Skip to main content

Reproductive Biology of Grain Legumes

  • Chapter
  • First Online:

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 10))

Abstract

Reproductive biology of legumes is examined, particularly in relation to the role of pollination in crop breeding, with emphasis on the subject of floral attributes and functions, mating system patterns, and reproductive mode. After a broad description of the floral morphology, design and display, advertisement and reward, attention is paid to some special aspects on how to manage pollination in seed stock multiplication and in hybrid breeding (F1 hybrids and populations) strategies. We provide a chapter that may serve to pioneer a new period on the use of reproductive biology knowledge in legumes by opening a broader and more ecological perspective, including an understanding of the interplay between crop and pollinator.

Reid G. Palmer is deceased.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Ghani AH, Parzies HK, Ceccarelli S et al (2003) Evaluation of floral characteristics of barley in the semi-arid climate of north Syria. Plant Breed 122:273–275

    Article  Google Scholar 

  • Alcorn K, Whitney H, Glover B (2012) Flower movement increases pollinator preference for flowers with better grip. Funct Ecol 26:941–947

    Article  Google Scholar 

  • Andersson MS, Vicente MC (2010) Gene flow between crops and their wild relatives. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Andersson GKS, Rundlöf M, Smith HG (2012) Organic farming improves pollination success in strawberries. PLoS ONE 7(2):e31599 doi:10.1371/journal.pone.0031599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Angioi SA, Rau D, Nanni L et al (2011) The genetic make-up of the European landraces of the common bean. Plant Genet Resour 9:197–201

    Article  Google Scholar 

  • Aouar-Sadli M, Louadi K, Doumandji SE (2008) Pollination of the broad bean (Vicia faba L. var. major) (Fabaceae) by wild bees and honey bees (Hymenoptera: Apoidea) and its impact on the seed production in the Tizi-Ouzou area (Algeria). Afr J Agr Res 3:266–272

    Google Scholar 

  • Ashman TL, Majetic CJ (2006) Genetic constraints on floral evolution: a review and evaluation of patterns. Heredity 96:343–352

    Article  PubMed  Google Scholar 

  • Asiwe JAN (2009) Insect mediated outcrossing and geneflow in cowpea (Vigna unguiculata (L.) Walp): implication for seed production and provision of containment structures for genetically transformed cowpea. Afr J Biotech 8:226–230

    Google Scholar 

  • Barrett SCH (1998) The evolution of mating strategies in flowering plants. Trends Plant Sci 3:335–341

    Article  Google Scholar 

  • Barrett SCH (2008) Major evolutionary transitions in flowering plant reproduction: an overview. Int J Plant Sci 169:1–5

    Article  Google Scholar 

  • Barrett SCH, Harder LD (1996) Ecology and evolution of plant mating. Trends Ecol Evol 11:73–79

    Article  CAS  PubMed  Google Scholar 

  • Bartomeus I, Potts SG, Steffan-Dewenter BE et al (2014) Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. Peer J 2:e398. doi:10.7717/peerj.328

    Article  Google Scholar 

  • Baudoin JP, Degreef J, Hardy O, Janart F, Zoro Bi I (1998) Development of an in situ conservation strategy for wild lima bean (Phaseolus lunatus L.) populations in the central valley of Costa Rica. In: Owens SJ, Rudall PJ (eds) Reproduction biology. Royal Botanic Garden Press, Kew, pp 417–426

    Google Scholar 

  • Baudoin JP, Rocha O, Degreef J et al (2004) Ecogeography, demography, diversity and conservation of Phaseolus lunatus L. in the central valley of Costa Rica. Systematic and ecogeographic studies of crop genepools 12. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Belaïd Y, Chtourou-Ghorbel N, Marrakchi M (2006) Genetic diversity within and between populations of Lathyrus genus (Fabaceae) revealed by ISSR markers. Genet Resour Crop Evol 53:1413–1418

    Article  CAS  Google Scholar 

  • Ben Brahim N, Combes D, Marrakchi M (2001) Autogamy and allogamy in genus Lathyrus. Lathyrus Lathyrism Newsl 2:21–26

    Google Scholar 

  • Benachour K, Louadi K, Terzo M (2007) Role of wild and honey bees (Hymenoptera: Apoidea) in the pollination of Vicia faba L. var. major (Fabaceae) in constantine area (Algeria). Ann Soc Entomol Fr 43:213–219

    Google Scholar 

  • Blaauw BR, Isaacs R (2014) Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J Appl Ecol 51:890–898

