Skip to main content

Enzymatic Coagulation of Milk

  • Chapter
Advanced Dairy Chemistry

Abstract

The enzymatic gelation of milk is one of the most studied topics in food colloids, as the reaction is based on the gradual hydrolysis of a polyelectrolyte layer on the surface of the casein micelles. The loss of the polyelectrolyte layer causes the destabilization of these protein particles in milk, and results in aggregates and a gel network. This chapter discusses the mechanisms of rennet-induced gelation of milk, with particular attention to the release of caseinomacropeptide from κ-casein and the rennet-induced aggregation of casein micelles. These two phases are strictly dependent on temperature, pH and the presence of calcium and other components in milk. The recent findings on the effects of heating, high pressure and concentration on enzymatic coagulation are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acero-Lopez A, Alexander M, Corredig M (2010) Diffusing wave spectroscopy and rheological studies of rennet-induced gelation of skim milk in the presence of pectin and κ-carrageenan. Int Dairy J 20:328–335

    Article  CAS  Google Scholar 

  • Aichinger PA, Michel M, Servais C, Dillmann M-L, Rouvet M, D’Amico N, Zink R, Klostermeyer H, Horne DS (2003) Fermentation of a skim milk concentrate with Streptococcus thermophilus and chymosin: structure, viscoelasticity and syneresis of gels. Colloids Surf B Biointerfaces 31:243–255

    Article  CAS  Google Scholar 

  • Alexander M, Dalgleish DG (2004) Application of transmission diffusing wave spectroscopy to the study of gelation of milk by acidification and rennet. Colloids Surf B Biointerfaces 38:83–90

    Article  CAS  Google Scholar 

  • Alexander M, Dalgleish DG (2005) Interactions between denatured serum proteins and casein micelles studied by diffusing wave spectroscopy. Langmuir 21:11380–11386

    Article  CAS  Google Scholar 

  • Anema SG, Klostermeyer H (1996) ζ-Potentials of casein micelles from reconstituted skim milk heated at 120°C. Int Dairy J 6:673–687

    Article  CAS  Google Scholar 

  • Arango O, Trujillo AJ, Castillo M (2013) Influence of fat replacement by inulin on rheological properties, kinetics of rennet milk coagulation, and syneresis of milk gels. J Dairy Sci 96:1984–1996

    Article  CAS  Google Scholar 

  • Banks JM, Stewart G, Muir DD, West IG (1987) Increasing the yield of cheddar cheese by the acidification of milk containing heat-denatured whey proteins. Milchwissenschaft 42:212–215

    Google Scholar 

  • Bansal N, Fox PF, Mc Sweeney PLH (2007) Aggregation of rennet-altered casein micelles at low temperatures. J Agric Food Chem 55:3120–3126

    Article  CAS  Google Scholar 

  • Barbano DM, Rasmussen RR (1992) Cheese yield performance of fermentation-produced chymosin and other milk coagulants. J Dairy Sci 75:1–12

    Article  CAS  Google Scholar 

  • Berridge NJ (1942) The second phase of rennet coagulation. Nature 149:194–195

    Article  CAS  Google Scholar 

  • Bouchoux A, Gésan-Guiziou G, Pérez J, Cabane B (2010) How to squeeze a sponge: casein micelles under osmotic stress, a SAXS study. Biophys J 99:3754–3762

    Article  CAS  Google Scholar 

  • Bringe NA, Kinsella JE (1986) Influence of calcium chloride on the chymosin-initiated coagulation of casein micelles. J Dairy Res 53:371–379

    Article  CAS  Google Scholar 

  • Chitpinityol S, Crabbe MJC (1998) Chymosin and aspartic proteinases. Food Chem 61:395–418

    Article  CAS  Google Scholar 

  • Choi J, Horne DS, Lucey JA (2007) Effect of insoluble calcium concentration on rennet coagulation properties of milk. J Dairy Sci 90:2612–2623

