Skip to main content

Abstract

When we view a landscape, we look at its composition and spatial configuration—that is, what elements are present and in what relative amount, and how these elements are arranged. In an agricultural landscape, we may observe forests occurring along streams and on steep ridges, whereas croplands and pastures occupy upland areas of gentler slope. In a fire-dominated boreal forest landscape, we may see expanses of old forest, young forest, and early successional vegetation. In a deciduous forest, we may observe small gaps in an otherwise continuous canopy of trees, and we may detect boundaries between forests dominated by different species of trees. In landscapes of small extent (e.g., 100 m by 100 m), we may observe complex patterns of vegetated and unvegetated surfaces. Observations of landscape patterns can trigger a number of general questions: How do all these different patterns develop? What is the relative importance of different causes? Do similar patterns emerge from similar processes? How do landscape patterns change through time? What conditions produce gradual vs. abrupt changes in landscape patterns? Can future patterns be predicted? For how long are patterns discernible after the processes creating the patterns have ceased?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abella SR (2007) Quantifying ecosystem geomorphology of the southern Appalachian Mountains. Phys Geogr 24:488–501

    Article  Google Scholar 

  • AraĂşjo MB, Guisan A (2006) Five (or so) challenges for species distribution modeling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  • Arce-Nazario JA (2007) Human landscapes have complex trajectories: reconstructing Peruvian Amazon landscape history from 1948-2005. Landsc Ecol 22:89–101

    Article  Google Scholar 

  • Bailey RG (2009) Ecosystem geography, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Barnosky CW, Anderson PM, Bartlein PJ (1987) The northwestern U.S. during deglaciation: vegetational history and paleoclimatic implications. In: Ruddiman WF, Wright HE Jr (eds) North America and adjacent oceans during the last deglaciation, vol K-3. The Geological Society of North America, Boulder, pp 289–321

    Google Scholar 

  • Baron JS, Hartman MD, Kittel TGF, Band LE, Ojima DS, Lammers RB (1998) Effects of land cover, water redistribution, and temperature on ecosystem processes in the South Platte Basin. Ecol Appl 8:1037–1051

    Article  Google Scholar 

  • Bellemare J, Motzkin G, Foster DR (2002) Legacies of the agricultural past in the forested present: an assessment of historical land-use effects on rich mesic forests. J Biogeogr 29:1401–1420

    Article  Google Scholar 

  • Beyer HL, Merrill EH, Varley N, Boyce MS (2007) Willow on Yellowstone’s northern range: evidence for a trophic cascade? Ecol Appl 17:1563–1571

    Article  PubMed  Google Scholar 

  • Black AE, Morgan P, Hessburg PF (2003) Social and biophysical correlates of change in forest landscapes of the interior Columbia Basin, USA. Ecol Appl 13:51–67

    Article  Google Scholar 

  • Boose ER, Foster DR, Fluet M (1994) Hurricane impacts to tropical and temperate forest landscapes. Ecol Monogr 64:369–400

    Article  Google Scholar 

  • Booth RK, Jackson ST, Sousa VA, Sullivan ME, Minckley TA, Clifford MJ (2012) Multi-decadal drought and amplified moisture variability drove rapid forest community change in a humid region. Ecology 93:219–226

    Article  PubMed  Google Scholar 

  • Brown CD, Boutin C (2009a) Linking past land use, recent disturbance, and dispersal mechanism to forest composition. Biol Conserv 20:385–391

    Google Scholar 

  • Brown CD, Boutin C (2009b) Linking past land use, recent disturbance, and dispersal mechanism to forest composition. Biol Conserv 142:1647–1656

    Article  Google Scholar 

  • Brudvig LA, Damschen EI (2011) Land-use history, historical connectivity, and land management interact to determine longleaf pine woodland understory richness and composition. Ecography 34:257–266

    Article  Google Scholar 

  • Burgess RL, Sharpe DM (eds) (1981) Forest island dynamics in man-dominated landscapes. Springer, New York