    Article  Google Scholar 

  • Bliss FA (1980) Common bean. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy. Crop Science Society of America, Madison, pp 273–284

    Google Scholar 

  • Bond DA, Kirby EJM (1999) Anthophora plumipes (hymenoptera: Anthophoridae) as a pollinator of broad bean (Vicia faba major). J Apicult Res 38:199–203

    Google Scholar 

  • Bond DA, Kirby EJM (2001) Further observations of Anthophora plumipes visiting autumn-sown broad bean (Vicia faba major) in the United Kingdom. J Apicult Res 40:113–114

    Google Scholar 

  • Bond DA, Poulsen MH (1983) Pollination. In: Hebblethwaite PD (ed) The faba bean (Vicia faba L.). Butterworths, London, pp 77–101

    Google Scholar 

  • Bouwman AJ (1992) Maintenance breeding and multiplication of pea and faba bean cultivars. Maintenance of protein peas (Pisum sativum) and field beans (Vicia faba). Euphytica 61:213–215

    Article  Google Scholar 

  • Brandenburg A, Dell’Olivo A, Bshary R et al (2009) The sweetest thing: advances in nectar research. Curr Opin Plant Biol 12:486–490

    Article  PubMed  Google Scholar 

  • Brown AHD, Grant JE, Pullen R (1986) Outcrossing and paternity in Glycine argyrea by paired fruit analysis. Biol J Linn Soc 29:283–294

    Article  Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615

    Article  CAS  PubMed  Google Scholar 

  • Ceccarelli S (1978) Single-gene inheritance of anther extrusion in barley. J Hered 69:210–211

    Google Scholar 

  • Charlesworth D (2006) Evolution of plant breeding systems. Curr Biol 16(17):726–735

    Article  CAS  Google Scholar 

  • Chaturvedi SK, Gupta DS, Jain R (2011) Biology of food legumes. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Oxford, pp 35–48

    Chapter  Google Scholar 

  • Chiari WC, de Toledo VDA, Ruvolo-Takasusuki MCC et al (2005a) Floral biology and behavior of Africanized honeybees Apis mellifera in soybean (Glycine max L. Merrill). Braz Arch Biol Techn 48:367–378

    Article  Google Scholar 

  • Chiari WC, de Toledo VDA, Ruvolo-Takasusuki MCC et al (2005b) Pollination of soybean by honeybees. Braz Arch Biol Techn 45:31–36

    Article  Google Scholar 

  • Chowdhury MA, Slinkard AE (1997) Natural outcrossing in grass pea. J Hered 88:154–156

    Article  Google Scholar 

  • Christmann S, Aw-Hassan AA (2012) Farming with alternative pollinators (FAP)—an overlooked win-win-strategy for climate change adaptation. Agr Ecosyst Environ 161:161–164

    Article  Google Scholar 

  • Çildir H, Kahraman A, Doğan M (2012) Petal and sepal epidermal micromorphology of six Lathyrus Taxa (Fabaceae) and their systematic value. Not Bot Hort Agr 40:35–41

    Google Scholar 

  • Clements JC, Sweetingham MS, Smith L et al (2008) Crop improvement in Lupinus mutabilis for Australian agriculture—progress and prospects. In: Palta JA, Berger JB (eds) Lupins for health and wealth, Proceedings 12th international lupin conference, 14–18 September 2008, Fremantle, Australia. International Lupin Association, Canterbury

    Google Scholar 

  • Cober ER, Cianzio SR, Pantalone VR et al (2010) Soybean. In Vollmann J, Rajcan I (eds.) Oil crops, handbook of plant breeding 4. Springer, NewYork

    Google Scholar 

  • Cousin R (1997) Peas (Pisum sativum L.). Field Crop Res 3:111–130

    Article  Google Scholar 

  • Cunningham SA, Le Feuvre D (2013) Significant yield benefits from honeybee pollination of faba bean (Vicia faba) assessed at field scale. Field Crops Res 149:269–275

    Article  Google Scholar 

  • Currie WE, Jay SC, Wright D (1990) The effects of honeybees (Apis mellifera L.) and leafcutter bees (Megachile rotundata F.) on outcrossing between different cultivars of beans (Vicia faba L.) in caged plots. J Apicult Res 29:68–74

    Google Scholar 

  • Davis AR (2001) Searching and breeding for structural features of flowers correlated with high nectar-carbohydrate production. Acta Hort 561:107–121

    Article  Google Scholar 

  • Davis AR, Gunning BES (1992) The modified stomata of the floral nectar of Vicia faba L.1. Development, anatomy and ultrastructure. Protoplasma 166:134–152

