Skip to main content

Cowpea

  • Chapter
  • First Online:
Grain Legumes

Abstract

Cowpea, Vigna unguiculata, is an important grain legume adapted to the sub-Saharan Africa (SSA) where it contributes to the nutrition, health, and income of rural and suburban inhabitants. It is indigenous to SSA with both cultivated and wild relatives distributed across the whole subregion. The International Institute of Tropical Agriculture (IITA) holds a collection of more than 15,000 accessions from 90 countries. This valuable source of traits is being exploited to address preferences of consumers and producers as well as the numerous cowpea production constraints. Substantial progress has been achieved through the development of cultivars targeting these biotic and abiotic stress factors. Current cowpea breeding programs aim at enhancing yield and grain quality, largely through introgression of desirable genes. With the recent development of genomic tools and the successful establishment of genetic transformation in cowpea, modern breeding approaches integrating new biotechnologies and conventional breeding methods are being implemented in several of the existing breeding programs. Ongoing activities will also ensure a sustainable production of quality seeds of released varieties in response to the increasing demand for the crop in SSA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate T, Alene AD, Bergvinson D et al (2012) Tropical grain legumes in Africa and South Asia: knowledge and opportunities. International Crops Research Institute for the semi-arid tropics (ICRISAT), Nairobi

    Google Scholar 

  • Agbicodo EM (2009) Genetic analysis of abiotic and biotic resistance in cowpea (Vigna unguiculata (L.) Walp.). PhD Dissertation, Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Ahmed FE, Hall AE, DeMason DA (1992) Heat injury during floral development in cowpea (Vigna unguiculata (L.) Walp.). Am J Bot 79:784–791

    Article  Google Scholar 

  • Akella V, Lurquin PF (1993) Expression in cowpea seedlings of chimeric transgenes after electroporation into seed-derived embryos. Plant Cell Rep 12:110–117

    Article  CAS  PubMed  Google Scholar 

  • Allen DJ, Thottappilly G, Rossel HW (1982) Cowpea mottle virus: field resistance and seed transmission in virus tolerant cowpea Vigna unguiculata. Ann Appl Biol 100:331–336

    Article  Google Scholar 

  • Bashir M (1992) Serological and biological characterization of seed-borne isolates of blackeye cowpea mosaic and cowpea aphid borne mosaic potyviruses in Vigna unguiculata (L.) Walp. PhD Dissertation, Oregon State University, USA

    Google Scholar 

  • Boukar O, Massawe F, Muranaka S et al (2011) Evaluation of cowpea germplasm lines for protein and mineral concentrations in grains. Plant Genet Resour Character Util 9:515–522

    Article  CAS  Google Scholar 

  • Charmet G, Robert N, Perretant MR et al (2001) Marker assisted recurrent selection for cumulating QTLs for bread-making related traits. Euphytica 119:89–93

    Article  CAS  Google Scholar 

  • Citadin CT, Ibrahim AB, Aragão FJL (2011) Genetic engineering in Cowpea (Vigna unguiculata): history, status and prospects. GM Crops 2:144–149

    Article  PubMed  Google Scholar 

  • Citadin CT, Cruz ARR, Aragão FJL (2013) Development of transgenic imazapyr-tolerant cowpea (Vigna unguiculata). Plant Cell Rep 32:537–543

    Article  CAS  PubMed  Google Scholar 

  • Close TJ, Wanamaker S (2001) HarvEST: EST databases. http://harvest.ucr.edu.

