Advertisement

Applications to Biology and Medicine

  • Vincenzo Capasso
  • David Bakstein
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This chapter is devoted to an analysis of fundamental results related to topics that have attracted the attention of a large number of scientists from many disciplines. The key issue is individual-based models and their approximation, leading to the so-called mean field models and to nonlinear PDEs. This category includes ant colonies, herd behavior, and swarm intelligence, all of which have generated a large and current body of research in biology, physics, operations research, economics, and related fields. An additional result refers to an important application of Itô-Lévy calculus to stochastic models in neurosciences.

References

  1. Aalen, O.: Nonparametric inference for a family of counting processes. Ann. Stat. 6, 701–726 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  2. Andersen, P.K., Borgan, Ø., Gill, R.D., Keiding, N.: Statistical Models Based on Counting Processes. Springer, Heidelberg (1993)CrossRefzbMATHGoogle Scholar
  3. Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases. Griffin, London (1975)zbMATHGoogle Scholar
  4. Bartholomew, D.J.: Continuous time diffusion models with random duration of interest. J. Math. Sociol. 4, 187–199 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  5. Becker, N.: Analysis of Infectious Disease Data. Chapman & Hall, London (1989)Google Scholar
  6. Bhattacharya, R.N., Waymire, E.C.: Stochastic Processes with Applications. Wiley, New York (1990)Google Scholar
  7. Bianchi, A., Capasso, V., Morale, D.: Estimation and prediction of a nonlinear model for price herding. In: C. Provasi, (Ed.) Complex Models and Intensive Computational Methods for Estimation and Prediction, pp. 365–370. CLUEP, Padova (2005)Google Scholar
  8. Bolley, F.: Quantitative concentration inequalities on sample path space for mean field interaction. arXiv:math/0511752v1 [math.PR], 30 Nov 2005Google Scholar
  9. Bolley, F., Guillin, A., Villani, C.: Quantitative concentration inequalities for empirical measures on non-compact spaces. Prob. Theory Relat. Fields 137, 541–593 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  10. Burger, M., Capasso, V., Morale, D.: On an aggregation model with long and short range interaction. Nonlinear Anal. Real World Appl. 3, 939–958 (2007)CrossRefMathSciNetGoogle Scholar
  11. Cai, G.Q., Lin, Y.K.: Stochastic analysis of the Lotka-Volterra model for ecosystems. Phys. Rev. E 70, 041910 (2004)CrossRefGoogle Scholar
  12. Capasso, V.: A counting process approach for stochastic age-dependent population dynamics. In: Ricciardi, L.M. (Ed.) Biomathematics and Related Computational Problems, pp. 255–269. Kluwer, Dordrecht (1988)CrossRefGoogle Scholar
  13. Capasso, V.: A counting process approach for age-dependent epidemic systems. In: Gabriel, J.P. et al., (Eds.) Stochastic Processes in Epidemic Theory. Lecture Notes in Biomathematics, vol. 86, pp. 118–128. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  14. Capasso, V.: Mathematical Structures of Epidemic Systems. Springer, Heidelberg (1993). Second corrected printing (2008)Google Scholar
  15. Capasso, V., Di Liddo, A., Maddalena, L.: Asymptotic behaviour of a nonlinear model for the geographical diffusion of innovations. Dyn. Syst. Appl. 3, 207–220 (1994)zbMATHGoogle Scholar
  16. Capasso, V., Morale, D.: Asymptotic behavior of a system of stochastic particles subject to nonlocal interactions. Stoch. Anal. Appl. 27, 574–603 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  17. Capasso, V., Morale, D., Sioli, F.: An agent-based model for “price herding”, applied to the automobile market. MIRIAM reports, Milan (2003)Google Scholar
  18. Carrillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Rat. Mech. Anal. 147, 269–361 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  19. Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular nedia and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19, 971–1018 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  20. Champagnat, N., Ferriére, R., Méléard, S.: Unifying evolutionary dynamics: From individula stochastic processes to macroscopic models. Theor. Pop. Biol. 69, 297–321 (2006)CrossRefzbMATHGoogle Scholar
  21. Chiang, C.L.: Introduction to Stochastic Processes in Biostatistics. Wiley, New York (1968)zbMATHGoogle Scholar
  22. Darling, D.A.D., Siegert, A.J.F.: The first passage time problem for a continuum Markov process. Ann. Math. Stat. 24, 624–639 (1953)CrossRefzbMATHMathSciNetGoogle Scholar
  23. De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamical Limits. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  24. Donsker, M.D., Varadhan, S.R.S.: Large deviations from a hydrodynamical scaling limit. Comm. Pure Appl. Math. 42, 243–270 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  25. Durrett, R., Levin, S.A.: The importance of being discrete (and spatial). Theor. Pop. Biol. 46, 363–394 (1994)CrossRefzbMATHGoogle Scholar
  26. Epstein, J., Axtell, R.: Growing Artificial Societies–Social Sciences from the Bottom Up. Brookings Institution Press and MIT Press, Cambridge, MA (1996)Google Scholar
  27. Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley, New York (1986)CrossRefzbMATHGoogle Scholar
  28. Flierl, G., Grünbaum, D., Levin, S.A., Olson, D.: From individuals to aggregations: The interplay between behavior and physics. J. Theor. Biol. 196, 397–454 (1999)CrossRefGoogle Scholar
  29. Fournier, N., Méléard, S.: A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Prob. 14, 1880–1919 (2004)CrossRefzbMATHGoogle Scholar