    Google Scholar 

  • BĂĽrgi M, Turner MG (2002) Factors and processes shaping land cover and land cover changes along the Wisconsin River, USA. Ecosystems 5:184–201

    Article  Google Scholar 

  • BĂĽrgi M, Hersperger AM, Schneeberger N (2004) Driving forces of landscape change—current and new directions. Landsc Ecol 19:857–868

    Article  Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639

    Article  Google Scholar 

  • Chen I-C, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Clark JS (1990) Fire and climate change during the last 750 years in northwestern Minnesota. Ecol Monogr 60:135–159

    Article  Google Scholar 

  • Coops NC, Waring RC (2011) Estimating the vulnerability of fifteen tree species under changing climate in northwest North America. Ecol Model 222:2119–2129

    Article  Google Scholar 

  • Creel S, Christianson D (2009) Wolf presence and increased willow consumption by Yellowstone elk: implications for trophic cascades. Ecology 90:2454–2466

    Article  PubMed  Google Scholar 

  • Crk T, Uriarte M, Corsi F, Flynn D (2009) Forest recovery in a tropical landscape: what is the relative importance of biophysical, socioeconomic, and landscape variables? Landsc Ecol 24:629–642

    Article  Google Scholar 

  • Cronin TM, Schneider CE (1990) Climatic influences on species: evidence from the fossil record. Trends Ecol Evol 5:275–279

    Article  CAS  PubMed  Google Scholar 

  • Cronon W (1982) Changes in the land. Yale University Press, New Haven

    Google Scholar 

  • Crowley TJ, Kim KY (1994) Milankovitch forcing of the last interglacial sea level. Science 265:1566–1568

    Article  CAS  PubMed  Google Scholar 

  • Curtis JT (1959) The vegetation of Wisconsin. University of Wisconsin Press, Madison

    Google Scholar 

  • Davis MB (1983) Quaternary history of deciduous forests of eastern North America and Europe. Ann Mo Bot Gard 70:550–563

    Article  Google Scholar 

  • Delcourt HR (1987) The impact of prehistoric agriculture and land occupation on natural vegetation. Trends Ecol Evol 2:39–44

    Article  CAS  PubMed  Google Scholar 

  • Delcourt HR, Delcourt PA (1987) Long-term forest dynamics of the temperate zone. Springer, New York

    Book  Google Scholar 

  • Delcourt HR, Delcourt PA (1991) Quaternary ecology. Chapman and Hall, New York

    Book  Google Scholar 

  • Denevan WM (1992) The pristine myth: the landscape of the Americas in 1492. Ann Assoc Am Geogr 82:369–385

    Article  Google Scholar 

  • Diaz H, Markgraf V (eds) (2000) El Nino and the southern oscillation: multiscale variability and global and regional impacts. Cambridge University Press, Cambridge

    Google Scholar 

  • Dixon MD, Turner MG, Jin C (2002) Distribution of riparian tree seedlings on Wisconsin River sandbars: controls at different spatial scales. Ecol Monogr 72:465–485

    Article  Google Scholar 

  • Dupouey JL, Dambrine E, Laffite JD, Moares C (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984

    Article  Google Scholar 

  • Edelstein-Keshet L (1986) Mathematical models in biology. Random House, New York

    Google Scholar 

  • Ellis EC, Ramanukutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447

    Article  Google Scholar 

  • Ellis AM, VáckavĂ­k T, Meentemeyer RK (2010a) When is connectivity important? A case study of the spatial pattern of sudden oak death. Oikos 119:485–493

    Article  Google Scholar 

  • Ellis EC, Goldewijk KK, Siebert S, Lightman D, Ramankutty N (2010b) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19:589–606

    Google Scholar 

  • Ellison AM, Bank MS, Clinton BD et al (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486

    Article  Google Scholar 

  • Elmore AJ, Kaushal SS (2008) Disappearing headwaters: patterns of stream burial due to urbanization. Front Ecol Environ 6:308–312