    Article  Google Scholar 

  • Davis AR, Peterson RL, Shuel RW (1988) Vasculature and ultrastructure of the floral and stipular nectaries of Vicia faba (Leguminosae). Can J Bot 66:1435–1448

    Article  Google Scholar 

  • De O Milfont M, Rocha EEM, Lima AON et al (2013) Higher soybean production using honeybee and wild pollinators, a sustainable alternative to pesticides and autopollination. Environ Chem Lett 11:335–341

    Article  CAS  Google Scholar 

  • Debouck DG, Smartt J (1995) Beans, Phaseolus spp. (Leguminosae-Papilionoideae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Scientific and Technical, Harlow, pp 287–294

    Google Scholar 

  • Delaplane KS, Mayer DF (2000) Crop pollination by bees. CABI International, Wallingford

    Book  Google Scholar 

  • Delgado-Salinas A, Thulin M, Pasquet R et al (2011) Vigna (Leguminosae) sensu lato: the names and identities of the American segregate genera. Am J Bot 98:1694–1715

    Article  Google Scholar 

  • Dracup M, Thomson B (2000) Restricted branching narrow-leafed lupin 2. Cross-pollination. Aust J Agr Res 51:1011–1015

    Article  Google Scholar 

  • Erskine W, Muehlbauer FJ (1991) Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm. Theor Appl Gen 83:119–122

    Article  CAS  Google Scholar 

  • FAO (Food and Agriculture Organization). (2008) A contribution to the international initiative for the conservation and sustainable use of pollinators: rapid assessment of pollinator’s status. Conference of the parties to the Convention on Biological Diversity, Rome, Italy

    Google Scholar 

  • Faria JC, Carneiro GE, Aragão FJ (2010) Gene flow from transgenic common beans expressing the bar gene. GM Crops 1:94–98

    Article  PubMed  Google Scholar 

  • Farré-Armengol G, Filella I, Llusia J et al (2013) Floral volatile organic compounds: between attraction and deterrence of visitors under global change. Perspect Plant Ecol Evol Syst 15:56–67

    Article  Google Scholar 

  • Fatokun CA, Ng Q (2007) Outcrossing in cowpea. J Food Agr Environ 5:334–338

    Google Scholar 

  • Ferreira JJ, Alvarez E, Fueyo MA et al (2000) Determination of the outcrossing rate of Phaseolus vulgaris L. using seed protein markers. Euphytica 13:259–263

    Google Scholar 

  • Ferreira JL, de Souza Carneiro JE, Teixeira AL et al (2007) Gene flow in common bean (Phaseolus vulgaris L.). Euphytica 153:165–170

    Article  Google Scholar 

  • Fishman L, Willis JH (2008) Pollen limitation and natural selection on floral characters in the yellow monkeyflower, Mimulus guttatus. New Phytol 177:802–810

    Article  PubMed  Google Scholar 

  • Fu D, Xiao M, Hayward A et al (2014) Utilization of crop heterosis: a review. Euphytica 197:161–173

    Article  Google Scholar 

  • Fujita RM, Ohara M, Okazaki K et al (1997) The extent of natural cross-pollination in wild soybean (Glycine soja). J Hered 88:124–128

    Article  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611

    Article  CAS  PubMed  Google Scholar 

  • Gasim S, Abel S, Link W (2004) Extent, variation and breeding impact of natural cross-fertilization in German winter faba beans using hilum colour as marker. Euphytica 136:193–200

    Article  Google Scholar 

  • Giurfa M, Dafni A, Neal PR (1999) Floral symmetry and its role in plant-pollinator systems. Int J Plant Sci 160 (6 Suppl.):S41–S50

    Article  PubMed  Google Scholar 

  • Greenleaf SS, Kremen C (2006) Wild bees enhance honey bees pollination of hybrid sunflower. Proc Natl Acad Sci U S A 103:13890–13895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gutiérrez-Marcos JF, Vaqueroa F, Sáenz de Miera LE et al (2006) High genetic diversity in a world-wide collection of Lathyrus sativus L. revealed by isozymatic analysis. Plant Genet Resour 4:159–171

    Article  CAS  Google Scholar 

  • Hamblin J, Barton J, Sanders M et al (2005) Factors affecting the potential for gene flow from transgenic crops of Lupinus angustifolius L. in Western Australia. Austral J Agr Res 56:613–618

    Article  Google Scholar 

  • Harder LD (1985) Morphology as a predictor of flower choice by bumble bees. Ecology 66:198–210

