Skip to main content

Common Bean

  • Chapter
  • First Online:

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 10))

Abstract

The common bean is the most relevant grain legume for direct human consumption. The current bean germplasm collections show a wide variation of phenotypes, although in many developed countries where landraces are being replaced by elite cultivars the genetic erosion is progressively affecting the species. This crop has expanded through all the continents during the past centuries, and bean germplasm out of its regions of origin is more complex than was previously thought and contains additional diversity that remains to be explored for its breeding value. The integration of genomic data into gene bank documentation systems and its combination with agronomic, genetic, phenotypic and ecological data will open a new era for the valorization of this grain legume.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams MW (1982) Plant architecture and yield breeding. Iowa State J Res 56:225–54

    Google Scholar 

  • Adams MW (1996) An historical perspective on significant accomplishments in dry bean research. Annu Rpt Bean Improv Coop 39:33–45

    Google Scholar 

  • Allavena A (1989) Modification of the seed coat color associated to the Igene conferring resistance to BCMV. Annu Rpt Bean Improv Coop 32:90–91

    Google Scholar 

  • Amugune NO, Anyango B, Mukiama TK (2011) Agrobacterium-mediated transformation of common bean. Afr Crop Sci J 19:137–147

    Google Scholar 

  • Andersen AL, Down EE (1956) Agronomic use of an x-ray induced mutant. Science 124:223–224

    Article  CAS  PubMed  Google Scholar 

  • Angioi SA, Rau D, Attene G et al (2010) Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor Appl Genet 121:829–843

    Article  CAS  PubMed  Google Scholar 

  • Aragão FJL, Vianna GR, Albino MMC et al (2002) Transgenic dry bean tolerant to the herbicide glufosinate ammonium. Crop Sci 42:1298–1302

    Article  Google Scholar 

  • Aragão FJL, Nogueira EOPL, Tinoco MLP et al (2013) Molecular characterization of the first commercial transgenic common bean immune to the Bean golden mosaic virus. J Biotechnol 166:42–50

    Article  PubMed  CAS  Google Scholar 

  • Arellano J, Fuentes SI, Castillo-España P et al (2009) Regeneration of different cultivars of common bean (Phaseolus vulgaris L.) via indirect organogenesis. Plant Cell Tiss Organ Cult 96:11–18

    Article  CAS  Google Scholar 

  • Asfaw A, Blair MW, Almekinders C (2009) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands. Theor Appl Genet 120:1–12

    Article  PubMed  Google Scholar 

  • Avinash TB, More AD (2010) Induced flower colour mutations in Phaseolus vulgaris Linn through physical and chemical mutagens. Adv Biores 1:22–28

    Google Scholar 

  • Bassett MJ, Myers JR (1999) Report of BIC genetic committee. Annu Rpt Bean Improv Coop 42:vi.2001

    Google Scholar 

  • Beaver J (1999) Improvement of large-seeded race Nueva Granada cultivars. In: Singh SP (ed) Common bean improvement in the twenty-first century. Kluwer, Dordrecht, pp 275–288

    Chapter  Google Scholar 

  • Becerra-Velásquez VL, Gepts P (1994) RFLP diversity in common bean (Phaseolus vulgaris L.). Genome 37:256–263

    Article  Google Scholar 

  • Beebe S (2012) Common bean breeding in the tropics. In: Janick J (ed) Plant breeding reviews, vol 36. Wiley, New York, pp 357–426

    Chapter  Google Scholar 

  • Beebe S, Rengifo J, Gaitan E et al (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862

    Article  Google Scholar 

  • Behringer FJ, Medford JI (1992) A plasmid rescue technique for the recovery of plant DNA disrupted by T-DNA insertion. Plant Mol Biol Rept 10:190–198

    Article  CAS  Google Scholar 

  • Bellucci E, Bitocchi E, Rau D et al (2014a) Genomics of origin, domestication and evolution of Phaseolus vulgaris. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer, The Netherlands, pp 483–507

    Chapter  Google Scholar 

  • Bellucci E, Bitocchi E, Ferrarini A et al (2014b) Decreased nucleotide and expression diversity and modified coexpression patterns characterize domestication in the common bean. Plant Cell. doi:10.1105/tpc.114.124040

    Google Scholar 

  • Bitocchi E, Nanni L, Bellucci E et al (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci U S A 109:E788–E796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bitocchi E, Bellucci E, Giardini A et al (2013) Molecular analysis of the parallel domestication of the common bean in Mesoamerica and the Andes. New Phytol 197:300–313

    Article  CAS  PubMed  Google Scholar 

  • Blair MW (2013) Mineral biofortification strategies for food staples: the example of common bean. J Agr Food Chem 61:8287–8294

    Article  CAS  Google Scholar 

  • Blair MW, Astudillo C, Grusak MA et al (2009) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breeding 23:197–207

    Article  CAS  Google Scholar 

  • Blair MW, González LF, Kimani PM et al (2010) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Genet 121:237–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blair MW, Herrera A, Sandoval T et al (2012) Inheritance of seed phytate and phosphorus levels in common bean (Phaseolus vulgaris L.) and association with newly-mapped candidate genes. Mol Breeding 30:1265–1277

    Article  CAS  Google Scholar 

  • Blair MW, Cortes AJ, Penmetsa RV et al (2013) A high-throughput SNP marker system for parental polymorphism screening, and diversity analysis in common bean (Phaseolus vulgaris L.). Theor Appl Genet 126:535–548