  • Close TJ, Lucas MR, Muñoz-Amatriain M, Mirebrahim H, Wanamaker S, Barkley NA, Clair SS, Guo YN, Lo S, Huynh BL, Ndeye AD, Santos JRP, Joseph BTB, Jean-Baptiste TDLS, Drabo I, Kusi F, Atokple I, Boukar O, Fatokun C, Cisse N, Xu P, Roberts PA, Lonardi S (2015). A new SNP-genotyping resource for cowpea and its deployment for breeding. Plant and Animal Genome Conference, San Diego January 10–14, 2015. https://pag.confex.com/pag/xxiii/webprogram/Paper14976.html

  • Diop NN, Ehlers JD, Wanamaker S et al (2012) An improved genetic consensus map of cowpea [Vigna unguiculata (L.) Walp]. In: Boukar O Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on Improving livelihoods in the cowpea value chain through advancement in science. Saly, Senegal 27 September–1 October 2010. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 116–127

    Google Scholar 

  • Drabo, I (2014) Personal communication to BL Huynh

    Google Scholar 

  • Duke JA (1981) Vigna unguiculata (L.) Walp. ssp. unguiculata. In: Handbook of Legumes of world economic importance. Plenum Press, New York

    Google Scholar 

  • Dumet D, Adeleke R, Faloye B (2008) Regeneration guidelines: cowpea. In: Dulloo ME, Thormann I, Jorge MA et al (eds) Crop specific regeneration guidelines (CD ROM). CGIAR System-wide Genetic Resources Programme, Rome, Italy, p 8

    Google Scholar 

  • Dumet D, Mishra SK, Boukar O et al (2010) Key access and utilization descriptors for cowpea genetic resources. Dillon S, Kainz W, Bharadwaj C et al (reviewers) Bioversity International, Rome, Italy

    Google Scholar 

  • Dumet D, Fatokun C, Pasquet R et al (2012) Sharing of responsibilities of cowpea and wild relatives in long term conservation. In: Boukar O, Coulibaly O, Fatokun CA. et al (eds) Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on Improving livelihoods in the cowpea value chain through advancement in science. Saly, Senegal, 27 September–1 October 2010. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 56–65

    Google Scholar 

  • Ehlers JD, Hall AE, Patel PN et al (2000) Registrations of cultivars: registration of ‘California Blackeye 27’ cowpea. Crop Sci 40:849–863

    Article  Google Scholar 

  • Ehlers JD, Hall AE, Roberts PA et al (2002) Blackeye varietal improvement. In: University of California dry bean research, 2002 Progress report. California Dry Bean Advisory Board, Dinuba, USA, pp 27–47

    Google Scholar 

  • Ehlers JD, Sanden BL, Frate CA et al (2009) Registration of ‘California Blackeye 50’ Cowpea. J Crop Regist 3:236–240

    Article  Google Scholar 

  • Ehlers JD, Diop NN, Boukar O et al (2012) Modern approaches for cowpea breeding. In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on Improving livelihoods in the cowpea value chain through advancement in science, Saly, Senegal, 27 September–1 October 2010. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 3–16

    Google Scholar 

  • Emechebe AM, Florini DA (1997) Shoot and pod diseases of cowpea induced by fungi and bacteria. In: Singh BB, Mohan Raj DR, Dashiell KE et al (eds) Advances in cowpea research. (Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS)). IITA, Ibadan, pp 176–192

    Google Scholar 

  • Emechebe AM, Shoyinka SA (1985) Fungal and bacterial diseases of cowpea in Africa. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 173–192

    Google Scholar 

  • Evans M, Boulter D (1974) Chemical methods suitable for screening for cowpea protein content and quality in cowpea (Vigna unguiculata) meals. J Sci Food Agric 25:311–322

    Article  CAS  PubMed  Google Scholar 

  • Fatokun CA (2002) Breeding cowpea for resistance to insect pests: attempted crosses between cowpea and V. vexillata. In: Fatokun CA, Tarawali SA, Singh BB et al (eds). Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the World Cowpea Research Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, 4–8 September 2000, pp 52–61

    Google Scholar 

  • Fatokun CA, Singh BB (1987) Interspecific hybridization between Vigna pubescens Wilcz. and Vigna unguiculata (L.) Walp. through embryo culture. Plant Cell Tissue Organ Cult 9:229–233

    Article  Google Scholar 

  • Fatokun CA, Boukar O, Muranaka S (2012a) Evaluation of cowpea (Vigna unguiculata (L.) Walp.) germplasm lines for tolerance to drought. Plant Genet Resour Charact Util 10:171–176