    Article  CAS  Google Scholar 

  • Chromik C, Partschefeld C, Jaros D, Henle T, Rohm H (2010) Adjustment of vat milk treatment to optimize whey protein transfer into semi-hard cheese: a case study. J Food Eng 100:496–503

    Article  CAS  Google Scholar 

  • Corredig M, Ion Titapiccolo G, Gaygadzhiev Z, Alexander M (2011) Rennet-induced aggregation of milk containing homogenized fat globules. Effect of interacting and non-interacting fat globules observed using diffusing wave spectroscopy. Int Dairy J 21:679–684

    Article  CAS  Google Scholar 

  • Crabbe MJC (2004) Rennets: general and molecular aspects. In: Fox PF, McSweeney PLH, Cogan TM, Guinee TP (eds) Cheese: chemistry physics and microbiology, vol I, 3rd edn, General aspects. Elsevier Ltd, London, pp 19–45

    Chapter  Google Scholar 

  • Dalgleish DG (1979) Proteolysis and aggregation of casein micelles treated with immobilized or soluble chymosin. J Dairy Res 46:653–661

    Article  CAS  Google Scholar 

  • Dalgleish DG (1980) Effect of milk concentration on the rennet coagulation time. J Dairy Res 47:231–235

    Article  CAS  Google Scholar 

  • Dalgleish DG, Holt C (1988) A geometrical model to describe the initial aggregation of partly renneted casein micelles. J Colloid Interface Sci 123:80–84

    Article  CAS  Google Scholar 

  • Dalgleish DG, Law AJR (1988) pH-induced dissociation of bovine casein micelles. I. Analysis of liberated caseins. J Dairy Res 55:529–538

    Article  CAS  Google Scholar 

  • Dalgleish DG, Horne DS, Law AJR (1989) Size-related differences in bovine casein micelles. Biochim Biophys Acta 991:383–387

    Article  CAS  Google Scholar 

  • Dalgleish DG (1998) Casein micelles as colloids: surface structures and stabilities. J Dairy Sci 81:3013–3018

    Article  CAS  Google Scholar 

  • Dalgleish DG, Corredig M (2012) The structure of the casein micelle of milk and its changes during processing. Annu Rev Food Sci Technol 3:449–467

    Article  CAS  Google Scholar 

  • Danley DE, Geoghegan KF (1988) Structure and mechanism of formation of recombinant-derived chymosin C. J Biol Chem 263:9785–9789

    CAS  Google Scholar 

  • de Kruif CG, Zhulina EB (1996) κ-Casein as a polyelectrolyte brush on the surface of casein micelles. Colloids Surf A Physicochem Eng Asp 117:151–159

    Article  Google Scholar 

  • de Kruif CG (1997) Skim milk acidification. J Colloid Interface Sci 185:19–25

    Article  Google Scholar 

  • de Kruif CG (1998) Supra-aggregates of casein micelles as a prelude to coagulation. J Dairy Sci 81:3019–3028

    Article  Google Scholar 

  • de Kruif CG (1999) Casein micelle interactions. Int Dairy J 9:183–188

    Article  Google Scholar 

  • de Kruif CG, Huppertz T, Urban VS, Petukhov AV (2012) Casein micelles and their internal structure. Adv Colloid Interface Sci 171–172:36–52

    Article  CAS  Google Scholar 

  • de Roos AL, Geurts TJ, Walstra P (2000) The association of chymosin with artificial casein micelles. Int Dairy J 10:225–232

    Article  Google Scholar 

  • Dunnewind B, de Roos AL, Geurtz TJ (1996) Association of chymosin with caseins in solution. Neth Milk Dairy J 50:121–133

    CAS  Google Scholar 

  • Ettelaie R, Khandelwal N, Wilkinson R (2014) Interactions between casein layers adsorbed on hydrophobic surfaces from self consistent field theory: κ-casein versus para-κ-casein. Food Hydrocolloids 34:236–246

    Article  CAS  Google Scholar 

  • Fagan CC, O’Donnell CP, Cullen PJ, Brennan CS (2006) The effect of dietary fiber inclusion on milk coagulation kinetics. J Food Eng 77:261–268