    Article  Google Scholar 

  • Ernoult A, Freire-Diaz S, Langlois E, Alard D (2006) Are similar landscapes the results of similar histories? Landsc Ecol 21:631–639

    Article  Google Scholar 

  • Flinn KM, Vellend M (2005) Recovery of forest plant communities in post-agricultural landscapes. Front Ecol Environ 3:243–250

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD et al (2003) Road ecology: science and solutions. Island Press, Washington

    Google Scholar 

  • Foster DR (1992) Land-use history (1730-1990) and vegetation dynamics in central New England, USA. J Ecol 80:753–772

    Article  Google Scholar 

  • Foster DR (2002) Insights from historical geography to ecology and conservation: lessons from the New England landscape. J Biogeogr 29:1269–1275

    Article  Google Scholar 

  • Foster DR, Boose ER (1992) Patterns of forest damage resulting from catastrophic wind in central New England, USA. J Ecol 80:79–98

    Article  Google Scholar 

  • Foster DR, Knight DH, Franklin JF (1998) Landscape patterns and legacies resulting from large infrequent forest disturbances. Ecosystems 1:497–510

    Article  Google Scholar 

  • Foster D, Swanson F, Aber J, Burke I, Brokaw N, Tilman D, Knapp A (2003) The importance of land-use legacies to ecology and conservation. Bioscience 53:77–88

    Article  Google Scholar 

  • Fraterrigo JM, Turner MG, Pearson SM, Dixon P (2005) Effects of past land use on spatial heterogeneity of soil nutrients in southern Appalachian forests. Ecol Monogr 75:215–230

    Article  Google Scholar 

  • Fraterrigo JM, Turner MG, Pearson SM (2006a) Plant allocation and growth in the herb layer of historically altered forests. J Ecol 94:548–557

    Article  Google Scholar 

  • Fraterrigo JM, Balser TC, Turner MG (2006b) Microbial community variation and its relationship with nitrogen mineralization in historically altered forests. Ecology 87:570–579

    Article  PubMed  Google Scholar 

  • Frelich LE, Reich PB (2010) Will environmental changes reinforce the impact of global warming on the prairie-forest border of central North America? Front Ecol Environ 8:371–378

    Article  Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams and Wilkin, Baltimore

    Book  Google Scholar 

  • Gillies CS, St. Clair CC (2008) Riparian corridors enhance movement of a forest specialist bird in fragmented tropical forest. Proc Natl Acad Sci U S A 105:19774–19779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Groffman PM, Pouyat RV, Cadenasso ML et al (2006a) Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. For Ecol Manage 236:177–192

    Article  Google Scholar 

  • Groffman PM, Baron JS, Blett T, Gold AJ, Goodman I, Gunderson LH, Levinson BM, Palmer MA, Paerl HW, Peterson GD, Poff NL, Rejeski DW, Reynolds JF, Turner MG, Weathers KC, Wiens JA (2006b) Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9:1–13

    Article  Google Scholar 

  • Harding JS, Benfield EF, Bolstad PV, Helfman GS, Jones EBD (1998) Stream biodiversity: the ghost of land use past. Proc Natl Acad Sci U S A 95:14843–14847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harris LD (1984) The fragmented forest. University of Chicago Press, Chicago

    Google Scholar 

  • Higuera PE, Whitlock C, Gage JA (2010) Linking tree-ring and sediment-charcoal records to reconstruct fire occurrence and area burned in subalpine forests of Yellowstone National Park, USA. Holocene 21:327–341

    Article  Google Scholar 

  • Holdo RM, Holt RD, Fryxell JM (2009) Grazers, browsers and fire influence the extent and spatial pattern of tree cover in the Serengeti. Ecol Appl 19:95–109

    Article  PubMed  Google Scholar 

  • Holdsworth AR, Frelich LE, Reich PB (2007) Regional extent of an ecosystem engineer: earthworm invasion in northern hardwood forests. Ecol Appl 17:1666–1677

    Article  PubMed  Google Scholar 

  • Holling CS (1992) Cross-scale morphology, geometry and dynamics of ecosystems. Ecol Monogr 62:447–502