    Article  PubMed  Google Scholar 

  • Bliss FA, Brown JWS (1983) Breeding common bean for improved quantity and quality of seed protein. In: Janick J (ed) Plant breeding reviews, vol 1. Wiley, New York, pp 59–102

    Chapter  Google Scholar 

  • Bollini R, Allavena A, Vitale A (1985) Genomic analysis of phytohemagglutinin-deficient Phaseolus vulgaris cultivars. Annu Rpt Bean Improv Coop 28:82

    Google Scholar 

  • Brick MA, Grafton KF (1999) Improvement of medium seeded race Durango cultivars. In: Singh SP (ed) Common bean improvement in the twenty-first century. Kluwer, Dordrecht, pp 223–253

    Chapter  Google Scholar 

  • Brick MA, Lowry G (2000) Bean seed production in the western United States. In Singh SP (ed) Bean research, production & utilization. Proc of the Idaho Bean Workshop celebrating 75 years of bean research & development and 50 years of the cooperative dry bean nursery. Univ of Idaho, Twin Falls, pp 153–164

    Google Scholar 

  • Brick MA, Ogg JB, Schwartz HF et al (2011). Registration of Croissant pinto bean. J Plant Regist 5:1–5

    Article  Google Scholar 

  • Brick MA, Echevarria D, Kleintop A et al (2014) Dietary fiber and oligosaccharide content of dry bean varieties. Annu Rpt Bean Improv Coop 57:195–196

    Google Scholar 

  • Broughton WJ, Hernández G, Blair MW et al (2003) Beans (Phaseolus spp.) model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Brunner BR, Beaver JS (1989) Estimation of outcrossing of the common bean in Puerto Rico. HortScience 24 (4):669–671

    Google Scholar 

  • Burkholder WH (1930) The bacterial diseases of the bean: a comparative study. Cornell Univ Agric Exp St Mem 127:1–88

    Google Scholar 

  • Burle ML, Fonseca JR, Kami JA et al (2010) Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theor Appl Genet 121:801–813

    Article  PubMed Central  PubMed  Google Scholar 

  • Burow MD, Ludden PW, Bliss FA (1993) Suppression of phaseolin and lectin in seeds of common bean, Phaseolus vulgaris L.: increased accumulation of 54 kDa polypeptides is not associated with higher seed methionine concentrations. Mol Gen Genet 241:431–439

    CAS  PubMed  Google Scholar 

  • Campion B, Perrone D, Galasso I et al (2009a) Common bean (Phaseolus vulgaris L.) lines devoid of major lectin proteins. Plant Breeding 128:199–204

    Article  CAS  Google Scholar 

  • Campion B, Sparvoli F, Doria E et al (2009b) Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Cary JW (1982) Bean mutations from azide: an iron chlorotic strain, but no induced cold hardiness. Annl Rpt Bean Improv Coop 25:21–22

    Google Scholar 

  • Chacón SMI, Pickersgill B, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444

    Article  CAS  Google Scholar 

  • Chagas EP, Santoro LG (1997) Globulin and albumin proteins in dehulled seeds of three Phaseolus vulgaris cultivars. Plant Foods Hum Nutr 51:17–26

    Article  CAS  PubMed  Google Scholar 

  • Coates AG, Collins LS, Aubry MP et al (2004) The geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with north-western South America. Geol Soc Am Bull 116:1327–1344

    Google Scholar 

  • Colpaert N, Tilleman S, Van Montagu M et al (2008) Composite Phaseoulus vulgaris plants with transgenic roots as research tool. Afr J Biotechnol 7:404–408

    CAS  Google Scholar 

  • Correa P (1981) Epidemiological correlations between diet and cancer frequency. Cancer Res 41:3685–3690

    CAS  PubMed  Google Scholar 

  • Davis JHC, Woolley JN (1993) Genotypic requirement for intercropping. Field Crops Res 34:407–430

    Article  Google Scholar 

  • Davis JHC, Giller KE, Kipe-Nolt J et al (1988) Non-nodulating mutants in common bean. Crop Sci 28:859–860

    Article  Google Scholar 

  • Davis RM, Hall AE, Gilbertson R (2004) UC IPM Pest Management Guidelines: dry beans. Statewide IPM Program, University of California Agriculture and Natural Resources. ANR Publication 3446. http://www.ipm.ucdavis.edu/PMG/r52101611.html. Accessed 20 Nov 2013

  • De la Cuadra C, De Ron AM, Schachl R (eds.) (2001) Handbook on evaluation of Phaseolus germplasm. PHASELIEU—FAIR3463/ MBG-CSIC. PHASELIEU, Pontevedra

    Google Scholar 

  • De Ron AM, Jacobsen HJ, Santalla M (2000) Production and consumption of major Market classes of dry bean (Phaseolus vulgaris) in Europe. In: 75 years of Bean research and development and 50 years of cooperative dry bean nursery. Workshop and Field Day, University of Idaho, Kimberley, USA, 3–4 August 2000

    Google Scholar 

  • De Souza TLPO, Dessaune SN, Sanglard DA et al (2011) Characterization of the rust resistance gene present in the common bean cultivar Ouro Negro, the main rust resistance source used in Brazil. Plant Pathol 60:839–845

    Article  CAS  Google Scholar 

  • Debouck DG, Toro O, Paredes OM et al (1993) Genetic diversity and ecological distribution of Phaseolus vulgaris in northwestern South America. Econ Bot 47:408–423