    Article  Google Scholar 

  • Hardy O, Dubois S, Zoro Bi I et al (1997) Gene dispersal and its consequences on the genetic structure of wild populations of lima bean (Phaseolus lunatus) in Costa Rica. Plant Genet Resour Newsl 109:1–6

    Google Scholar 

  • Heil M (2004) Induction of two indirect defenses benefits lima bean (Phaseolus lunatus, Fabaceae) in nature. J Ecol 92:527–536

    Article  Google Scholar 

  • Heil M, Koch T, Hilpert A et al (2001) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc Natl Acad Sci USA 98:1083–1088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hernández-Cumplido J, Benrey B, Heil M (2010) Attraction of flower visitors to plants that express indirect defense can minimize ecological costs of ant–pollinator conflicts. J Trop Ecol 26:555–557

    Article  Google Scholar 

  • Hill GD (1995) Lupins. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific and Technical, Harlow, pp 277–282

    Google Scholar 

  • Hillocks RJ, Maruthi MN (2012) Grass pea (Lathyrus sativus): is there a case for further crop improvement? Euphytica 186:647–654

    Article  Google Scholar 

  • Horneburg B (2006) Outcrossing in lentil (Lens culinaris) depends on cultivar, location and year, and varies within cultivars. Plant Breed 125:638–640

    Article  Google Scholar 

  • Ibarra-Perez FJ, Ehdaie B, Waines JG (1997) Estimation of outcrossing rate in common bean. Crop Sci 37:60–65

    Article  Google Scholar 

  • Ibarra-Perez FJ, Barnhart D, Ehdaie B et al (1999) Effects of insect tripping on seed yield of common bean. Crop Sci 39:428–433

    Article  Google Scholar 

  • IPBES (Intergovernmental Platform on Biodiversity and Ecosystem Services) (2013) Report of the second session of the plenary of the intergovernmental science-policy platform on biodiversity and ecosystem services. United Nations Environment Program, Antalya

    Google Scholar 

  • Kalisz S, Ree RH, Sargent RD (2006) Linking floral symmetry genes to breeding system evolution. Trends Plant Sci 11:568–573

    Article  CAS  PubMed  Google Scholar 

  • Kasina M, Hagen M, Kraemer M et al (2009a) Bee pollination enhances crop yield and fruit quality in Kakamega, western Kenya. E Afr Agric For J 75:1–11

    Google Scholar 

  • Kasina M, Kraemer M, Martius C et al (2009b) Diversity and activity density of bees visiting crop flowers in Kakamega, Western Kenya. J Apicul Res 48:134–139

    Article  Google Scholar 

  • Kasina JM, Mburu J, Kraemer M et al (2009c) Economic benefit of crop pollination by bees: a case of kakamega small-holder farming in Western Kenya. J Econ Entomol 102:467–473

    Article  CAS  PubMed  Google Scholar 

  • Kazimierska EM, Kazimierski T (2002) Biology of flowering, embryological and caryological peculiarities. In: Kurlovich (ed) Lupins: geography, classification, genetic resources and breeding. OY International North Express, St. Petersburg, pp 205–239

    Google Scholar 

  • Kearney J, Smartt J (1995) The grasspea. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific and Technical, Harlow, pp 266–270

    Google Scholar 

  • Kevan PG, Lane MA (1985) Flower petal microtexture is a tactile cue for bees. Proc Natl Acad Sci U S A 82:4750–4752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiang YT, Chiang YC, Kaizuma N (1992) Genetic diversity in natural populations of wild soybean in Iwate prefecture, Japan. J Hered 83:325–329

    Google Scholar 

  • Kingha BMT, Fohouo FNT, Ngakou A et al (2012) Foraging and pollination activities of Xylocopa olivacea (Hymenoptera, Apidae) on Phaseolus vulgaris (Fabaceae) flowers at dang (Ngaoundere-Cameroon). J Agr Ext Rural Dev 4:330–339

    Google Scholar 

  • Kobayashi K, Horisaki A, Niikura S et al (2009) Floral morphology affects seed productivity through pollination efficiency in radish (Raphanus sativus L.). Euphytica 168:263–274

    Article  Google Scholar 

  • Kobayashi K, Tsukamoto S, Tanaka A et al (2010) Selective flower visitation behavior by pollinators in a radish F1 seed production field. Breed Sci 60:203–211

    Article  Google Scholar 

  • Koltowski Z (2004) Flowering biology, nectar secretion and insect foraging of the runner bean (Phaseolus coccineus L.). J Apicul Sci 48:53–60