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Climate change 2013: the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ives AR, Turner MG, Pearson SM (1998) Local explanations of landscape patterns: can analytical approaches approximate simulation models of spatial processes? Ecosystems 1:35–51

    Article  Google Scholar 

  • Jackson ST (2004) Quaternary biogeography: linking biotic responses to environmental variability across timescales. In: Lomolino MV, Heaney LR (eds) Frontiers of biogeography. New directions in the geography of nature. Sinauer, Sunderland, pp 47–65

    Google Scholar 

  • Jackson ST (2006) Vegetation, environment and time: the origination and termination of ecosystems. J Veg Sci 17:547–557

    Article  Google Scholar 

  • Jacquemyn H, Brys R (2008) Effects of stand age on the demography of a temperate forest herb in post-agricultural forests. Ecology 89:3480–3489

    Article  PubMed  Google Scholar 

  • Johnson EA, Miyanishi K (eds) (2001) Forest fires: behavior and ecological effects. Academic, San Diego

    Google Scholar 

  • Johnston C, Naiman RJ (1990a) Aquatic patch creation in relation to beaver population trends. Ecology 71:1617–1621

    Article  Google Scholar 

  • Johnston CA, Naiman RJ (1990b) The use of a geographic information system to analyze long-term landscape alteration by beaver. Landsc Ecol 4:5–19

    Article  Google Scholar 

  • Kashian DM, Turner MG, Romme WH (2005a) Changes in leaf area and stemwood increment with stand development in Yellowstone National Park: relationships between forest stand structure and function. Ecosystems 8:48–61

    Article  Google Scholar 

  • Kashian DM, Turner MG, Romme WH, Lorimer CJ (2005b) Variability and convergence in stand structure with forest development on a fire-dominated landscape. Ecology 86:643–654

    Article  Google Scholar 

  • Kauffman MJ, Brodie JF, Jules ES (2010) Are wolves saving Yellowstone’s aspen? A landscape-level test of a behaviorally mediated trophic cascade. Ecology 91:1742–1755

    Article  Google Scholar 

  • Kellner JR, Asner GP, Vitousek PM, Tweiten MA, Hotchkiss S, Chadwick OA (2011) Dependence of forest structure and dynamics on substrate age and ecosystem development. Ecosystems 14:1156–1167

    Article  Google Scholar 

  • Kierstad H, Slobodkin LB (1953) The size of water masses containing plankton blooms. J Mar Res 12:141–147

    Google Scholar 

  • Kimball DS, Tyers DB, Robison-Cox J, Sowell BF (2011) Aspen recovery since wolf reintroduction on the northern Yellowstone winter range. Rangeland Ecol Manage 64:119–130

    Article  Google Scholar 

  • Knapp AK, Blair JM, Briggs JM, Collins SL, Hartnett DC, Johnson LC, Towne EG (1999) The keystone role of bison in north American tallgrass prairie: bison increase habitat heterogeneity and alter a broad array of plant, community, and ecosystem processes. Bioscience 49:39–50

    Article  Google Scholar 

  • Kramer MG, Hansen AJ, Taper ML, Kissinger EJ (2001) Abiotic controls on long-term windthrow disturbance and temperate rain forest dynamics in southeast Alaska. Ecology 82:2749–2768

    Article  Google Scholar 

  • Krummel JR, Gardner RH, Sugihara G, O’Neill RV, Coleman PR (1987) Landscape patterns in a disturbed environment. Oikos 48:321–324

    Article  Google Scholar 

  • Kuhman TR, Pearson SM, Turner MG (2010) Effects of land-use history and the contemporary landscape on non-native plant invasion at local and regional scales in the forest-dominated southern Appalachians. Landsc Ecol 25:1433–1445

    Article  Google Scholar 

  • Laundre JW, Hernandez L, Attendorf KB (2001) Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, USA. Can J Zool 79(8):1401–1409

    Article  Google Scholar 

  • Laurance WF, Goosem M, Laurance SGW (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24:659–669