    Article  Google Scholar 

  • Delaney DE, Bliss FA (1991a) Selection for increased percentage phaseolin in common bean. 1. Comparison of selection for seed protein alleles and S1 family recurrent selection. Theor Appl Genet 81:301–305

    Article  CAS  PubMed  Google Scholar 

  • Delaney DE, Bliss FA (1991b) Selection for increased percentage phaseolin in common bean. 2. Changes in frequency of seed protein alleles with S1 family recurrent selection. Theor Appl Genet 81:306–311

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Salinas A, Bibler R, Lavin M (2006) Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. System Bot 31:779–791

    Article  Google Scholar 

  • Delseny M, Salses J, Cooke R et al (2001) Rice genomics: present and future. Plant Physiol Biochem 39:323–334

    Article  Google Scholar 

  • Dillen W, Engler G, Montagu M et al (1995) Electroporation-mediated DNA delivery to seedling tissues of Phaseolus vulgaris L. (common bean). Plant Cell Rept 15:119–124

    Article  CAS  Google Scholar 

  • Drijfhout E (1978) Genetic interaction between Phaseolus vulgaris and bean common mosaic virus with implications for strain identification and breeding resistance. Agr Res Rpt 872:1–98

    Google Scholar 

  • Elsadr HT, Wright LC, Pauls KP et al (2011) Characterization of seed coat post harvest darkening in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:1467–1472

    Article  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. Plos ONE. doi:10.1371/journal.pone.0019379

    Google Scholar 

  • Estrada-Navarrete G, Alvarado-Affantranger X, Olivares JE et al (2006) Agrobacterium rhizogenes-transformation of the Phaseolus spp.: a tool for functional genomics. Mol Plant Micr Inter 19:1385–1393

    Article  CAS  Google Scholar 

  • FAO (2002) FAO. Vol 56. Production yearbook. Rome, Italy

    Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. FAO, Rome

    Google Scholar 

  • FAO (2013) Dietary protein quality evaluation in human nutrition: report of an FAO expert consultation. FAO Food and Nutrition Paper 92. FAO, Rome

    Google Scholar 

  • Faria JC, Carneiro GES, Aragao FJL (2010) Gene flow from transgenic common beans expressing the bar gene. GM Crops 1:94–98

    Article  PubMed  Google Scholar 

  • Felicetti E, Song Q, Jia G et al (2012) Simple sequence repeats linked with slow darkening trait in Pinto bean discovered by single nucleotide polymorphism assay and whole genome sequencing. Crop Sci 52:1600–1608

    Article  CAS  Google Scholar 

  • Ferreira JL, Carneiro JED, Teixeira, AL et al (2007) Gene flow in common bean (Phaseolus vulgaris L.). Euphytica 153:165–170

    Article  Google Scholar 

  • Fourie D (1998) Characterization of halo blight races on dry beans in South Africa. Plant Dis 82:307–310

    Article  Google Scholar 

  • Frazier WA, Davis DW (1966a) Inheritance of dark green savoy mutant. Annu Rpt Bean Improv Coop 9:22

    Google Scholar 

  • Frazier WA, Davis DW (1966b) Inheritance of silver mutant. Annu Rpt Bean Improv Coop 9:22–23

    Google Scholar 

  • Freyre R, Skroch P, Geffroy V et al (1998). Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    Article  CAS  Google Scholar 

  • Freytag GF, Debouck DG (2002) Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. SIDA Bot Misc 23:1–300

    Google Scholar 

  • Galeano CH, Cortes AJ, Fernandez AC et al (2012). Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean. BMC Genet 13:48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gautam AS, Sood KC, Mittal RK (1998) Mutagenic effectiveness and efficiency of gamma-rays and ethyl methane sulphonate in rajma (Phaseolus vulgaris L.). Legume Res 21:217–220

    Google Scholar 

  • Geffroy V, Creusot F, Falquet J et al (1998). A family of LRR sequences in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgaris and its potential use in marker-assisted selection. Theor Appl Genet 96:494–502

    Article  CAS  PubMed  Google Scholar 

  • Gepts P, Bliss FA (1984) Enhanced available methionine concentration associated with higher phaseolin levels in common bean seeds. Theor Appl Genet 69:7–53

    Article  Google Scholar 

  • Gepts P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II Europe and Africa. Econ Bot 42:86–104

    Article  Google Scholar 

  • Gepts P, Papa R, Coulibaly S et al (1999) Wild legume diversity and domestication—insights from molecular methods. In: Vaughan D (ed) Wild legumes, Proc 7th MAFF International Workshop on Genetic Resources. National Institute of Agrobiological Resources, Tsukuba, pp 19–31

    Google Scholar 

  • Gil J, De Ron AM (1992) Variation in Phaseolus vulgaris in the northwest of the Iberian Peninsula. Plant Breeding 109:313–319

    Article  Google Scholar 

  • Gioia T, Logozzo G, Attene G et al (2013) Evidence for introduction bottleneck and extensive inter-gene pool (Mesoamerica × Andes) hybridization in the European common bean (Phaseolus vulgaris L.) germplasm. PLoS One 8:e75974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • González AM, Rodiño AP, Santalla M et al (2009) Genetics of intra-gene pool and inter-gene pool hybridization for seed traits in common bean (Phaseolus vulgaris L.) germplasm from Europe. Field Crops Res 112:66–76