    Article  CAS  Google Scholar 

  • Farrell HM Jr, Wickham ED, Dower HJ, Piotrowski EG, Hoagland PD, Cooke PH, Groves ML (1999) Characterization of the particles of purified kappa-casein: trypsin as a probe of surface-accessible residues. J Protein Chem 18:637–652

    Article  CAS  Google Scholar 

  • Ferrer MA, Hill AR, Corredig M (2008) Rheological properties of rennet gels containing milk protein concentrates. J Dairy Sci 91:959–969

    Article  CAS  Google Scholar 

  • Ferrer MA, Alexander M, Corredig M (2011) Does ultrafiltration have a lasting effect on the physico-chemical properties of the casein micelles? Dairy Sci Technol 91:151–170

    Article  CAS  Google Scholar 

  • Fox PF, Guinee TP, Cogan TM, McSweeney PLH (2000) Fundamentals of cheese science. Aspen, Gaithersburg

    Google Scholar 

  • Fox PF, McSweeney PLH, Cogan TM, Guinee TP (2004) Cheese: chemistry, physics and microbiology, vol 2, 3rd edn, Major cheese groups. Elsevier, London, pp 1–434

    Book  Google Scholar 

  • Galán E, Prados F, Pino A, Tejada L, Fernández-Salguero J (2008) Influence of different amounts of vegetable coagulant from cardoon Cynara cardunculus and calf rennet on the proteolysis and sensory characteristics of cheeses made with sheep milk. Int Dairy J 18:93–98

    Article  CAS  Google Scholar 

  • Galán E, Cabezas L, Fernández-Salguero J (2012) Proteolysis, microbiology and sensory properties of ewes’ milk cheese produced with plant coagulant from cardoon Cynara cardunculus, calf rennet or a mixture thereof. Int Dairy J 25:92–96

    Article  CAS  Google Scholar 

  • Garnot P, Corre C (1980) Influence of milk protein concentration on the gelling activity of chymosin and bovine pepsin. J Dairy Res 47:103–111

    Article  CAS  Google Scholar 

  • Garnot P, Rank TC, Olson NF (1982) Influence of protein and fat contents of ultrafiltered milk on rheological properties of gels formed by chymosin. J Dairy Sci 65:2267–2273

    Article  CAS  Google Scholar 

  • Gastaldi E, Trial N, Guillaume C, Bourret E, Gontard N, Cuq L (2003) Effect of controlled kappa-casein hydrolysis on rheological properties of acid milk gels. J Dairy Sci 86:704–711

    Article  CAS  Google Scholar 

  • Gauer C, Jia Z, Wu H, Morbidelli M (2009) Aggregation kinetics of coalescing polymer colloids. Langmuir 25:9703–9713

    Article  CAS  Google Scholar 

  • Gaygadzhiev Z, Alexander M, Corredig M (2009) Sodium caseinate-stabilized fat globules inhibition of the rennet-induced gelation of casein micelles studied by diffusing wave spectroscopy. Food Hydrocoll 23:1134–1138

    Article  CAS  Google Scholar 

  • Gilliland GL, Winborne EL, Nachman J, Wlodawer A (1990) The three-dimensional structure of recombinant bovine chymosin at 2.3 Å resolution. Proteins 8:82–101

    Article  CAS  Google Scholar 

  • Green ML (1973) Studies on the mechanism of clotting of milk. Neth Milk Dairy J 27:278–285

    CAS  Google Scholar 

  • Groves ML, Wickham ED, Farrell HM (1998) Environmental effects on disulfide bonding patterns of bovine κ-casein. J Protein Chem 17:73–84

    Article  CAS  Google Scholar 

  • Gutchina E, Rumsh L, Ginodman L, Majer P, Andreeva N (1996) Post X-ray crystallographic studies of chymosin: the existence of two structural forms and the regulation of activity by the interaction with the histidine-proline cluster of κ-casein. FEBS Lett 379:60–62