    Article  PubMed  Google Scholar 

  • Lenoir J, Gegout JC, Pierrat JC, Bontemps JD, Dhote JF (2009) Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986-2006). Ecography 32:765–777

    Article  Google Scholar 

  • Levin SA (1978) Population models and community structure in heterogeneous environments. In: Levin SA (ed) Studies in mathematical biology series—studies in mathematics (Mathematical Association of America), vol 2. Populations and Communities, Mathematical Association of America, Washington, pp 439–476

    Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Article  Google Scholar 

  • Lookingbill TR, Urban DL (2003) Spatial estimation of air temperature differences for landscape-scale studies in montane environments. Agr Forest Meteorol 114:141–151

    Article  Google Scholar 

  • Lookingbill TR, Kaushal SS, Gardner RH, Elmore AJ, Morgan RP, Hilderbrand RH, Eshleman KN, Boynton WR, Palmer MA, Dennison WC (2009) Altered ecological flows blur boundaries in urbanizing watersheds. Ecol Soc 14:10

    Google Scholar 

  • Lottig NR, Stanley EH, Hanson PC, Kratz TK (2011) Comparison of regional stream and lake chemistry: differences, similarities, and potential drivers. Limnol Oceanogr 56:1551–1562

    Article  CAS  Google Scholar 

  • Martin ML, Soranno PA (2006) Lake landscape position: relationships to hydrologic connectivity and landscape features. Limnol Oceanogr 51:801–814

    Article  CAS  Google Scholar 

  • Mcdonald RI, Forman RTT, Kareiva P, Neugarten R, Salzer D, Fisher J (2009) Urban effects, distance, and protected areas in an urbanizing world. Landsc Urban Plan 93:63–75

    Article  Google Scholar 

  • McNab WH (1993) A topographic index to quantify the effect of mesoscale land-form on site productivity. Can J Forest Res 23:1100–1107

    Article  Google Scholar 

  • Meyer WB (1995) Past and present land use and land cover in the USA. Consequences 1:25–33

    Google Scholar 

  • Millspaugh SH, Whitlock C, Bartlein PJ (2000) Variations in fire frequency and climate over the past 17 000 yr in central Yellowstone National Park. Geology 28:211–214

    Article  Google Scholar 

  • Mitchell CE, Turner MG, Pearson SM (2002) Effects of historical land use and forest patch size on myrmecochores and ant communities. Ecol Appl 12:1364–1377

    Article  Google Scholar 

  • Murray JD (1989) Mathematical biology. Springer, New York

    Book  Google Scholar 

  • Naiman RJ, Rogers KH (1997) Large animals and system-level characteristic in river corridors. Bioscience 47:521–529

    Article  Google Scholar 

  • Nielsen-Gammon JW (2011) The 2011 Texas drought. OSC Report, Office of the State Climatologist, College of Geosciences, Texas A&M University, College Station. http://atmo.tamu.edu/osc/. Accessed 4 Nov 2011

  • Nir D (1983) Man, a geomorphological agent. D. Reidel, Boston

    Google Scholar 

  • Okubo A (1975) Ecology and diffusion. Tsukiji Shokan, Tokyo

    Google Scholar 

  • Overpeck JT, Whitlock C, Huntley B (2003) Terrestrial biosphere dynamics in the climate system: past and future. In: Alverson K, Bradley R, Pedersen T (eds) Paleoclimate, global change and the future. Springer, Berlin, pp 81–111

    Chapter  Google Scholar 

  • Paine RT (1974) Intertidal community structure: experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia 15:93–120

    Article  Google Scholar 

  • Paine RT (1976) Size limited predation: an observational and experimental approach with the Mytilus-Pisaster interaction. Ecology 57:858–873

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Parsons M, McLoughlin CA, Kotschy KA, Rogers KH, Rountree MW (2005) The effects of extreme floods on the biophysical heterogeneity of river landscapes. Front Ecol Environ 3:487–494