    Article  Google Scholar 

  • Goretti D, Bitocchi E, Bellucci E et al (2014) Development of single nucleotide polymorphisms in Phaseolus vulgaris and related Phaseolus spp. Mol Breed 33:531–544

    Article  CAS  Google Scholar 

  • Griffiths PD (2009) Release of Cornell 601–606: common bean breeding lines with resistance to white mold. HortSci 44:463–465

    Google Scholar 

  • Haley SD, Afanador L, Kelly JD (1994) Identification and application of a random amplified polymorphic DNA marker for the I gene (potyvirus resistance) in common bean. Phytopathol 84:157–160

    Article  CAS  Google Scholar 

  • Hampton, JG, Boelt, B, Rolston, MP, et al (2013) Effects of elevated CO2 and temperature on seed quality. J Agr Sci 151:154–162

    Article  CAS  Google Scholar 

  • Hangen L, Bennink MR (2003) Consumption of black beans and navy beans (Phaseolus vulgaris) resduced azoxymethane-induced colon cancer in rats. Nutr Cancer 44:60–65

    Google Scholar 

  • Hou A, Marsolais F, Pajak A et al (2014). Genetic improvement of protein quality in edible beans with adaptation to Manitoba. Annu Rpt Bean Improv Coop 57:129–130

    Google Scholar 

  • Hussein HAS, Disouki IAM (1976) Mutation breeding experiments in Phaseolus vulgaris (L.). EMS and gamma-ray-induced seed coat colour mutants. Zeitschrift Pflanzenzüchtung 76:190–199

    Google Scholar 

  • Hyten DL, Song Q, Fickus EW et al (2010) High through-put SNP discovery and assay development in common bean. BMC Genomics 11:475–483

    Google Scholar 

  • Ibarra-Pérez FJ, Ehdaie B, Waines JG (1997) Estimation of outcrossing rate in common bean. Crop Sci 37:60–65

    Article  Google Scholar 

  • Jeng LT, Shih YJ, Lai CC et al (2010) Anti-oxidative characterisation of NaN3-induced common bean mutants. Food Chem 119:1006–1011

    Article  CAS  Google Scholar 

  • Johnson W, Gepts P (2002) The role of epistasis in controlling seed yield and other agronomic traits in an Andean × Mesoamerican cross of common bean (Phaseolus vulgaris. L.). Euphytica 125:69–79

    Article  CAS  Google Scholar 

  • Johnson WC, Guzman P, Mandala D et al (1997) Molecular tagging of the bc-3 gene for introgression into and common bean. Crop Sci 37:248–254

    Article  CAS  Google Scholar 

  • Junk-Knievel DC, Vandenberg A, Bett KE (2008) Slow darkening in pinto bean (Phaseolus vulgaris L.) seed coats is controlled by a single major gene. Crop Sci 48:189–193

    Article  Google Scholar 

  • Kami J, Becerra-Velásquez V, Debouck DG et al (1995) Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proc Natl Acad Sci USA 92:1101–1104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaplan, L (1956) The cultivated beans of the prehistoric southwest. Ann Missouri Bot Garden 43:189–251

    Article  Google Scholar 

  • Kelly JD (2004) Advances in common bean improvement: some case histories with broader applications. Acta Hort 637:99–122

    Article  Google Scholar 

  • Kelly JD, Bliss FA (1975) Quality factors affecting the nutritive value of bean seed protein. Crop Sci 15:757–760

    Article  CAS  Google Scholar 

  • Kelly JD, Cichy KA (2012) Dry bean breeding and production technologies. In: Siddiq M, Uebersax MA (eds) Dry beans and pulses production, processing and nutrition. Wiley-Blackwell, Hoboken, pp 23–54

    Chapter  Google Scholar 

  • Kelly JD, Miklas PN (1998) The role of RAPD markers in breeding for disease resistance in common bean. Mol Breed 4:1–11

    Google Scholar 

  • Kelly JD, Vallejo VA (2004) A comprehensive review of the major genes conditioning resistance to Anthracnose in common bean. HortSci 39:1196–1207

    CAS  Google Scholar 

  • Kelly JD, Adams MW, Saettler AW et al (1990) Registration of ‘Sierra’ pinto bean. Crop Sci 30:745746

    Article  Google Scholar 

  • Kelly JD, Afanador L, Haley SD (1995) Pyramiding genes for resistance to bean common mosaic virus Euphytica 82:207–212

    Article  Google Scholar 

  • Kelly JD, Kolkman JM, Schneider K (1998) Breeding for yield in dry bean (Phaseolus vulgaris L.) Euphytica 102:343–356

    Article  Google Scholar 

  • Kim JW, Minamikawa T (1996) Transformation and regeneration of French bean plants by particle bombardment process. Plant Sci Limerick 117:131–138

    Article  CAS  Google Scholar 

  • Kolkman JM, Kelly JD (2003) QTL conferring resistance and avoidance to white mold in common bean. Crop Sci 43:539–548

    Article  CAS  Google Scholar 

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992

    Article  CAS  PubMed  Google Scholar 

  • Kwak M, Kami J, Gepts P (2009) The putative Mesoamerican domestication center of Phaseolus vulgaris is located in the Lerma-Santiago basin of Mexico. Crop Sci 49:554–563

    Article  Google Scholar 

  • Lamppa RS, Gross PL, Del Rio LE (2002) Races of Pseudomonas syringae pv. phaeolicola in North Dakota. Annu Rpt Bean Improv Coop 45:104–105