    Google Scholar 

  • Köpke U, Nemecek T (2010) Ecological services of faba bean. Field Crops Res 115:217–233

    Article  Google Scholar 

  • Kouam EB, Pasquet RS, Campagne P et al (2012) Genetic structure and mating system of wild cowpea populations in West Africa. BMC Plant Biol 12:113

    Article  PubMed Central  PubMed  Google Scholar 

  • Lavin M, Delgado A (1990) Pollen brush of Papilionoideae (Leguminosae): morphological variation and systematic utility. Amere J Bot 77:1294–1312

    Article  Google Scholar 

  • Lewers KS, Palmer RG (1997) Recurrent selection in soybean. Plant Breed Rev 16:275–313

    Google Scholar 

  • Link W (1990) Autofertility and rate of cross-fertilization: crucial characters for breeding synthetic varieties in faba (Vicia faba L.). Theor Appl Genet 79:713–717

    Article  CAS  PubMed  Google Scholar 

  • Link W, Ederer W, Metz P et al (1994) Genotypic and environmental variation for degree of cross-fertilization in faba bean. Crop Sci 34:960–964

    Article  Google Scholar 

  • Lioi L, Sparvoli F, Sonnante G et al (2011) Characterization of Italian grasspea (Lathyrus sativus L.) germplasm using agronomic traits, biochemical and molecular markers. Genet Resour Crop Evol 58:425–437

    Article  CAS  Google Scholar 

  • Lloyd DG, Schoen DJ (1992) Self-fertilization and cross-fertilization in plants.1. Functional dimensions. Intl J Plant Sci 153:358–369

    Article  Google Scholar 

  • Marinho CR, Souza CD, Barros TC et al (2014) Scent glands in legume flowers. Plant Biol 16:215–226

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Castillo J, Zizumbo-Villarreal D, Gepts P et al (2007) Gene flow and genetic structure in the wild–weedy–domesticated complex of Phaseolus lunatus L. in its mesoamerican center of domestication and diversity. Crop Sci 47:58–66

    Google Scholar 

  • Mayer C, Adler L, Armbruster W et al (2011) Pollination ecology in the 21st century: key questions for future research. J Poll Ecol 3:8–23

    Google Scholar 

  • Mitchell RJ (2004) Heritability of nectar traits: why do we know so little. Ecol 85:1527–1533

    Article  Google Scholar 

  • Mondor EB, Addicott JF (2003) Conspicuous extra-floral nectaries are inducible in Vicia faba. Ecol Lett 6:495–497

    Article  Google Scholar 

  • Mondor EB, Tremblay MN, Messing RH (2006) Extrafloral nectary phenotypic plasticity is damage and resource dependent in Vicia faba. Biol Lett 2:583–585

    Article  PubMed Central  PubMed  Google Scholar 

  • Morandin LA, Winston ML (2005) Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol Appl 15:871–881

    Article  Google Scholar 

  • Nandety A (2010) Recurrent Selection for increased outcrossing rates of barley from semi-arid regions of Syria and Jordan. University of Hohenheim, Hohenheim

    Google Scholar 

  • Narbona E, Dirzo R (2010) A reassessment of the function of floral nectar in Croton suberosus (Euphorbiaceae): a reward for plant defenders and pollinators. Am J Bot 97:672–679

    Article  Google Scholar 

  • Nayak GK, Roberts SPM, Garratt M et al (2015) Interactive effect of floral abundance and semi-natural habitats on pollinators in field beans (Vicia faba). Agr Ecosyst Environ 199:58–66

    Article  Google Scholar 

  • Neal PR, Anderson GJ (2005) Are ‘mating systems’ ‘breeding systems’ of inconsistent and confusing terminology in plant reproductive biology? Or is it the other way around? Plant Syst Evol 250:173–185

    Article  Google Scholar 

  • Nepi M, Soligo C, Nocentini D et al (2012) Amino acids and protein profile in floral nectar: much more than a simple reward. Flora 207:475–481

    Article  Google Scholar 

  • Ojeda I, Francisco-Ortega J, Cronk QCB (2009) Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity. Ann Bot 104:1099–1110

    Article  PubMed Central  PubMed  Google Scholar 

  • Ortiz-Perez E, Wiley H, Horner HT (2008) Insect-mediated cross-pollination in soybean [Glycine max (L.) Merrill]: II. Phenotypic recurrent selection. Euphytica 162:269–280