    Article  Google Scholar 

  • Pearson SM, Turner MG, Gardner RH, O’Neill RV (1996) An organism-based perspective of habitat fragmentation. In: Szaro RC (ed) Biodiversity in managed landscapes: theory and practice. Oxford University Press, Covelo, pp 77–95

    Google Scholar 

  • Pellissier L, Pottier J, Vittoz P, Dubuis A, Guisan A (2010) Spatial pattern of floral morphology: possible insight into the effects of pollinators on plant distributions. Oikos 119:1805–1813

    Article  Google Scholar 

  • Perovich DK (2011) The changing arctic sea ice cover. Oceanography 24:162–173

    Article  Google Scholar 

  • Philips JD (2007) The perfect landscape. Geomorphology 84:159–169

    Article  Google Scholar 

  • Plue J, Hermy M, Verheyen K, Thuiller P, Saguez R, Decocq G (2008) Persistent changes in forest vegetation and seed bank 1,600 years after human occupation. Landsc Ecol 23:673–688

    Article  Google Scholar 

  • Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF (2005) The wildland-urban interface in the United States. Ecol Appl 15:799–805

    Article  Google Scholar 

  • Reiners WA, Driese KL (2004) Transport processes in nature: propagation of ecologica influences through environmental space. Cambridge University Press, Cambridge

    Google Scholar 

  • Rhemtulla JM, Mladenoff DJ, Clayton MK (2009) Historical forest baselines reveal potential for continued carbon sequestration. Proc Natl Acad Sci U S A 106:6082–6087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ripple WJ, Beschta RL (2012) Trophic cascades in Yellowstone: the first 15 years after wolf reintroduction. Biol Conserv 145:205–213

    Article  Google Scholar 

  • Ruddiman WF (2008) Earth’s climate: past and future. W. H. Freeman, New York

    Google Scholar 

  • Rule S, Brook BW et al (2012) The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335:1483–1486

    Article  CAS  PubMed  Google Scholar 

  • Sang A, Teder T, Helm A, Pärtel M (2010) Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biol Conserv 143:1405–1413

    Article  Google Scholar 

  • Schoennagel T, Veblen TT, Romme WH, Sibold JS, Cook ER (2005) ENSO and PDO variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests. Ecol Appl 15:2000–2014

    Article  Google Scholar 

  • Schoennagel T, Veblen TT, Kulakowski D, Hotz A (2007) Multidecadal climate variability and climate interactions affect subalpine fire occurrence, western Colorado (USA). Ecology 88:2891–2902

    Article  PubMed  Google Scholar 

  • Schulte LA, Mladenoff DJ, Crow TR, Merrick LC, Cleland DT (2007) Homogenization of northern U.S. Great Lakes forests due to land use. Landsc Ecol 22:1089–1103

    Article  Google Scholar 

  • Shi YS, Xiao JY, Shen YJ, Yamaguchi Y (2012) Quantifying the spatial differences of landscape change in the Hai River Basin, China, in the 1990s. Int J Remote Sens 33:4482–4501

    Article  Google Scholar 

  • Spies TAW, Ripple J, Bradshaw GA (1994) Dynamics and pattern of a managed coniferous forest landscape in Oregon. Ecol Appl 4:555–568

    Article  Google Scholar 

  • Steele JS (1974a) Stability of plankton ecosystems. In: Usher MB, Williamson MH (eds) Ecological stability. Chapman and Hall, London, pp 179–191

    Chapter  Google Scholar 

  • Sutherland JP (1974) Multiple stable points in natural communities. Am Nat 108:859–873

    Article  Google Scholar 

  • Swanson FJ, Kratz TK, Caine N, Woodmansee RG (1988) Landform effects on ecosystem patterns and processes. Bioscience 38:92–98

    Article  Google Scholar 

  • Theobald DM, Romme WH (2007) Expansion of the US wildland-urban interface. Landsc Urban Plan 83:340–354

    Article  Google Scholar 

  • Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to climate change: a review. Glob Chang Biol 20:3313–3328