    Google Scholar 

  • Liao D, Pajak A, Karcz SR et al (2012) Transcripts of sulphur metabolic genes are co-ordinately regulated in developing seeds of common bean lacking phaseolin and major lectins. J Expt Bot 63:6283–6295

    Article  CAS  Google Scholar 

  • Liebenberg MM, Pretorius ZA (2010) Common bean rust: pathology and control. Hort Rev 37:1–99

    Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T et al (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  CAS  PubMed  Google Scholar 

  • Logozzo G, Donnoli R, Macaluso L et al (2007) Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection. Genet Resour Crop Evol 54:1763–1779

    Article  Google Scholar 

  • Mafi Moghaddam S, Song Q, Mamidi S et al (2014). Developing market class specific InDel markers from next generation sequence data in Phaseolus vulgaris L. Frontiers Plant Sci 4 (in press)

    Google Scholar 

  • Mahuku G, Cajiao CJC, Beebe S (2003) Sources of resistance to angular leaf spot (Phaeoisariopsis griseola) in common bean core collection, wild Phaseolus vulgaris and secondary gene pool. Euphytica 130:303–313

    Article  Google Scholar 

  • Mamidi S, Rossi M, Annam D et al (2011) Investigation of the domestication of common bean (Phaseolus vulgaris) using multilocus sequence data. Funct Plant Biol 38:953–967

    Article  CAS  Google Scholar 

  • Marsolais F, Pajak A, Yin F et al (2010) Proteomic analysis of common bean seed with storage protein deficiency reveals up-regulation of sulfur-rich proteins and starch and raffinose metabolic enzymes, and down-regulation of the secretory pathway. J Proteomics 73:1587–1600

    Article  CAS  PubMed  Google Scholar 

  • McCallum CM, Comai L, Greene EA et al (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miklas PN, Johnson E, Stone V et al (1996) Selective mapping of QTL conditioning disease resistance in common bean. Crop Sci 36:1344–1351

    Article  CAS  Google Scholar 

  • Miklas PN, Grafton KF, Kelly JD et al (1998) Registration of four white mold resistant dry bean germplasm lines: I9365–3, I9365–5, I9365–31, and 92BG-7. Crop Sci 38:1728

    Article  Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE et al (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131

    Article  CAS  Google Scholar 

  • Miklas PN, Porter LD, Kelly JD et al (2013) Characterization of white mold disease avoidance in common bean. Eur J Plant Pathol 135:525–543

    Article  Google Scholar 

  • Miklas PN, Fourie D, Trapp J et al (2014) A new locus Pse-6 conferring resistance to halo bacterial blight in common bean. Crop Sci 54:1598–1608

    Article  Google Scholar 

  • Moh CC (1971) Mutation breeding in seed-coat colors of bean (Phaseolus vulgaris L.). Euphytica 20:119–125

    Article  Google Scholar 

  • Mohan DP, Benepal PS, Sheikh AQ et al (1980) Determination of optimal mutagenic dose of ethylmethane sulfonate, diethyl sulfate and ethidium bromide for beans (Phaseolus vulgaris L.). Annu Rpt Bean Improv Coop 23:115–117

    Google Scholar 

  • Moreto AL, Ramalho MAP, Bruzi AT (2012) Epistasis in an Andean Mesoamerican cross of common bean. Euphytica 186:755–760

    Article  Google Scholar 

  • Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the fertile crescent. Proc Natl Acad Sci U S A 104:3289–3294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Motto M, Soressi GP, Salamini F (1975) Growth analysis in a reduced leaf mutant of common bean (Phaseolus vulgaris L.). Euphytica 28:593–600

    Article  Google Scholar 

  • Mühling M, Gilroy J, Croy RRD (1997) Legumin proteins from seeds of Phaseolus vulgaris L. J Plant Physiol 150:489–492

    Article  Google Scholar 

  • Nagata RT, Bassett MJ (1984) Characterization and inheritance of gamma ray induced mutations in common bean. J Am Soc Hortic Sci 109:513–516

    Google Scholar 

  • Nanni L, Bitocchi E, Bellucci E et al (2011) Nucleotide diversity of a genomic sequence similar to SHATTERPROOF (PvSHP1) in domesticated and wild common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:1341–1357

    Article  CAS  PubMed  Google Scholar 

  • Osborn TC, Bliss FA (1985) Effects of genetically removing lectin seed protein on horticultural and seed characteristics of common bean. J Am Soc Hortic Sci 110:484–488

    CAS  Google Scholar 

  • Osborn TC, Hartweck LM, Harmsen RH et al (2003) Registration of Phaseolus vulgaris genetic stocks with altered seed protein compositions. Crop Sci 43:1570–1571

    Article  Google Scholar 

  • Osorno JM, Grafton KM, Rojas-Cifuentes GA et al (2010) Registration of ‘Lariat’ and ‘Stampede’ pinto beans. J Plant Regist 4:5–11

    Article  Google Scholar 

  • Panzeri D, Cassani E, Doria E et al (2011) A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol 191:70–83

    Article  CAS  PubMed  Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    CAS  PubMed  Google Scholar 

  • Papa R, Acosta J, Delgado-Salinas A, Gepts P (2005) A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet 111:1147–1158

    Google Scholar 

  • Papa R, Bellucci E, Rossi M et al (2007) Tagging the signatures of domestication in common bean (Phaseolus vulgaris) by means of pooled DNA samples. Ann Bot 100:1039–1051

