Advertisement

Applications to Finance and Insurance

  • Vincenzo Capasso
  • David Bakstein
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

The financial industry is one of the most influential driving forces behind the research into stochastic processes. This is due to the fact that it relies on stochastic models for valuation and risk management. But perhaps more surprisingly, it was also one of the main drivers that led to their initial discovery.

References

  1. Aletti, G., Capasso, V.: Profitability in a multiple strategy market. Decis. Econ. Finance 26, 145–152 (2003)zbMATHMathSciNetGoogle Scholar
  2. Bachelier, L.: Théorie de la spéculation. Ann. Sci. École Norm. Sup. 17, 21–86 (1900)zbMATHMathSciNetGoogle Scholar
  3. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Pol. Econ. 81, 637–654 (1973)zbMATHGoogle Scholar
  4. Borodin, A., Salminen, P.: Handbook of Brownian Motion: Facts and Formulae. Birkhä user, Boston (1996)CrossRefzbMATHGoogle Scholar
  5. Boyle, P., Tian, Y.: Pricing lookback and barrier options under the CEV process. J. Fin. Quant. Anal. 34, 241–264 (1999)Google Scholar
  6. Brace, A., Gatarek, D., Musiela, M.: The market model of interest rate dynamics. Math. Fin. 7, 127–154 (1997)zbMATHMathSciNetGoogle Scholar
  7. Branger, N., Reichmann, O., Wobben, M.: Pricing electricity derivatives on an hourly basis. J. Energ. Market 3, 51–89 (2010)Google Scholar
  8. Cox, J.C.: The constant elasticity of variance option pricing model. J. Portfolio Manage. 22, 15–17 (1996)Google Scholar
  9. Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: A simplified approach. J. Fin. Econ. 7, 229–263 (1979)zbMATHGoogle Scholar
  10. Dai, W., Heyde, C.C.: Itô’s formula with respect to fractional Brownian motion and its application. J. Appl. Math. Stoch. Anal. 9, 439–448 (1996)zbMATHMathSciNetGoogle Scholar
  11. Dalang, R.C., Morton, A., Willinger, W.: Equivalent martingale measures and non-arbitrage in stochastic securities market models. Stochast. Stochast. Rep. 29, 185–201 (1990)zbMATHMathSciNetGoogle Scholar
  12. Davis, M.H.A.: Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models. J. R. Stat. Soc. Ser. B 46, 353–388 (1984)zbMATHGoogle Scholar
  13. Delbaen, F., Schachermeyer, W.: A general version of the fundamental theorem of asset pricing. Math. Annal. 300, 463–520 (1994)zbMATHGoogle Scholar
  14. Duffie, D.: Dynamic Asset Pricing Theory. Princeton University Press, Princeton, NJ (1996)Google Scholar
  15. Dupire, B.: Pricing with a smile. RISK 1, 18–20 (1994)Google Scholar
  16. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderten Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annal. Phys. 17, 549–560 (1905)zbMATHGoogle Scholar
  17. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extreme Events for Insurance and Finance. Springer, Berlin (1997)CrossRefGoogle Scholar
  18. Hagan, P.S., Kumar, D., Lesniewski, A., Woodward, D.E.: Managing smile risk. Wilmott Mag. 1, 84–102 (2002)Google Scholar
  19. Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979)zbMATHMathSciNetGoogle Scholar
  20. Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory of continuous trading. Stochast. Process. Appl. 11, 215–260 (1981)zbMATHMathSciNetGoogle Scholar
  21. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica 1, 77–105 (1992)CrossRefGoogle Scholar
  22. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Fin. Stud. 6, 327–343 (1993)Google Scholar
  23. Hunt, P.J., Kennedy, J.E.: Financial Derivatives in Theory and Practice. Wiley, New York (2000)zbMATHGoogle Scholar
  24. Hull, J., White, A.: Pricing interest rate derivative securities. Rev. Fin. Stud. 4, 573–592 (1990)Google Scholar
  25. Itô, K., McKean, H.P.: Diffusion Processes and Their Sample Paths. Springer, Berlin (1965)CrossRefzbMATHGoogle Scholar
  26. Jamshidian, F.: LIBOR and swap market models and measures. Fin. Stochast. 1, 43–67 (1997)zbMATHGoogle Scholar
  27. Karlin, S., Taylor H.M.: A Second Course in Stochastic Processes. Academic, New York (1981)zbMATHGoogle Scholar
  28. Kou, S.: A jump-diffusion model for option pricing. Manage. Sci. 48, 1086–1101 (2002)zbMATHGoogle Scholar
  29. Lewis, A.L.: Option Valuation Under Stochastic Volatility. Finance Press, Newport Beach (2000)zbMATHGoogle Scholar
  30. Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manage. Sci. 4, 141–183 (1973)MathSciNetGoogle Scholar
  31. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Fin. Econ. 3, 125–144 (1976)zbMATHGoogle Scholar
  32. Miltersen, K.R., Sandmann, K., Sondermann, D.: Closed form solutions for term structure derivatives with log-normal interest rates. J. Fin. 52, 409–430 (1997)Google Scholar
  33. Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modelling. Springer, Berlin (1998)Google Scholar
  34. Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (1998)CrossRefGoogle Scholar
  35. Pliska, S.R.: Introduction to Mathematical Finance: Discrete-Time Models. Blackwell, Oxford (1997)Google Scholar
  36. Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. Wiley, New York (1999)CrossRefzbMATHGoogle Scholar
  37. Shevchenko, G.: Mixed fractional stochastic differential equations with jumps. Stochastics 86, 203–217 (2014)zbMATHMathSciNetGoogle Scholar
  38. Shiryaev, A.N., Cherny, A.S.: Vector stochastic integrals and the fundamental theorems of asset pricing. Tr. Mat. Inst. Steklova 237, 12–56 (2002)MathSciNetGoogle Scholar
  39. Vasicek, O.: An equilibrium characterisation of the term structure. J. Fin. Econ. 5, 177–188 (1977)Google Scholar
  40. Wilmott, P., Dewynne, J.N., Howison, S.D.: Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford (1993)Google Scholar
  41. Zähle, M.: Long range dependence, no arbitrage and the Black-Scholes formula. Stochast. Dynam. 2, 265–280 (2002)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vincenzo Capasso
    • 1
  • David Bakstein
    • 1
  1. 1.ADAMSS (Interdisciplinary Centre for Advanced Applied Mathematical and Statistical Sciences)Università degli Studi di MilanoMilanItaly

Personalised recommendations