    Article  Google Scholar 

  • Fatokun CA, Boukar O, Kamara A et al (2012b) Enhancing cowpea productivity and production in drought-prone areas of Sub-Saharan Africa. In: Abate T (ed) Four seasons of learning and engaging smallholder farmers: progress of phase 1. International Crops Research Institute for the Semi-Arid Tropics, Nairobi, pp 81–112

    Google Scholar 

  • Fery RL, Dukes PD (1994) Genetic analysis of the green cotyledon trait in southernpea (Vigna unguiculata (L.) Walp.). J Am Soc Hort Sci 119:1054–1056

    Google Scholar 

  • Garcia JA, Hille J, Goldbach R (1986) Transformation of cowpea Vigna unguiculata cells with an antibiotic resistance gene using a Ti-plasmid-derived vector. Plant Sci 44:37–46

    Article  CAS  Google Scholar 

  • Garcia JA, Hille J, Vos P et al (1987) Transformation of cowpea Vigna unguiculata with a full-length DNA copy of cowpea mosaic virus M-RNA. Plant Sci 48:89–98

    Article  CAS  Google Scholar 

  • Hampton RO, Thottappilly G, Rossel HW (1997) Viral diseases of cowpea and their control by resistance-conferring genes. In: Singh BB et al. (eds) Advances in cowpea research. (Co-publication of IITA and JIRCAS). IITA, Ibadan, pp 159–175

    Google Scholar 

  • Hearne SJ, Franco J, Magembe E (2012) Optimal units of selection: how many plants are representative of diversity in collections of cowpea landrace accessions? In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on Improving livelihoods in the cowpea value chain through advancement in science, Saly, Senegal, 27 September–1 October 2010. International Institute of Tropical Agriculture. Ibadan, Nigeria, pp 103–109

    Google Scholar 

  • Higgins TJV, Gollasch S, Molvig L et al (2012) Insect-protected cowpeas using gene technology. In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on Improving livelihoods in the cowpea value chain through advancement in science, Saly, Senegal, 27 September–1 October 2010. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 131–137

    Google Scholar 

  • Huguenot C, Furneaux MT, Hamilton RI (1997) Further characterization of cowpea aphid-borne mosaic and blackeye cowpea mosaic potyviruses. In: Singh BB, Mohan Raj DR, Dashiell KE et al (eds). Advances in cowpea research. (Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS)). IITA, Ibadan, pp 231–239

    Google Scholar 

  • Huynh BL, Close TJ, Roberts PA et al (2013a) Gene pools and the genetic architecture of domesticated cowpea. Plant Genome 6:1–8

    Article  CAS  Google Scholar 

  • Huynh BL, Ehlers JD, Close TJ et al (2013b) Enabling tools for modern breeding of cowpea for biotic stress resistance. In: Varshney R, Tuberosa R (eds) Translational genomics for crop breeding, Volume I: biotic stress. Wiley-Blackwell, New York, pp 183–200

    Chapter  Google Scholar 

  • Huynh BL, Ehlers JD, Ndeve A et al (2015) Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Mol Breed 35:36. doi:10.1007/s 1 1032-915-0254-0

    Google Scholar 

  • International Board for Plant Genetic Resources (1983) Cowpea descriptors. IBPGR Secretariat, Rome

    Google Scholar 

  • Kononowicz AK, Cheah KT, Narasimhan ML et al (1997) Developing a transformation system for cowpea (Vigna unguiculata [L.] Walp.). In: Singh BB, Mohan Raj DR, Dashiell KE et al (eds) Advances in cowpea research. (Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS)). IITA, Ibadan, pp 361–371

    Google Scholar 

  • Lane JA, Moore THM, Child DV et al (1997) Variation in virulence of Striga gesnerioides on cowpea: new sources of crop resistance. In: Singh BB, Mohan Raj DR, Dashiell KE et al (eds) Advances in cowpea research. (Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS)). IITA, Ibadan, pp 225–230

    Google Scholar 

  • Lucas MR, Diop NN, Wanamaker S et al (2011) Cowpea-soybean synteny clarified through an improved genetic map. Plant Genome 4:1–11

    Article  Google Scholar 

  • Lucas MR, Ehlers JD, Huynh BL, Diop NN et al (2013a) Markers for breeding heat tolerant cowpea. Mol Breed 31:529–536

    Article  Google Scholar 

  • Lucas MR, Huynh BL, Ehlers JD et al (2013b) High-resolution SNP genotyping reveals a significant problem among breeder resources. Plant Genome 6:1–5

    Article  Google Scholar 

  • Lush WM, Evans LT, Wien HC (1980) Environmental adaptation of wild and domesticated cowpea (Vigna unguiculata (L.) Walp.). Field Crops Res 3:173–187

    Article  Google Scholar 

  • Mahalakshmi V, Ng Q, Lawson M, Ortiz R (2007) Cowpea [Vigna unguiculata (L.) Walp.] core collection defined by geographical, agronomical and botanical descriptors. Plant Genet Resour 5:113–119

    Article  Google Scholar 

  • Marechal R, Mascherpa JM, Stainer F (1978) Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papillinionaceae) sur la base des données morphologiques, et polliniques, traits par l’analyse informatique. Bossiera 28:1–273

    Google Scholar 

  • Muchero W, Ehlers JD, Roberts PA (2008) Seedling stage drought-induced phenotypes and drought-responsive genes in diverse cowpea genotypes. Crop Sci 48:541–552

    Article  CAS  Google Scholar 

  • Muchero W, Diop NN, Bhat PR et al (2009a) A consensus genetic map of cowpea [Vigna unguiculata (L.) Walp.] and synteny based on EST-derived SNPs. Proc Natl Acad Sci USA 106:18159–18164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muchero W, Ehlers JD, Close TJ et al (2009b) Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet 118:849–863

    Article  CAS  PubMed  Google Scholar 

  • Muchero W, Roberts PA, Diop NN et al (2013) Genetic architecture of delayed senescence, biomass and grain yield under drought stress in cowpea. PLoS ONE 8:1–10

    Google Scholar 

  • Myers GO (1996) Hand crossing of cowpeas. IITA Research Guide 42. IITA, Ibadan

    Google Scholar 

  • Nielsen SS, Brandt WE, Singh BB (1993) Genetic variability for nutritional composition and cooking time in improved cowpea lines. Crop Sci 33:469–472

    Article  CAS  Google Scholar 

  • Njoku E (1958) The photoperiodic response of some Nigerian plants. J West Afr Sci Assoc 4:99–112

    Google Scholar 

  • Ng NQ, Maréchal R (1985) Cowpea taxonomy, origin and germplasm. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 11–21

    Google Scholar 

  • Ng Q, Singh BB (1997) Cowpea. In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity in trust: conservation and use of plant genetic resources in CGIAR centres. Cambridge University Press, Cambridge, pp 82–99

    Google Scholar 

  • Omo-Ikerodah EE, Fawole I, Fatokun C (2008) Genetic mapping of quantitative trait loci (QTLs) with effects on resistance to flower bud thrips (Megalurothrips sjostedti) in recombinant inbred lines of cowpea (Vigna unguiculata (L.) Walp). African J Biotechnol 7:263–270

    CAS  Google Scholar 

  • Ouedraogo JT, Ouedraogo M, Gowda BS et al (2012) Development of sequence characterized amplified region (SCAR) markers linked to race-specific resistance to Striga gesnerioides in cowpea (Vigna unguiculata L.). African J Biotech 11(62):12555–12562. http://www.academicjournals.org/AJB. doi:10.5897/AJB12.805

    CAS  Google Scholar 

  • Pasquet RS, Padulosi S (2012) Genus Vigna and cowpea (V. unguiculata [L.] Walp.) taxonomy: current status and prospects. In: Boukar O, Coulibaly O. Fatokun CA. et al (eds). Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on Improving livelihoods in the cowpea value chain through advancement in science, Saly, Senegal, 27 September–1 October 2010. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 66–87

    Google Scholar 

  • Patel PN (1982) Genetics of cowpea reactions to two mosaic virus from Tanzania. Phytopathol 72:460–466

    Article  Google Scholar 

  • Penza R, Akella V, Lurquin PF (1992) Transient expression and histological localization of a gus chimeric gene after direct transfer to mature cowpea embryos. Biotechniques 13:576–580

    CAS  PubMed  Google Scholar 

  • Popelka JC, Gollasch S, Moore A et al (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312

    Article  CAS  PubMed  Google Scholar 

  • Pottorff M, Wanamaker S, Ma YQ et al (2012) Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f.sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.) Walp]. PLoS ONE 7:1–11

    Article  Google Scholar 

  • Pottorff M, Li G, Ehlers JD et al (2014) Genetic mapping, synteny, and physical location of two loci for Fusarium oxysporum f. sp. tracheiphilum race 4 resistance in cowpea [Vigna unguiculata (L.) Walp]. Mol Breed 33:779–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rachie KO (1985) Introduction. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp XXI–XXVIII

    Google Scholar 

  • Singh SR, Singh BB, Jackai LEN et al (1983) Cowpea research at IITA, Ibadan, Nigeria. Inf Ser 14:1–20

    Google Scholar 

  • Singh SR, Jackai LEN, Thottappilly G et al (1992) Status of research on constraints to cowpea production. In: Thottappilly G, Monti L, Mohan-Raj DR et al (eds) Biotechnology: enhancing research on tropical crops in Africa. (CTA/IITA co-publication). IITA, Ibadan, pp 21–26

    Google Scholar 

  • Singh BB, Ehlers JD, Sharma B et al (2002) Recent progress in cowpea breeding. In: Fatokun CA, Tarawali SA, Singh BB et al (eds) Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the World Cowpea Research Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, pp 22–40

    Google Scholar 

  • Solleti S, Bakshi S, Purkayastha J et al (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850

    Article  CAS  PubMed  Google Scholar 

  • Taiwo MA, Provvidenti R, Gonsalves D (1982) Inheritance of resistance to blackeye cowpea mosaic virus in Vigna unguiculata. J Hered 72:433–434

    Google Scholar 

  • Terao T, Watanabe I, Matsunaga R et al (1997) Agro-physiological constraints in intercropped cowpea: an analysis. In: Singh BB, Mohan Raj DR, Dashiell KE et al (eds) Advances in cowpea research. (Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS)). IITA, Ibadan, pp 129–140

    Google Scholar 

  • Utoh NO, Ajeigbe HA (2009) Dissemination of legume and cereal certified seeds using the community seed approach. In: Ajeigbe HA, Abdoulaye T, Chikoye D (eds) Legume and cereal seed production for improved crop yields in Nigeria. Proceedings of the Training Workshop on Production of Legume and Cereal Seeds held on 24 January–10 February 2008 at IITA-Kano Station, Kano, Nigeria, pp 61–63

    Google Scholar 

  • Warrag MOA, Hall AE (1983) Reproductive responses of cowpea to heat stress: genotypic differences in tolerance to heat at flowering. Crop Sci 23:1088–1092

    Article  Google Scholar 

  • Watanabe I, Hakoyama S, Terao T et al (1997) Evaluation methods for drought tolerance of cowpea. In: Singh BB, Mohan Raj DR, Dashiell KE et al (eds) Advances in cowpea research. (Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS)). IITA, Ibadan, pp 141–146

    Google Scholar 

  • Westengen OT, Jeppson S, Guarino L (2013) Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status. PLoS ONE 8:e64146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Westphal E (1974) Pulses in Ethiopia: their taxonomy and agricultural significance. Agricultural research report, center for agricultural publishing and documentation, Wageningen, The Netherlands, pp 213–232

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ousmane Boukar PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boukar, O. et al. (2015). Cowpea. In: De Ron, A. (eds) Grain Legumes. Handbook of Plant Breeding, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2797-5_7

Download citation

Publish with us

Policies and ethics