Stability, Stationarity, Ergodicity

  • Vincenzo Capasso
  • David Bakstein
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


Here we shall consider multidimensional diffusion processes {u(t), t ∈ I} in \(\mathbb{R}^{d},\) (\(d \in \mathbb{N}\setminus \{0\}\)) solution on a time interval \(I \subset \mathbb{R}_{+}\) of a d−dimensional system of stochastic differential equations of the form
$$\displaystyle{ d\mathbf{u}(t) = \mathbf{a}(t,\mathbf{u}(t))dt + b(t,\mathbf{u}(t))d\mathbf{W}(t), }$$
subject to a suitable initial condition.


  1. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)zbMATHGoogle Scholar
  2. Barra, M., Del Grosso, G., Gerardi, A., Koch, G., Marchetti, F.: Some basic properties of stochastic population models. Lecture Notes in Biomathematics, vol. 32, pp. 155–164. Springer, Heidelberg (1978)Google Scholar
  3. Bhattacharya, R.N.: Criteria for recurrence and existence of invariant measures for multidimensional diffusions. Ann. Prob. 6, 541–553 (1978)CrossRefzbMATHGoogle Scholar
  4. Cai, G.Q., Lin, Y.K.: Stochastic analysis of the Lotka-Volterra model for ecosystems. Phys. Rev. E 70, 041910 (2004)CrossRefGoogle Scholar
  5. Friedman, A.: Stochastic Differential Equations and Applications. Academic, London (1975). Two volumes bounded as one, Dover, Mineola, NY (2004)Google Scholar
  6. Gard, T.C.: Introduction to Stochastic Differential Equations. Marcel Dekker, New York (1988)zbMATHGoogle Scholar
  7. Gihman, I.I., Skorohod, A.V.: Stochastic Differential Equations. Springer, Berlin (1972)CrossRefzbMATHGoogle Scholar
  8. Has’minskii, R.Z.: Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, The Netherlands (1980)CrossRefGoogle Scholar
  9. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, Kodansha (1989)zbMATHGoogle Scholar
  10. Itô, K., McKean, H.P.: Diffusion Processes and Their Sample Paths. Springer, Berlin (1965)CrossRefzbMATHGoogle Scholar
  11. Karlin, S., Taylor H.M.: A Second Course in Stochastic Processes. Academic, New York (1981)zbMATHGoogle Scholar
  12. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand, Princeton (1960)zbMATHGoogle Scholar
  13. Ludwig, D.: Stochastic Population Theories. Lecture Notes in Biomathematics, vol. 3. Springer, Heidelberg (1974)Google Scholar
  14. Mao, X., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Proc. Appl. 97, 95–110 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  15. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  16. Roozen, H.: Equilibrium and extinction in stochastic population dynamics. Bull. Math. Biol. 49, 671–696 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  17. Schuss, Z.: Theory and Applications of Stochastic Differential Equations. Wiley. New York (1980)zbMATHGoogle Scholar
  18. Skorohod, A.V.: Asymptotic Methods in the Theory of Stochastic Differential Equations. AMS, Providence, RI (1989)Google Scholar
  19. Tan, W.Y.: Stochastic Models with Applications to Genetics, Cancers, AIDS and Other Biomedical Systems. World Scientific, Singapore (2002)zbMATHGoogle Scholar
  20. Veretennikov, A.Y.: On polynomial mixing bounds for stochastic differential equations. Stoch. Proc. Appl. 70, 115–127 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  21. Veretennikov, A.Y.: On subexponential mixing rate for Markov processes. Theory Prob. Appl. 49, 110–122 (2005)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vincenzo Capasso
    • 1
  • David Bakstein
    • 1
  1. 1.ADAMSS (Interdisciplinary Centre for Advanced Applied Mathematical and Statistical Sciences)Università degli Studi di MilanoMilanItaly

Personalised recommendations