    Article  CAS  Google Scholar 

  • Özbek H (2013) New data on large Carpenter-bees of Turkey with considerations about their importance as pollinators. J Entomol Res Soc 15:79–89

    Google Scholar 

  • Pacini E, Nepi M, Vesprini JL (2003) Nectar biodiversity: a short review. Plant Syst Evol 238:7–21

    CAS  Google Scholar 

  • Palmer RG, Matson AL, Knap HT (2004) Registration of an apetalous male-sterile genetic stock (T368) of soybean. Crop Sci 44:2282–2283

    Article  Google Scholar 

  • Palmer RG, Perez P, Ortiz-Perez E et al (2009) The role of crop-pollinator relationships in breeding for pollinator-friendly legumes: from a breeding perspective. Euphytica 170:35–52

    Article  Google Scholar 

  • Palmer RG, Gai J, Dalvi VA et al (2011) Male sterility and hybrid production technology. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI International, Oxford, pp 193–207

    Chapter  Google Scholar 

  • Palmer RG, Horner H-T, Suso MJ et al (2012) Soybean heterosis: the first steps. International conference on utilization of heterosis in crops abstracts, Xi´an, China

    Google Scholar 

  • Pando JB, Fohouo FNT, Tamesse JL (2011) Foraging and pollination behaviour of Xylocopa calens Lepeletier (Hymenoptera: Apidae) on Phaseolus coccineus L. (Fabaceae) flowers at Yaounde (Cameroon). Entomol Res 41:185–193

    Article  Google Scholar 

  • Pappas AL, Koziel JA, Healy RA et al (2012) Floral and aromatic analyses of the soybean perennial Glycine syndetika for future agronomic exploitation. Paper presented at XXII International Congress on Sexual Plant Reproduction. Melbourne, Australia 1 13–17 February 2012, p 21

    Google Scholar 

  • Park S, Michaels T, Myers J et al (1996) Outcrossing rates of common bean grown in Ontario and Idaho. Annu Rept Bean Improv Coop 39:90–91

    Google Scholar 

  • Pierre J, Le Guen J, Delegue MHP et al (1996) Comparative study of nectar secretion and attractivity to bees of two lines of spring-type faba bean (Vicia faba L. var equina Steudel). Apidologie 27:65–75

    Article  Google Scholar 

  • Pierre J, Suso MJ, Moreno MT et al (1999) Diversite et efficacite de l’entomofaune pollinisatrice (Hymenoptera: Apidae) de la feverole (Vicia faba L.) sur deux sites, en France et en Espagne. Ann Soc Entomol Fr(NS) 35(suppl.):312–318

    Google Scholar 

  • Polowic PL, Vandenberg A, Mahon JD (2002) Field assessment of outcrossing from transgenic pea (Pisum Sativum L.) plants. Transgenic Res 11:515–529

    Article  PubMed  Google Scholar 

  • Potts SG, Biesmeijer JC, Bommarco R et al (2011) Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project. J Apicult Res 50:152–164

    Article  Google Scholar 

  • Power EF, Stout JC (2011) Organic dairy farming: impacts on insect–flower interaction networks and pollination. J Appl Ecol 48:561–569

    Article  Google Scholar 

  • Prenner G (2013) Papilionoid inflorescences revisited (Leguminosae-Papilionoideae). Ann Bot 112:1567–1576

    Article  PubMed Central  PubMed  Google Scholar 

  • Pundir RPS, Reddy GV (1998) Two new traits—open flower and small leaf in chickpea (Cicer arietinum L.). Euphytica 102:357–361

    Article  Google Scholar 

  • Rahman MM, Kumar J, Rahman MA (1995) Natural outcrossing in Lathyrus sativus L. Indian J Genet 13:204–207

    Google Scholar 

  • Rahman MA, Rahman MM, Sarkar MA (2001) Progress in isolation and purification of Lathyrus sativus breeding lines. Lathyrus Lathyrism Newsl 2:39–40

    Google Scholar 

  • Ray JD, Kilen TC, Abel CA et al (2003) Soybean natural cross-pollination rates under field conditions. Environ Biosafety Res 2:133–138

    Article  PubMed  Google Scholar 

  • Richards AJ (2001) Does low biodiversity resulting from modern agricultural practice affect crop pollination and yield? Ann Bot 88:165–172

    Article  Google Scholar 

  • Richards MF, Luckett DJ, Cowley RB et al (2008) Controlling bitter-seed contamination in the NSW Lupinus albus industry. In: Palta JA, Berger JB (eds) Proceedings of the 12th International Lupin Conference, ‘Lupins for Health and Wealth’ Proceedings of the 12th International Lupin Conference, 14–18 September 2008, Fremantle, Australia. International Lupin Association, Canterbury, pp 275–278

