Skip to main content

Process Integration

  • Chapter
  • First Online:
Book cover Silicon Analog Components
  • 1851 Accesses

Abstract

Processing steps to integrate active and passive components in a CMOS base technology are discussed in this chapter. A basic description of unit processes is first presented. An overview of a baseline CMOS process is then given, followed by a discussion of process modules that are added to the baseline process to fabricate components for Mixed-Signal (MS) and Radio-Frequency (RF) CMOS, Analog CMOS, and Bipolar-CMOS-DMOS (BCD). Illustrative cross-sectional views of the numerous analog component constructions are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. El-Kareh, Fundamentals of Semiconductor Processing Technologies, Kluwer Academic Publishers, Second Printing, 1997.

    Google Scholar 

  2. S. Wolf and R. Taber, Silicon Processing for the VLSI Era, Lattice Press, 1999.

    Google Scholar 

  3. Z J. Ma, J. C. Chen, Z. H. Liu, J. T. Krick, Y. C. Cheng, C. Hu, and P. K. Ko, “Suppression of boron penetration in p+ polysilicon gate P-MOSFET using low-temperature gate-oxide N2O anneal,” IEEE Elec. Dev. Letters, 15 (3), 109-111, 1994.

    Google Scholar 

  4. M. Marin, J.C. Vildeuil, B. Tavel, B. Duriez, F. Arnaud, P. Stolk, and M. Woo, “Can 1/f noise in MOSFETs be reduced by gate oxide and channel implantation?” AIP Conf. Proc., 780, 195-198, 2005.

    Google Scholar 

  5. Y. K. Choi, I. Y. Park, H. C. Lim, M. Y. Kim, C. J. Yoon, N. J. Kim, K. D. Yoo, and L. N. Hutter, “A versatile 30V analog CMOS process in a 0.18μm technology for power management applications,” ISPSD Proceedings, 219-222, 2011.

    Google Scholar 

  6. M. T. Bohr, “Interconnect scaling – the real limiter to high performance ULSI,” IEEE IEDM Tech. Digest, 241-244, 1995.

    Google Scholar 

  7. P. Bai, C. Auth, S. Balakrishnan, M. Bost, R. Brain, V. Chikarmane, R. Heussner, M. Hussein, J. Hwang, D. Ingerly, R. James, J. Jeong, C. Kenyon, E. Lee, S. H. Lee, N. Lindert, M. Liu, Z. Ma, T. Marieb, A. Murthy, R. Nagisetty, S. Natarajan, J. Neirynck, A. Ott, C. Parker, J. Sebastian, R. Shaheed, S. J. Steigerwald, S. Tyagi, C. Weber, B. Woolery, A. Yeoh, K. Zhang, and M. Bohr, “A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57μm2 SRAM cell,” IEEE IEDM Tech. Digest, 657-660, 2004.

    Google Scholar 

  8. C. Ryu, K. W. Kwon, A. L. S. Loke, H. B. Lee, T. Nogonami, V. M. Dubin, R. A. Kavari, G. W. Ray, and S. S. Wong, “Microstructure and reliability of copper interconnects,” IEEE Trans. Electron Dev., 46 (6), 1113-1120, 1999.

    Google Scholar 

  9. E. P. Barth, T. H. Ivers, P. S. McLaughlin, A. McDonald, E. N. Lenine, S. E. Greco, J. Fitzsimmons, I. Melville, T. Spooner, C. DeWan, X. Vhen, D. Manger, H. Nye, V. McGahay, G. H. Biery, R. D. Goldblatt, and T. C. Chen, “Integration of copper and fluorinated glass for 0.18μm interconnections,” IEEE IITC, 219-221, 2000.

    Google Scholar 

  10. C.W. Kaanta, S. G. Bombardier, W. J. Cote, W. R. Hill, G. Kerszykowski, H. S. Landis, D. J. Poindexter, C. W. Pollard, G. H. Ross, J. G. Ryan, S. Wolff, and J. E. Cronin, “Dual damascene: a ULSI wiring technology,” Proceedings VLSI Multilevel Interconnection Conf., 144-152, 1991.

    Google Scholar 

  11. T. A. Tran, L. Yong, B. Williams, S. Chen, and A. Chen, “Fine pitch probing, wirebonding and reliability of aluminum capped copper bond pads,” International J. of Microcircuits and Electronic Packaging, 23 (3), 332-338, 2000.

    Google Scholar 

  12. D. Buss, B. L. Evans, J. Bellay, W. Krenik, B. Haroun, D. Leipold, K. Maggio, J. Y. Yamg, and T. Moise, “SOC CMOS technology for personal internet products,” IEEE Trans. Electron Dev., 50 (3), 546-556, 2003.

    Google Scholar 

  13. R. Aparicio and A. Hajimiri, “Capacity limits and matching properties of integrated capacitors,” J. Solid-State Circuits, 37 (3), 384-393, 2002.

    Google Scholar 

  14. M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, and K. Stein, “A high reliability metal insulator metal capacitor for 0.18 μm copper technology,” IEEE IEDM Tech. Digest, 157-160, 2000.

    Google Scholar 

  15. R. Liu, C-Y Lin, E. Harris, S. Merchant, S.W. Downey, G. