Advertisement

Abstract

We assume that the reader is already familiar with the basic motivations and notions of probability theory. In this chapter we recall the main mathematical concepts, methods, and theorems according to the Kolmogorov approach Kolmogorov (1956) by using as main references the books by Métivier (1968) and Neveu (1965). An interesting introduction can be found in Gnedenko (1963). We shall refer to Appendix A of this book for the required theory on measure and integration.

References

  1. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)zbMATHGoogle Scholar
  2. Baldi, P.: Equazioni differenziali stocastiche. UMI, Bologna (1984)Google Scholar
  3. Biagini, F, Hu, Y., ksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications. Springer, London (2008)Google Scholar
  4. Dai, W., Heyde, C.C.: Itô’s formula with respect to fractional Brownian motion and its application. J. Appl. Math. Stoch. Anal. 9, 439–448 (1996)zbMATHMathSciNetGoogle Scholar
  5. Dieudonné, J.: Foundations of Modern Analysis. Academic, New York (1960)zbMATHGoogle Scholar
  6. Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Levy Processes with Applications to Finance. Springer, Berlin/Heidelberg (2009)CrossRefGoogle Scholar
  7. Franke, J., Härdle, W.K., Hafner, C.M.: Statistics of Financial Markets: An Introduction, 2nd edn. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. Friedman, A.: Stochastic Differential Equations and Applications. Academic, London (1975). Two volumes bounded as one, Dover, Mineola, NY (2004)Google Scholar
  9. Gihman, I.I., Skorohod, A.V.: Stochastic Differential Equations. Springer, Berlin (1972)CrossRefzbMATHGoogle Scholar
  10. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1991)zbMATHGoogle Scholar
  11. Klenke, A.: Probability Theory. A Comprehensive Course, 2nd edn. Springer, Heidelberg (2014)Google Scholar
  12. Kolmogorov, A.N., Fomin, E.S.V.: Elements of Theory of Functions and Functional Analysis. Groylock, Moscow (1961)zbMATHGoogle Scholar
  13. Lipster, R., Shiryaev, A.N.: Statistics of Random Processes, II: Applications, 2nd edn. Springer, Heidelberg (2010)Google Scholar
  14. Mandelbrot, K., van Ness, J.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)zbMATHMathSciNetGoogle Scholar
  15. Medvegyev, P.: Stochastic Integration Theory. Oxford University Press, Oxford (2007)zbMATHGoogle Scholar
  16. Mishura, Y.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  17. Nualart, D.: Stochastic calculus with respect to fractional Brownian motion. Ann. Fac. Sci. Toulouse-Mathématiques 15, 63–77 (2006)zbMATHMathSciNetGoogle Scholar
  18. Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (1998)CrossRefGoogle Scholar
  19. Shevchenko, G.: Mixed fractional stochastic differential equations with jumps. Stochastics 86, 203–217 (2014)zbMATHMathSciNetGoogle Scholar
  20. Skorohod, A.V.: Studies in the Theory of Random Processes. Dover, New York (1982)Google Scholar
  21. Williger, W., Taqqu, M., Teverovsky, V.: Stock market process and long range dependence. Finance Stoch. 3, 1–13 (1999)Google Scholar
  22. Zähle, M.: Long range dependence, no arbitrage and the Black-Scholes formula. Stochast. Dynam. 2, 265–280 (2002)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vincenzo Capasso
    • 1
  • David Bakstein
    • 1
  1. 1.ADAMSS (Interdisciplinary Centre for Advanced Applied Mathematical and Statistical Sciences)Università degli Studi di MilanoMilanItaly

Personalised recommendations