    Article  PubMed Central  PubMed  Google Scholar 

  • Tilman D, Kareiva P (eds) (1997) Spatial ecology: the role of space in population dynamics and interspecific interactions. Monographs in population biology. Princeton University Press, Princeton

    Google Scholar 

  • Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91:2833–2849

    Article  PubMed  Google Scholar 

  • Turner BL II, Robbins P (2008) Land-change science and political ecology: similarities, differences and implications for sustainability science. Annu Rev Environ Resour 33:295–316

    Article  Google Scholar 

  • Turner MG, Wear DN, Flamm RO (1996) Land ownership and land-cover change in the southern Appalachian Highlands and the Olympic Peninsula. Ecol Appl 6:1150–1172

    Article  Google Scholar 

  • Turner MG, Baker WL, Peterson C, Peet RK (1998a) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1:511–523

    Article  Google Scholar 

  • Turner MG, ger SE, Dixon MD, Miller JR (2004a) Distribution and abundance of trees in floodplain forests of the Wisconsin River: environmental influences at different scales. J Veg Sci 15:729–738

    Google Scholar 

  • Turner MG, Tinker DB, Romme WH, Kashian DM, Litton CM (2004b) Landscape patterns of sapling density, leaf area, and aboveground net primary production in postfire lodgepole pine forests, Yellowstone National Park (USA). Ecosystems 7:751–775

    Article  Google Scholar 

  • Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:63–75

    Article  CAS  Google Scholar 

  • Waldram MS, Bond WJ, Stock WD (2008) Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. Ecosystems 11:101–112

    Article  Google Scholar 

  • Wear DN, Turner MG, Flamm RO (1996) Ecosystem management with multiple owners: landscape dynamics in a southern Appalachian watershed. Ecol Appl 6:1173–1188

    Article  Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313:940–943

    Article  CAS  PubMed  Google Scholar 

  • Westerling AL, Turner MG, Smithwick EAH, Romme WH, Ryan MG (2011) Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc Natl Acad Sci U S A 108:13165–13170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White PS, Pickett STA (1985) Natural disturbance and patch dynamics: an introduction. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic, New York, pp 3–13

    Google Scholar 

  • Whittaker RH (1956) Vegetation of the Great Smoky Mountains. Ecol Monogr 26:1–80

    Article  Google Scholar 

  • Williams M (1989) Americans and their forests: a historical geography. Cambridge University Press, New York

    Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities and ecological surprises. Front Ecol Environ 5:475–482

    Article  Google Scholar 

  • Wolf EC, Cooper DJ, Hobbs NT (2007) Hydrologic regime and herbivory stabilize an alternative state in Yellowstone National Park. Ecol Appl 17:1572–1587

    Article  PubMed  Google Scholar 

  • Wright JP, Jones CG (2006) The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bioscience 56:203–209

    Article  Google Scholar 

  • Wright JP, Jones CG, Flecker AS (2002) An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132:96–101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Further Reading

Further Reading

  • Black AE, Morgan P, Hessburg PF (2003) Social and biophysical correlates of change in forest landscapes of the interior Columbia Basin, USA. Ecol Appl 13:51–67

  • Jackson ST (2006) Vegetation, environment and time: the origination and termination of ecosystems. J Veg Sci 17:547–557

  • Kramer MG, Hansen AJ, Taper ML, Kissinger EJ (2001) Abiotic controls on long-term windthrow disturbance and temperate rain forest dynamics in southeast Alaska. Ecology 82:2749–2768

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

  • Phillips JD (2007) The perfect landscape. Geomorphology 84:159–169

  • Plue J, Hermy M, Verheyen K, Thuiller P, Saguez R, Decocq G (2008) Persistent changes in forest vegetation and seed bank 1,600 years after human occupation. Landsc Ecol 23:673–688

  • Wright JP, Jones CG, Flecker AS (2002) An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132:96–101

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Turner, M.G., Gardner, R.H. (2015). Causes of Landscape Pattern. In: Landscape Ecology in Theory and Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2794-4_2

Download citation

Publish with us

Policies and ethics