    Google Scholar 

  • Rick CM (1988) Evolution of mating systems in cultivated plants. In: Gottlieb LD, Jain S (eds) Plant evolutionary biology. Chapman and Hall, London, pp 133–147

    Chapter  Google Scholar 

  • Ritland K (1990) A series of FORTRAN computer programs for estimating plant mating systems. J Hered 81:235–237

    Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228

    Article  PubMed  Google Scholar 

  • Roumet P, Magnier I (1993) Estimation of hybrid seed production and efficient pollen flow using insect pollination of male sterile soybeans in caged plots. Euphytica 70:61–67

    Article  Google Scholar 

  • Rubio J., Fernandez-Romero MD, Millán T et al (2010) Outcrossing rate and genetic structure on an open-flowering population of Cicer arietinum based on microsatellite markers. In: Legumes for global health legume crops and products for food, feed and environmental benefits. 5th International Food Legumes Research Conference (IFLRC V) & 7th European Conference on Grain Legumes (AEP VII). Book of Abstracts, April 26–30, 2010, Antalya, Turkey, p 220

    Google Scholar 

  • Saxena KB, Kumar RV, Tikle AN et al (2013) ICPH 2671– the world’s first commercial food legume hybrid. Plant Breed 132:479–485

    Google Scholar 

  • Schoen DJ, Brown HD (1991) Whole- and part-flower self-pollination in Glycine clandestina and G. argyrea and the evolution of autogamy. Evolution 45:1651–1664

    Article  Google Scholar 

  • Sexton R, Stopford AP, Moodie WT et al (2005) Aroma production from cut sweet pea flowers (Lathyrus odoratus): the role of ethylene. Physiol Plant 124:381–389

    Article  CAS  Google Scholar 

  • Shaw DV, Kahler AL, Allard RW (1981) A multilocus estimator of mating system parameters in plant populations. Proc Natl Acad Sci U S A 78:1298–1302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shiferaw E, Pe ME, Porceddu E et al (2012) Exploring the genetic diversity of Ethiopian grass pea (Lathyrus sativus L.) using EST-SSR markers. Mol Breed 30:789–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sorajjapinun W, Srinives P (2011) Chasmogamous mutant, a novel character enabling commercial hybrid seed production in mungbean. Euphytica 181:217–222

    Article  Google Scholar 

  • Srinivasan S, Gaur PM (2012) Genetics and characterization of an open flower mutant in chickpea. J Hered 103:297–302

    Article  CAS  PubMed  Google Scholar 

  • Street K., Ismail A., Rukhkyan N (2008) Regeneration guidelines: faba bean. In: Dulloo ME, Thormann I et al (eds) Crop specific regeneration guidelines [CD-ROM]. CGIAR System-wide Genetic Resource Programme, Rome

    Google Scholar 

  • Suso MJ, Moreno MT (1999) Variation in outcrossing rate and genetic structure on six culitvars of Vicia faba L. as affected by geographic location and year. Plant Breed 118:347–350

    Article  Google Scholar 

  • Suso MJ, Maalouf F (2010) Direct and correlated responses to upward and downward selection for outcrossing in Vicia faba. Field Crop Res 116:116–126

    Article  Google Scholar 

  • Suso MJ, Río R (2014) Faba bean gene-pools development for low-input agriculture: understanding early stages of natural selection. Euphytica 196:77–93

    Article  Google Scholar 

  • Suso MJ, Río R (2015) A crop-pollinator inter-play approach to assessing seed production patterns in faba bean under two pollination environments. Euphytica 201:231–251

    Google Scholar 

  • Suso MJ, Pierre J, Moreno M.T et al (2001) Variation in outcrossing levels in faba bean cultivars: role of ecological factors. J Agr Sci 136:399–405

    Article  Google Scholar 

  • Suso MJ, Harder LD, Moreno MT et al (2005) New strategies for increasing heterozygosity in crops: vicia faba mating system as a study case. Euphytica 143:51–65

    Article  Google Scholar 

  • Suso MJ, Gilsanz S, Duc G et al (2006) Germplasm management of faba bean (Vicia faba L.): monitoring intercrossing between accessions with inter-plot barriers. Genet Resour Crop Evol 53:1427–1439

    Article  Google Scholar 

  • Suso MJ, Hunady I, Solis I et al (2008a) Germplasm management of Vicia faba L.: comparative study of the mating system of local and common cultivars growing under different agro-ecological conditions. Plant Genet Resour Newsl 155:46–51