  30. Gihman, I.I., Skorohod, A.V.: Stochastic Differential Equations. Springer, Berlin (1972)CrossRefzbMATHGoogle Scholar
  31. Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J.: A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 71, 876–902 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  32. Grünbaum, D., Okubo, A.: Modelling social animal aggregations. In: Levin, S.A. (Ed.) Frontiers of Theoretical Biology. Lectures Notes in Biomathematics, vol. 100, pp. 296–325. Springer, New York (1994)Google Scholar
  33. Gueron, S., Levin, S.A., Rubenstein, D.I.: The dynamics of herds: From individuals to aggregations. J. Theor. Biol. 182, 85–98 (1996)CrossRefGoogle Scholar
  34. Has’minskii, R.Z.: Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, The Netherlands (1980)CrossRefGoogle Scholar
  35. Hethcote, H.W., Yorke, J.A.: Gonorrhea Transmission and Control. Lecture Notes Biomath, vol. 56. Springer, Heidelberg (1984)Google Scholar
  36. Jacobsen, M.: Statistical Analysis of Counting Processes. Springer, Heidelberg (1982)CrossRefzbMATHGoogle Scholar
  37. Jelinski, Z., Moranda, P.: Software reliability research. In: Statistical Computer Performance Evaluation, pp. 466–484. Academic, New York (1972)Google Scholar
  38. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. AMS, Providence, RI (1968)Google Scholar
  39. Lu, L.: Optimal control of input rates of Stein’s models. Math. Med. Biol. 28, 31–46 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  40. Mahajan, V., Wind, Y.: Innovation Diffusion Models of New Product Acceptance. Ballinger, Cambridge, MA (1986)Google Scholar
  41. Malrieu, F.: Convergence to equilibrium for granular media equations and their Euler scheme. Ann. Appl. Prob. 13, 540–560 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  42. Mao, X.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)zbMATHGoogle Scholar
  43. Mao, X., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Proc. Appl. 97, 95–110 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  44. Mao, X., et al.: Stochastic differential delay equations of population dynamics. J. Math. Anal. Appl. 304, 296–320 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  45. Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker-Planck equation: An interplay between physics and functional analysis. Math. Contemp. 19, 1–31 (2000)zbMATHMathSciNetGoogle Scholar
  46. Méléard, S.: Asymptotic behaviour of some interacting particle systems: McKean–Vlasov and Boltzmann models. In: Talay, D., Tubaro, L. (Eds.) Probabilistic Models for Nonlinear Partial Differential Equations. Lecture Notes in Mathematics, vol. 1627, pp. 42–95. CIME Subseries. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  47. Morale, D., Capasso, V., Oelschläger, K.: An interacting particle system modelling aggregation behaviour: From individuals to populations. J. Math. Biol. 50, 49–66 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  48. Nagai, T., Mimura, M.: Some nonlinear degenerate diffusion equations related to population dynamics. J. Math. Soc. Jpn. 35, 539–561 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  49. Oelschläger, K.: A law of large numbers for moderately interacting diffusion processes. Z. Wahrsch. verw. Geb. 69, 279–322 (1985)CrossRefzbMATHGoogle Scholar
  50. Oelschläger, K.: Large systems of interacting particles and the porous medium equation. J. Differ. Equ. 88, 294–346 (1990)CrossRefzbMATHGoogle Scholar
  51. Okubo, A.: Dynamical aspects of animal grouping: Swarms, school, flocks and herds. Adv. BioPhys. 22, 1–94 (1986)CrossRefGoogle Scholar
  52. Rebolledo, R.: Central limit theorems for local martingales. Z. Wahrsch. verw. Geb. 51, 269–286 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  53. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)CrossRefzbMATHMathSciNetGoogle Scholar
  54. Stein, R.B.: A theoretical analysis of neuronal variability. Biophys. J. 5, 173–194 (1965)CrossRefGoogle Scholar
  55. Stein, R.B.: Some models of neuronal variability. Biophys. J. 7, 37–68 (1967)CrossRefGoogle Scholar
  56. Tan, W.Y.: Stochastic Models with Applications to Genetics, Cancers, AIDS and Other Biomedical Systems. World Scientific, Singapore (2002)zbMATHGoogle Scholar
  57. Tuckwell, H.C.: On the first exit time problem for temporarily homogeneous Markov process. J. Appl. Prob. 13, 39–48 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  58. Tuckwell, H.C.: Stochastic Processes in the Neurosciences. SIAM, Philadelphia (1989)CrossRefGoogle Scholar
  59. Veretennikov, A.Y.: On polynomial mixing bounds for stochastic differential equations. Stoch. Proc. Appl. 70, 115–127 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  60. Veretennikov, A.Y.: On subexponential mixing rate for Markov processes. Theory Prob. Appl. 49, 110–122 (2005)CrossRefMathSciNetGoogle Scholar
  61. Wang, F.J.S.: Gaussian approximation of some closed stochastic epidemic models. J. Appl. Prob. 14, 221–231 (1977)CrossRefzbMATHGoogle Scholar
  62. Warburton, K., Lazarus, J.: Tendency-distance models of social cohesion in animal groups. J. Theor. Biol. 150, 473–488 (1991)CrossRefGoogle Scholar
  63. Yang, G.: Stochastic epidemics as point processes. In: Capasso, V., Grosso, E., Paveri-Fontana, S.L. (Eds.) Mathematics in Biology and Medicine. Lectures Notes in Biomathematics, vol. 57, pp. 135–144. Springer, Heidelberg (1985)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vincenzo Capasso
    • 1
  • David Bakstein
    • 1
  1. 1.ADAMSS (Interdisciplinary Centre for Advanced Applied Mathematical and Statistical Sciences)Università degli Studi di MilanoMilanItaly

Personalised recommendations