    Article  Google Scholar 

  • Horne DS, Davidson CM (1993) Direct observation of decrease in size of casein micelles during the initial stages of renneting of milk. Int Dairy J 3:61–71

    Article  CAS  Google Scholar 

  • Horne DS, Banks JM (2004) Rennet-induced coagulation of milk. In: Fox PF, McSweeney PLH, Cogan TM, Guinee TP (eds) Cheese: chemistry physics and microbiology, vol I, 3rd edn, General aspects. Elsevier, London, pp 47–70

    Google Scholar 

  • Huppertz T, Smiddy MA, Upadhyay VK, Kelly AL (2006) High-pressure induced changes in bovine milk: a review. Int J Dairy Technol 59:58–66

    Article  CAS  Google Scholar 

  • Huppertz T, de Kruif CG (2007) Rennet-induced coagulation of enzymatically cross-linked casein micelles. Int Dairy J 17:442–447

    Article  CAS  Google Scholar 

  • Hyslop DB (2003) Enzymatic coagulation of milk. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry, vol 1, 3rd edn, Proteins, Part B. Kluwer Academic, New York, pp 839–878

    Google Scholar 

  • Ion Titapiccolo G, Corredig M, Alexander M (2010a) Modifications to casein micelles renneting functionality caused by non-ionic surfactants. J Dairy Sci 93:506–514

    Article  CAS  Google Scholar 

  • Ion Titapiccolo G, Alexander M, Corredig M (2010b) Rennet induced aggregation of homogenized milk: impact of the presence of fat globules on the structure of casein gels. Dairy Sci Technol 90:623–639

    Article  CAS  Google Scholar 

  • Jaros D, Seitler K, Rohm H (2008) Enzymatic coagulation of milk: animal rennets and microbial coagulants differ in their gelation behaviour as affected by pH and temperature. Int J Food Sci Technol 43:1721–1727

    Article  CAS  Google Scholar 

  • Jean K, Renan M, Famelart MH, Guyomarc’h F (2006) Structure and surface properties of the serum heat-induced protein aggregates isolated from heated skim milk. Int Dairy J 16:303–315

    Article  CAS  Google Scholar 

  • Jensen JL, Mølgaard A, Navarro Poulsen J-C, Harboe MK, Simonsen JB, Lorentzen AM, Hjernø K, van den Brink JM, Qvist KB, Larsen S (2013) Camel and bovine chymosin: the relationship between their structures and cheese-making properties. Acta Crystallogr D69:901–913

    Google Scholar 

  • Kappeler SR, van den Brink HJM, Rahbek-Nielsen H, Farah Z, Puhan Z, Hansen EB, Johansen E (2006) Characterization of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk. Biochem Biophys Res Commun 342:647–654

    Article  CAS  Google Scholar 

  • Karlsson AO, Ipsen R, Ardö Y (2007) Rheological properties and microstructure during rennet induced coagulation of UF concentrated skim milk. Int Dairy J 17:674–682

    Article  CAS  Google Scholar 

  • Kawaguchi Y, Kosugi S, Sasaki K, Uozumi T, Beppu T (1987) Production of chymosin in Escherichia coli cells and its enzymatic properties. Agric Biol Chem 51:1871–1877

    Article  CAS  Google Scholar 

  • Kethireddipalli P, Hill AR, Dalgleish DG (2010) Protein interactions in heat-treated milk and effect on rennet coagulation. Int Dairy J 20:838–843

    Article  CAS  Google Scholar 

  • Krishnankutty Nair P, Dalgleish DG, Corredig M (2013) Colloidal properties of concentrated heated milk. Soft Matter 9:3815–3824

    Article  CAS  Google Scholar 

  • Krishnankutty Nair P, Alexander M, Dalgleish DG, Corredig M (2014) Physico-chemical properties of casein micelles in unheated skim milk concentrated by osmotic stressing: interactions and changes in the composition of the serum phase. Food Hydrocoll 34:46–53

    Article  CAS  Google Scholar 

  • Li J, Dalgleish DG (2006) Controlled proteolysis and the properties of milk gels. J Agric Food Chem 54:4687–4695