    Google Scholar 

  • Park SJ, Buttery BR (1989) Inheritance of nitrate-tolerant supernodulation in EMS induced mutants of common bean (Phaseolus vulgaris L.). J Hered 80:486–488

    Google Scholar 

  • Pastor-Corrales MA (2003) Sources, genes for resistance, and pedigrees of 52 rust and mosaic resistant dry bean germplasm lines released by the USDA Beltsville bean Project in collaboration with the Michigan, Nebraska and North Dakota Agricultural experiment stations. Annu Rept Bean Improv Coop 46:235–241

    Google Scholar 

  • Pastor-Corrales MA, Kelly JD, Steadman JR et al (2007) Registration of six great northern bean germplasm lines with enhanced resistance to rust and bean common mosaic and necrosis potyviruses. J Plant Regist 1:77–79

    Article  Google Scholar 

  • Pastor-Corrales MA, Shin S, Wolf J (2012) Exceptional rust resistance in Mesoamerican common bean accession PI 310762. Annu Rpt Bean Improv Coop 55:147–148

    Google Scholar 

  • Petry N, Egli I, Campion B et al (2013) Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. J Nutr 143:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Ponce MR, Quesada V, Micol JL (1998) Rapid discrimination of sequences flanking and within T-DNA insertions in the Arabidopsis genome. Plant J 14:497–501

    Article  CAS  PubMed  Google Scholar 

  • Porch TG, Blair MW, Lariguet P et al (2009) Generation of a mutant population for TILLING common bean genotype BAT 93. J Am Soc Hort Sci 134:348–355

    Google Scholar 

  • Porch TG, Beaver JS, Debouck DG et al (2013) Use of wild relatives and closely related species to adapt common bean to climate change. Agron 3:433–461

    Article  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  CAS  PubMed  Google Scholar 

  • Rech EL, Vianna RG, Aragão FJL (2008) High efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:410–418

    Article  CAS  PubMed  Google Scholar 

  • Rico A, López R, Asensio C et al (2003) Nontoxigenic Strains of Pseudomonas syringae pv. phaseolicola are a main cause of halo blight of beans in Spain and escape current detection methods. Phytopathol 93:1553–1559

    Article  CAS  Google Scholar 

  • Rodiño AP, González AM, Santalla M et al (2006) Novel genetic variation in common bean from the Iberian Peninsula. Crop Sci 46:2540–2546

    Article  CAS  Google Scholar 

  • Román-Avilés B, Kelly JD (2005) Identification of quantitative trait loci conditioning resistance to Fusarium root rot in common bean. Crop Sci 45:1881–1890

    Article  CAS  Google Scholar 

  • Romero Andreas J, Yandell BS, Bliss FA (1986) Bean arcelin. 1. Inheritance of a novel seed protein of Phaseolus vulgaris L. and its effect on seed composition. Theor Appl Genet 72:123–128

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Bitocchi E, Bellucci E et al (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl 2:504–522

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanchez-Valdez I, Acosta-Gallegos JA, Ibarra-Perez FJ et al (2004) Registration of ‘Pinto Saltillo’ common bean. Crop Sci 44:1865–1866

    Article  Google Scholar 

  • Santalla M, De Ron AM, Voysest O (2001) European bean market classes. In: Amurrio M, Santalla M, De Ron AM (eds) Catalogue of bean genetic resources. Fundación Pedro Barrié de la Maza/ PHASELIEU-FAIR3463/ MBG-CSIC, Fundación, Pontevedra, pp 77–94

    Google Scholar 

  • Santalla M, Rodiño AP, De Ron AM (2002) Allozyme evidence supporting southwester Europe as a secondary center of genetic diversity for common bean. Theor Appl Genet 104:934–944

    Article  CAS  PubMed  Google Scholar 

  • Santalla M, De Ron AM, De La Fuente M (2010) Integration of genome and phenotype scanning gives evidence of genetic structure in Mesoamerican common bean (Phaseolus vulgaris L.) landraces from the southwest of Europe. Theor Appl Genet 120:1635–1651

    Article  CAS  PubMed  Google Scholar 

  • Sarafi R (1973) Utilisation de rayons ionisants dans l’amélioration du haricot (Phaseolus vulgaris L.). Annales Amélioration Plantes 23:77–81

    Google Scholar 

  • Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet. doi:10.1038/ng.3008

    Google Scholar 

  • Schwartz HF, Singh SP (2013) Breeding common bean for resistance to white mold: a review. Crop Sci 53:1832–1844

    Article  Google Scholar 

  • Schwartz HF, Steadman JR (1989) White mold. In: Schwartz HF, Pastor Corrales MA (eds) Bean production problems in the tropics, 2nd edn. CIAT, Cali, pp 211–230

    Google Scholar 

  • Schwartz HF, Steadman JR, Hall R et al (eds) (2005) Compendium of bean diseases, 2nd edn. APS, St. Paul

    Google Scholar 

  • Shi C, Navabi A, Yu K (2011) Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations. BMC Plant Biol 11:52

    Google Scholar 

  • Silue S, Lariguet P, Pankhurst C et al (2006) Screening Phaseolus vulgaris L. EMS mutants to isolate plants failing in seed development and to study genetics of embryogenesis. Annu Rpt Bean Improv Coop 49:149–150

