Skip to main content

Modeling Sympatric Speciation in Quasiperiodic Environments

  • Conference paper
Applications of Dynamical Systems in Biology and Medicine

Abstract

Sympatric speciation is the emergence of new species from a single ancestral species while inhabiting the same geographic region. This process presents an interesting problem for theoretical studies of evolution. One mechanism by which sympatric speciation might occur is periodic or quasiperiodic fluctuations in the abundance of the resources. In this paper inspired by the experimental findings of (Herron and Doebeli, PLoS Biol. 11, p. e1001490, 2013), we present a number of models of asexual speciation of E. coli, which range in the level of biological detail and the degree of analytical treatment. We show that coexistence of multiple species arises as a robust phenomenon, even in the presence of spatial and temporal randomness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. A. Armstrong and R. McGehee, Competitive exclusion, American Naturalist, (1980), pp. 151–170.

    Google Scholar 

  2. M. Begon, J. Harper, and C. Townsend, Ecology, Blackwell Science, Oxford, 1996.

    Google Scholar 

  3. G. L. Bush, Sympatric speciation in animals: new wine in old bottles, Trends in Ecology & Evolution, 9 (1994), pp. 285–288.

    Article  Google Scholar 

  4. A. M. Dean, Protecting haploid polymorphisms in temporally variable environments, Genetics, 169 (2005), pp. 1147–1156.

    Article  Google Scholar 

  5. U. Dieckmann and M. Doebeli, On the origin of species by sympatric speciation, Nature, 400 (1999), pp. 354–357.

    Article  Google Scholar 

  6. M. Doebeli, Adaptive Diversification (MPB-48), Princeton University Press, 2011.

    Google Scholar 

  7. M. Doebeli and U. Dieckmann, Evolutionary branching and sympatric speciation caused by different types of ecological interactions, The American Naturalist, 156 (2000), pp. S77–S101.

    Article  Google Scholar 

  8. M. Doebeli and G. D. Ruxton, Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space, Evolution, (1997), pp. 1730–1741.

    Google Scholar 

  9. J. Felsenstein, Skepticism towards santa rosalia, or why are there so few kinds of animals?, Evolution, (1981), pp. 124–138.

    Google Scholar 

  10. M. L. Friesen, G. Saxer, M. Travisano, and M. Doebeli, Experimental evidence for sympatric ecological diversification due to frequency-dependent competition in escherichia coli, Evolution, 58 (2004), pp. 245–260.

    Article  Google Scholar 

  11. S. A. Geritz, G. Mesze, J. Metz, et al., Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evolutionary Ecology, 12 (1998), pp. 35–57.

    Article  Google Scholar 

  12. S. Gourbiere and J. Mallet, Has adaptive dynamics contributed to the understanding of adaptive and sympatric speciation?, Journal of Evolutionary Biology, 18 (2005), pp. 1201–1204.

    Article  Google Scholar 

  13. M. D. Herron and M. Doebeli, Parallel evolutionary dynamics of adaptive diversification in escherichia coli, PLoS Biology, 11 (2013), p. e1001490.

    Article  Google Scholar 

  14. R. Hilscher, Agent-based models of competitive speciation i: effects of mate search tactics and ecological conditions, Evolutionary Ecology Research, 7 (2005), pp. 943–971.

    Google Scholar 

  15. S. Hsu, A competition model for a seasonally fluctuating nutrient, Journal of Mathematical Biology, 9 (1980), pp. 115–132.

    Article  MathSciNet  Google Scholar 

  16. G. E. Hutchinson, The paradox of the plankton, American Naturalist, (1961), pp. 137–145.

    Google Scholar 

  17. J. Johansson and J. Ripa, Will sympatric speciation fail due to stochastic competitive exclusion?, The American Naturalist, 168 (2006), pp. 572–578.

    Article  Google Scholar 

  18. P. A. Johnson, F. Hoppensteadt, J. J. Smith, and G. L. Bush, Conditions for sympatric speciation: a diploid model incorporating habitat fidelity and non-habitat assortative mating, Evolutionary Ecology, 10 (1996), pp. 187–205.

    Article  Google Scholar 

  19. A. S. Kondrashov, Multilocus model of sympatric speciation. iii. computer simulations, Theoretical Population Biology, 29 (1986), pp. 1–15.

    Article  Google Scholar 

  20. O. Leimar, The evolution of phenotypic polymorphism: randomized strategies versus evolutionary branching, The American Naturalist, 165 (2005), pp. 669–681.

    Article  Google Scholar 

  21. T. Namba and S. Takahashi, Competitive coexistence in a seasonally fluctuating environment ii. multiple stable states and invasion success, Theoretical Population Biology, 44 (1993), pp. 374–402.

    Article  MathSciNet  Google Scholar 

  22. M. L. Rosenzweig, Competitive speciation, Biological Journal of the Linnean Society, 10 (1978), pp. 275–289.

    Article  Google Scholar 

  23. J. M. Smith, Sympatric speciation, American Naturalist, (1966), pp. 637–650.

    Google Scholar 

  24. C. C. Spencer, M. Bertrand, M. Travisano, and M. Doebeli, Adaptive diversification in genes that regulate resource use in escherichia coli, PLoS Genetics, 3 (2007), p. e15.

    Article  Google Scholar 

  25. C. C. Spencer, G. Saxer, M. Travisano, and M. Doebeli, Seasonal resource oscillations maintain diversity in bacterial microcosms, Evolutionary Ecology Research, 9 (2007), p. 775.

    Google Scholar 

  26. F. M. Stewart and B. R. Levin, Partitioning of resources and the outcome of interspecific competition: a model and some general considerations, American Naturalist, (1973), pp. 171–198.

    Google Scholar 

  27. D. Waxman and S. Gavrilets, 20 questions on adaptive dynamics, Journal of Evolutionary Biology, 18 (2005), pp. 1139–1154.

    Article  Google Scholar 

  28. U. Wilensky, NetLogo, http://ccl.northwestern.edu/netlogo/, Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL, 1999.

  29. A. Wolfe, The acetate switch, Microbiol Mol Biol Rev, 69 (2005), pp. 12–50.

    Article  Google Scholar 

Download references

Acknowledgements

The author “Jasmine Foo” would like to acknowledge partial support through NSF DMS-1224362 and NSF DMS-1349724. The work described in this chapter is a result of a collaboration made possible by the IMA’s WhAM! (Women in Applied Mathematics) Research Collaboration Workshop: Dynamical Systems with Applications to Biology and Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jasmine Foo or Natalia L. Komarova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this paper

Cite this paper

Foo, J., Haskell, C., Komarova, N.L., Segal, R.A., Wood, K.E. (2015). Modeling Sympatric Speciation in Quasiperiodic Environments. In: Jackson, T., Radunskaya, A. (eds) Applications of Dynamical Systems in Biology and Medicine. The IMA Volumes in Mathematics and its Applications, vol 158. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2782-1_7

Download citation

Publish with us

Policies and ethics