    Article  CAS  Google Scholar 

  • Lindqvist B, Storgards T (1960) An electrophoretic investigation of the degradation of β-casein by crystalline rennin. Acta Chem Scan 14:757–764

    Article  CAS  Google Scholar 

  • López-Fandiño R, Olano A, San José C, Ramos M (1993) Application of reversed-phase HPLC to the study of proteolysis in UHT milk. J Dairy Res 60:111–116

    Article  Google Scholar 

  • López-Fandiño R, Carrascosa AV, Olano A (1996) The effects of high pressure on whey protein denaturation and cheese making properties of raw milk. J Dairy Sci 79:929–936

    Article  Google Scholar 

  • López-Fandiño R, Ramos M, Olano A (1997) Rennet coagulation of milk subjected to high pressures. J Agric Food Chem 45:3233–3237

    Article  Google Scholar 

  • Lucey JA, Tamehana M, Singh H, Munro PA (2000) Rheological properties of milk gels formed by a combination of rennet and glucono-delta-lactone. J Dairy Res 67:415–427

    Article  CAS  Google Scholar 

  • Lucey JA (2002) ADSA Foundation Scholar Award. Formation and physical properties of milk protein gels. J Dairy Sci 85:281–294

    Article  CAS  Google Scholar 

  • Marchin S, Puteaux JL, Pignon F, Leonil J (2007) Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small angle X-ray scattering/ultrasmall angle X-ray scattering. J Chem Phys 126:045101–045110

    Article  CAS  Google Scholar 

  • Martin GJO, Williams RPW, Dunstan DE (2010) Effect of manufacture and reconstitution of milk protein concentrate powder on the size and rennet gelation behavior of casein micelles. Int Dairy J 20:128–131

    Article  CAS  Google Scholar 

  • Michalski MC, Cariou R, Michel F, Garnier C (2002) Native vs. damaged milk fat globules: membrane properties affect the viscoelasticity of milk gels. J Dairy Sci 85:2451–2461

    Article  CAS  Google Scholar 

  • Mollé D, Jean K, Guyomarc’h F (2006) Chymosin sensitivity of the heat-induced serum protein aggregates isolated from skim milk. Int Dairy J 16:1435–1441

    Article  CAS  Google Scholar 

  • Needs EC, Stenning RA, Gill AL, Ferragut V, Rich GT (2000) High pressure treatment of milk: effects on casein micelle structure and on enzymic coagulation. J Dairy Res 67:31–42

    Article  CAS  Google Scholar 

  • Newman M, Safro M, Frazao C, Khan G, Zdanov A, Tickle IJ, Blundell TL, Andreeva N (1991) X-ray analyses of aspartic proteinase IV. Structure and refinement at 2.2 Å resolution of bovine chymosin. J Mol Biol 221:1295–1309

    CAS  Google Scholar 

  • Newman M, Watson F, Roychowdhury P, Jones H, Badasso M, Cleasby A, Wood SP, Tickle IJ, Blundell TL (1993) X-ray analyses of aspartic proteinase V. Structure and refinement at 2.0 Å resolution of the aspartic proteinase from Mucor pusillus. J Mol Biol 230:260–283

    Article  CAS  Google Scholar 

  • O’Connell JE, Saracino P, Huppertz T, Uniake T, de Kruif CG, Kelly AL, Fox PF (2006) Influence of ethanol on the rennet-induced coagulation of milk. J Dairy Res 73:312–317

    Article  CAS  Google Scholar 

  • O’Sullivan MM, Kelly AL, Fox PF (2002) Influence of transglutaminase on some physico-chemical properties of milk. J Dairy Res 69:433–442

    Google Scholar 

  • Okigbo LM, Richardson GH, Brown RJ, Ernstrom CA (1985a) Effects of pH, calcium chloride, and chymosin concentration on coagulation properties of abnormal and normal milk. J Dairy Sci 68:2527–2533