    Google Scholar 

  • Singh SP (1994) Gamete selection for simultaneous improvement of multiple traits in common bean. Crop Sci 34:352–355

    Article  Google Scholar 

  • Singh SP (ed) (1999a) Common bean improvement in the Twenty-First Century. Kluwer, Dordrecht

    Book  Google Scholar 

  • Singh SP (1999b) Improvement of large-seeded race Nueva Granada cultivar. In: Singh SP (ed) Common bean improvement in the twenty-first century. Kluwer, Dordrecht, pp 275–288

    Chapter  Google Scholar 

  • Singh SP, Gutiérrez A (1984) Geographical distribution of the DL1 and DL2 genes causing hybrid dwarfism in Phaseolus vulgaris L., their association with seed size, and their significance to breeding. Euphytica 33:337–345

    Google Scholar 

  • Singh SP, Muñoz CG (1999) Resistance to common bacterial blight among Phaseolus species and common bean improvement. Crop Sci 39:80–89

    Article  Google Scholar 

  • Singh SP, Schwartz HF (2010) Breeding common bean for resistance to diseases: a review. Crop Sci 50:2199–2223

    Article  Google Scholar 

  • Singh SP, Urrea CA (1994) Selection for seed yield and other traits among early generations of intra-and interracial populations of the common bean. Rev Brazil Genet 3:299–303

    Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991a) Races of common bean (Phaseolus vulgaris L., Fabaceae). Econ Bot 45:379–396

    Article  Google Scholar 

  • Singh SP, Gutiérrez JA, Molina A et al (1991b) Genetic diversity in cultivated common bean. II. Marker–based analysis of morphological and agronomic traits. Crop Sci 31:23–29

    Article  CAS  Google Scholar 

  • Singh SP, Nodari R, Gepts P (1991c) Genetic diversity in cultivated common bean. I. Allozymes. Crop Sci 31:19–23

    Article  CAS  Google Scholar 

  • Singh SP, Molina A, Urrea CA et al (1993). Use of interracial hybridization in breeding the race Durango common bean. Can J Plant Sci 73:785–793

    Article  Google Scholar 

  • Singh SP, Terán H, Muñoz CG et al (2002) Selection for seed yield in Andean intra-gene pool and Andean × Middle American inter-gene pool populations of common bean. Euphytica 127:437–444

    Article  Google Scholar 

  • Singh SP, Terán H, Lema M et al (2006) Registration of slow darkening pinto bean germplasm line SDIP-1. Crop Sci 46:2726–2727

    Article  Google Scholar 

  • Singh SP, Terán H, Lema M et al (2007) Seventy-five years of breeding dry bean of the western USA. Crop Sci 47:981–989

    Article  Google Scholar 

  • Singh SP, Terán H, Schwartz HF et al (2009a) Introgressing white mold resistance from Phaseolus species of the secondary gene pool into common bean. Crop Sci 49:1629–1637

    Article  Google Scholar 

  • Singh SP, Terán H, Schwartz HF et al (2009b) Development of white mold resistant interspecific common bean germplasm lines VCW 54 and VCW 55. J Plant Regist 3:191–197

    Article  Google Scholar 

  • Singh SP, Terán H, Schwartz HF et al (2013) White mold-resistant, interspecific common bean breeding line VRW32 derived from Phaseolus costaricensis. J Plant Registr 7(1):95–99

    Google Scholar 

  • Soule M, Porter L, Medina J et al (2011) Comparative QTL map for white mold resistance in common bean, and characterization of partial resistance in dry bean lines VA19 and 19365–31. Crop Sci 51:123–139

    Article  Google Scholar 

  • Souza T, De Barros EG, Bellato, CM et al (2012) Single nucleotide polymorphism discovery in common bean. Mol Breeding 30:419–428

    Article  CAS  Google Scholar 

  • Steadman JR (1983) White mold—a serious yield limiting disease of bean. Plant Dis 67:346–347

    Article  Google Scholar 

  • Svetleva D (2004) EMS and NEU mutagenic efficiency and effectiveness in induction of morphological mutations in Phaseolus vulgaris L. Annu Rpt Bean Improv Coop 47:177–178

    Google Scholar 

  • Svetleva D, Velcheva M, Bhowmik G (2003) Biotechnology as a useful tool in common bean (Phaseolus vulgaris L.) improvement. Euphytica 131:189–200

    Article  CAS  Google Scholar 

  • Taylor JD, Teverson DM, Allen MA et al (1996a) Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45:469–478

    Article  Google Scholar 

  • Taylor JD, Teverson DM, Davis JHC (1996b) Sources of resistance to Pseudomonas syringae pv. phaseolicola races in Phaseolus vulgaris. Plant Pathol 45:479–485

    Article  Google Scholar 

  • Taylor M, Chapman R, Beyaert R et al (2008) Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from gamma-glutamyl-S-methyl-cysteine. J Agric Food Chem 56:5647–5654

    Article  CAS  PubMed  Google Scholar 

  • Terán H, Lema M, Webster D et al (2009) Seventy five years of breeding pinto bean for resistance to diseases in the United States. Euphytica 167:341–351

    Article  Google Scholar 

  • Teverson DM (1991) Genetics of pathogenicity and resistance in the halo-blight disease of beans in Africa. PhD Dissertation. Univ of Birmingham, United Kingdom

    Google Scholar 

  • Tohme J, González DO, Beebe S et al (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci 36:1375–1384