    Google Scholar 

  • Suso MJ, Nadal S, Roman B et al (2008b) Vicia faba germplasm multiplication—floral traits associated with pollen-mediated gene flow under diverse between-plot isolation strategies. Ann Appl Biol 152:201–208

    Article  Google Scholar 

  • Suso MJ, Nadal S, Palmer RG (2010) Potential power of the plant-pollinator relationship as a tool to enhance both environmental and production services of grain legumes in the context of low-input agriculture: what do we know? In: Goldringer I, Dawson J, Rey F, Vettoretti A (eds) Breeding for resilience: a strategy for organic and low-input farming systems. Eucarpia 2nd Conference of the Organic and Low-Input Agriculture Section, Paris, 1-3 Dec, pp 23–6

    Google Scholar 

  • Suso MJ, Vishnyakova M, Ramos A et al (2011) An international survey on state of the art of grain legume management in gene banks. J Agr Sci Tech-Iran B 1:975–981

    Google Scholar 

  • Suso MJ, Bocci R, Chable V (2013) La diversidad, una herramienta poderosa para el desarrollo de una agricultura de bajos-insumos. Ecosistemas 22:10–15

    Google Scholar 

  • Tayyar R, Federici CV, Waines JG (1995) Natural outcrossing in chickpea (Cicer arietinum L.). Crop Sci 36:203–205

    Article  Google Scholar 

  • Teuber LR, Barnes DK, Rincker CM (1983) Effectiveness of selection for nectar volume, receptacle diameter, and seed yield characteristics in alfalfa. Crop Sci 23:283–289

    Article  Google Scholar 

  • Teuber LR, Rincker CM, Barnes DK (1990) Seed yield characteristics of alfalfa populations selected for receptacle diameter and nectar volume. Crop Sci 30:579–583

    Article  Google Scholar 

  • Toker C, Canci H, Ceylan FO (2006) Estimation of outcrossing rate in chickpea (Cicer arietinum L.) sown in autumn. Euphytica 151:201–205

    Article  Google Scholar 

  • Tucker SC (2003) Floral development in legumes. Plant Physiol 131:911–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vershinin AV, Allnutt TR, Knox MR et al (2003) Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Mol Biol Evol 20:2067–2075

    Article  CAS  PubMed  Google Scholar 

  • Vogler DW, Peretz S, Stephenson AG (1999) Floral plasticity in an iteroparous plant: the interactive effects of genotype, environment, and ontogeny in Campanula rapunculoides (Campanulaceae). Am J Bot 86:482–494

    Article  CAS  PubMed  Google Scholar 

  • Wäckers FL, van Rijn PCJ, Bruin J (eds.) (2013) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, New York

    Google Scholar 

  • Wang Z, Luo Y, Li X et al (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc Natl Acad Sci U S A 105:10414–1049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Webster BD, Lynch SP, Tucker CL (1979) A morphological study of the development of reproductive structures of Phaseolus lunatus L. J. Am Soc Hortic Sci 104:240–243

    Google Scholar 

  • Westerkamp C, Gottsberger G (2000) Diversity pays in crop pollination. Crop Sci 40:1209–1222

    Article  Google Scholar 

  • Westerkamp C, Weber A (1999) Keel flowers of the Polygalaceae and Fabaceae: a functional comparison. Bot J Linn Soc 129:207–221

    Article  Google Scholar 

  • Whitney HM, Bennett KMV, Dorling M et al (2011) Why do so many petals have conical epidermal cells? Ann Bot 108:609–616

    Article  PubMed Central  PubMed  Google Scholar 

  • Willmer P (2011) Pollination and floral ecology. Princeton University Press, Woodstock

    Book  Google Scholar 

  • Yuan YW, Byers KJRP, Bradshaw HD (2013) The genetic control of flower–pollinator specificity. Curr Opin Plant Biol 16:422–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Mosjidis JA (1998) Rapid prediction of mating system of Vicia species. Crop Sci 38:872–875

    Article  CAS  Google Scholar 

  • Zoro Bi I, Maquet A, Baudoin JP (2005) Mating system of wild Phaseolus lunatus L. and its relationship to population size. Heredity 94:153–158

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María José Suso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Suso, M., Bebeli, P., Palmer, R. (2015). Reproductive Biology of Grain Legumes. In: De Ron, A. (eds) Grain Legumes. Handbook of Plant Breeding, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2797-5_12

Download citation

Publish with us

Policies and ethics