    Article  CAS  Google Scholar 

  • Okigbo LM, Richardson GH, Brown RJ, Ernstrom CA (1985b) Interactions of calcium, pH, temperature, and chymosin during milk coagulation. J Dairy Sci 68:3135–3142

    Article  CAS  Google Scholar 

  • Özer B, Guyot C, Kulozik U (2012) Simultaneous use of transglutaminase and rennet in milk coagulation: Effect of initial milk pH and renneting temperature. Int Dairy J 24:1–7

    Article  CAS  Google Scholar 

  • Palmer DS, Christensen AU, Sørensen J, Celik L, Qvist KB, Schiøtt B (2010) Bovine chymosin: A computational study of recognition and binding of bovine κ-casein. Biochemistry 49:2563–2573

    Article  CAS  Google Scholar 

  • Payens TAJ (1979) Casein micelles: the colloid-chemical approach. J Dairy Res 46:291–306

    Article  CAS  Google Scholar 

  • Peters II (1956) Cheddar cheese made from pasteurized milk homogenized at various pressure. J Dairy Sci 39:1083–1088

    Article  CAS  Google Scholar 

  • Pino A, Prados F, Galán E, McSweeney PLH, Fernández-Salguero J (2009) Proteolysis during the ripening of goats’ milk cheese made with plant coagulant or calf rennet. Food Res Int 42:324–330

    Article  CAS  Google Scholar 

  • Raynal K, Remeuf F (2000) Effect of storage at 4°C on the physicochemical and renneting properties of milk: a comparison of caprine, ovine and bovine milks. J Dairy Res 67:199–207

    Article  CAS  Google Scholar 

  • Renault C, Gastaldi E, Cuq JL, Tarodo De la Fuente B (2000) Effect of temperature of milk acidification on rennet gel properties. J Food Sci 65:630–634

    Article  CAS  Google Scholar 

  • Robson EW, Dalgleish DG (1984) Coagulation of homogenized milk particles by rennet. J Dairy Res 51:417–424

    Article  Google Scholar 

  • Sala G, Van Aken GA, Cohen Stuart MA, Van de Velde F (2007) Effect of droplet-matrix interactions on large deformation properties of emulsion-filled gels. J Texture Stud 38:511–535

    Article  Google Scholar 

  • Salvatore E, Pirisi A, Corredig M (2011) Gelation properties of casein micelles during combined renneting and bacterial fermentation: effect of concentration by ultrafiltration. Int Dairy J 21:848–856

    Article  CAS  Google Scholar 

  • Sandra S, Alexander M, Dalgleish DG (2007) The rennet coagulation mechanism of skim milk as observed by transmission diffusing wave spectroscopy. J Colloid Interface Sci 308:364–373

    Article  CAS  Google Scholar 

  • Sandra S, Dalgleish DG (2007) The effect of ultra high-pressure homogenization (UHPH) on rennet coagulation properties of unheated and heated fresh skimmed milk. Int Dairy J 17:1043–1052

    Article  CAS  Google Scholar 

  • Sandra S, Cooper C, Alexander M, Corredig M (2011) Coagulation properties of ultrafiltered milk retentates measured using rheology and diffusing wave spectroscopy. Food Res Int 44:951–956

    Article  CAS  Google Scholar 

  • Sandra S, Ho M, Alexander M, Corredig M (2012) Effect of soluble calcium on the renneting properties of the casein micelles as measured by rheology and diffusing wave spectroscopy. J Dairy Sci 95:75–82

    Article  CAS  Google Scholar 

  • Scott Blair GW, Oosthuizen JC (1961) A viscometric study of the breakdown of casein in milk by rennin and rennet. J Dairy Res 28:165–173

    Article  Google Scholar 

  • Sharma R, Dalgleish DG (1993) Interactions between milk serum proteins and synthetic fat globule membrane during heating of homogenized whole milk. J Agric Food Chem 41:1407–1412

    Article  CAS  Google Scholar 

  • Sielecki AR, Fedorov AA, Boodhoo A, Andreeva NS, James MNG (1990) Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 Å resolution. J Mol Biol 214:143–170