    Article  CAS  Google Scholar 

  • Thompson MD, Brick MA, McGinley JN et al (2009) Chemical composition and mammary cancer inhibitory activity of dry bean. Crop Sci 49:179–186

    Article  CAS  Google Scholar 

  • Tryphone GM, Chilagane LA, Protas D et al (2013) Marker assisted selection for common bean diseases improvements in Tanzania: prospects and future needs. In: Andersen SB (ed) Plant breeding from laboratories to field. InTech. doi:10.5772/52823. http://www.intechopen.com/books/plant-breeding-from-laboratories-to-fields/marker-assisted-selection-for-common-bean-diseases-improvements-in-tanzania-prospects-and-future-need

  • Tulmann-Neto A, Ando A (1976) Induced mutation in beans (Phaseolus vulgaris) to obtain varieties resistant to golden mosaic virus. Annu Rpt Bean Improv Coop 19:86

    Google Scholar 

  • Tulmann-Neto AT, Sabino JC (1994) Induction and use of early and determinate growth habit mutant in common bean (Phaseolus-vulgaris L). Rev Bras Genet 17:425–430

    Google Scholar 

  • Urrea CA, Singh SP (1994) Comparison of mass, F2-derived family, and single-seed descent selection methods in an interracial population of common bean. Can J Plant Sci 74:461–464

    Article  Google Scholar 

  • Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vandemark GJ, Brick MA, Osorno JM et al (2014) Yield gains in edible grain legumes. In: Specht J, Diers B, Carver B et al (eds) Genetic gains of major US field crops. CSSA Special Publication 33 ASA, CSSA, SSSA Press, Madison, pp 87–123

    Google Scholar 

  • Velez JJ, Bassett MJ, Beaver JS et al (1998) Inheritance of resistance to bean Golden mosaic virus in common bean. J Am Soc Hort Sci 123:628–631

    Google Scholar 

  • Vitale A, Bollini R (1995) Legume storage proteins. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 73–102

    Google Scholar 

  • Viteri DM, Cregan PB, Trapp JJ et al (2013) A new common bacterial blight resistance QTL in VAX 1 common bean and interaction with the new QTL, SAP6 and SU91 with bacterial strains. Crop Sci 54:1598–1608

    Article  CAS  Google Scholar 

  • Vlasovab A, Rendón-Anaya M, Capella-Gutiérrez S et al (2014) Analysis of the Mesoamerican common bean genome reveals correlations of non-coding RNAs with domestication genes. Nat Commun (submitted)

    Google Scholar 

  • Voelker TA, Staswick P, Chrispeels MJ (1986) Molecular analysis of two phytohemagglutinin genes and their expression in Phaseolus vulgaris cv. Pinto, a lectin-deficient cultivar of the bean. EMBO J 5:3075–3082

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wallace DH., Wilkinson RE (1965) Breeding for Fusarium root rot resistance in beans. Phytopathol 55:1227–1231

    Google Scholar 

  • White J, Gonzales A (1990) Characterization of the negative association between seed yield and seed size among genotypes of common bean. Field Crops Res 23:159–175

    Article  Google Scholar 

  • Wright SI, Bi IV, Schroeder SG et al (2005) The effects of artificial selection on the maize genome. Sci 308:1310–1314

    Article  CAS  Google Scholar 

  • Wyatt JE, Dukes PD (1980) A seed coat color mutation in beans induced by gamma radiation. Annu Rpt Bean Improv Coop 23:34

    Google Scholar 

  • Yin F, Pajak A, Chapman R et al (2011) Analysis of common bean expressed sequence tags identifies sulfur metabolic pathways active in seed and sulfur-rich proteins highly expressed in the absence of phaseolin and major lectins. BMC Genomics 12:268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu K, Park SJ, Poysa V (2000) Marker-assisted selection of common beans for resistance to common bacterial blight: efficacy and economics. Plant Breeding 119:411–415

    Article  CAS  Google Scholar 

  • Zeven AC (1997) The introduction of the common bean (Phaseolus vulgaris L.) into Western Europe and the phenotypic variation of dry beans collected in The Netherlands in 1946. Euphytica 94:319–328

    Article  Google Scholar 

  • Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeats markers. Theor Appl Genet 117:629–640

    Article  CAS  PubMed  Google Scholar 

  • Zogorcheva L, Poriazov I (1983) Induction of mutation in green beans by gamma rays. Annu Rpt Bean Improv Coop 26:89–90

    Google Scholar 

  • Zou XL, Shi C, Austin RS et al (2014) Genome-wide single nucleotide polymorphism and insertion-deletion discovery through next-generation sequencing of reduced representation libraries in common bean. Mol Breeding 33:769–778

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A. M. De Ron thanks the INIA Project RFP2013-00001 from the Spanish Government. R. Lozano and F. Yuste-Lisbona thank Junta de Andalucía grant to the PAIDI Research Group AGR176 and Excellence Programme Project P10-AGR-06931 and Campus de Excelencia Internacional Agroalimentario-CeiA3. P. A. Casquero thanks INIA project RTA 2011-00076-C02-02. The authors thank Marcial (Talo) Pastor-Corrales for scientific assistance and Howard F. Schwartz for providing pictures of bean diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio M. De Ron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Ron, A. et al. (2015). Common Bean. In: De Ron, A. (eds) Grain Legumes. Handbook of Plant Breeding, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2797-5_1

Download citation

Publish with us

Policies and ethics