]. http://www.whitehouse.gov/issues/education/k-12/educate-innovate.

  • VanDerHeyden, A. M., & Burns, M. K. (2009). Performance indicators in math: Implications for brief experimental analysis of academic performance. Journal of Behavioral Education, 18, 71–91. doi:10.1007/s10864-009-9081-x.

    Article  Google Scholar 

  • Wu, H. (2005). Must content dictate pedagogy in mathematics education? Paper presented at California State University at Northridge. http://math.berkeley.edu/~wu/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Clarke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clarke, B., Nelson, N., Shanley, L. (2016). Mathematics Fluency—More than the Weekly Timed Test. In: Cummings, K., Petscher, Y. (eds) The Fluency Construct. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2803-3_3

Download citation

Publish with us

Policies and ethics