    Article  CAS  Google Scholar 

  • Singh H, Waungana A (2001) Influence of heat treatment of milk on cheesemaking properties. Int Dairy J 11:543–551

    Article  CAS  Google Scholar 

  • Silva SV, Malcata FX (2005) Studies pertaining to coagulant and proteolytic activities of plant proteases from Cynara cardunculus. Food Chem 89:19–26

    Article  CAS  Google Scholar 

  • Sørensen J, Palmer DS, Qvist KB, Schiøtt B (2011) Initial stage of cheese production: a molecular modeling study of bovine and camel chymosin complexed with peptides from the chymosin-sensitive region of κ-casein. J Agric Food Chem 59:5636–5647

    Article  CAS  Google Scholar 

  • Tan YL, Ye A, Singh H, Hemar Y (2007) Effects of biopolymer addition on the dynamic rheology and microstructure of renneted skim milk systems. J Texture Stud 38:404–422

    Article  Google Scholar 

  • Udabage P, McKinnon IR, Augustin MA (2001) Effects of mineral salts and calcium-chelating agents on the gelation of renneted skim milk. J Dairy Sci 84:1569–1575

    Article  CAS  Google Scholar 

  • Vallejo JA, Ageitos JM, Poza M, Villa TG (2012) Short communication: a comparative analysis of recombinant chymosins. J Dairy Sci 95:609–613

    Article  CAS  Google Scholar 

  • van Hooydonk ACM, Olieman C (1982) A rapid and sensitive high-performance liquid chromatography method of following the action of chymosin in milk. Neth Milk Dairy J 36:153–158

    Google Scholar 

  • van Hooydonk ACM, Olieman C, Hagedoorn HG (1984) Kinetics of the chymosin-catalysed proteolysis of κ-casein in milk. Neth Milk Dairy J 38:207–222

    Google Scholar 

  • van Hooydonk ACM, Boerrigter IJ, Hagedoorn HG (1986) pH-induced physico-chemical changes of casein micelles in milk and their effect on renneting. 2. Effect of pH on renneting of milk. Neth Milk Dairy J 40:297–313

    Google Scholar 

  • van Hooydonk ACM, de Koster PG, Boerrigter IJ (1987) The renneting properties of heated milk. Neth Milk Dairy J 41:3–18

    Google Scholar 

  • Vasbinder AJ, Rollema HS, de Kruif CG (2003) Impaired rennetability of heated milk; study of enzymatic hydrolysis and gelation kinetics. J Dairy Sci 86:1548–1555

    Article  CAS  Google Scholar 

  • Visser S, van Rooijen PJ, Slangen CJ (1980) Peptide substrates for chymosin (rennin). Isolation and substrate behaviour of two tryptic fragments of bovine κ-casein. Eur J Biochem 108:415–421

    Article  CAS  Google Scholar 

  • Visser S, Slangen CJ, van Rooijen PJ (1987) Peptide substrates for chymosin (rennin): interaction sites in κ-casein-related sequences located outside the (103–108) hexapeptide region that fits into the enzyme’s active-site cleft. Biochem J 244:553–558

    Article  CAS  Google Scholar 

  • Walstra P, Bloomfield VA, Wei GJ, Jenness R (1981) Effect of chymosin action on the hydrodynamic diameter of casein micelles. Biochim Biophys Acta 669:258–259

    Article  CAS  Google Scholar 

  • Walstra P, van Vliet T (1986) The physical chemistry of curd making. Neth Milk Dairy J 40:241–259

    CAS  Google Scholar 

  • Waungana A, Singh H, Bennett RJ (1998) Rennet coagulation properties of skim milk concentrated by ultrafiltration: effects of heat treatment and pH adjustment. Food Res Int 31:645–651

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Corredig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Corredig, M., Salvatore, E. (2016). Enzymatic Coagulation of Milk. In: McSweeney, P., O'Mahony, J. (eds) Advanced Dairy Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2800-2_11

Download citation

Publish with us

Policies and ethics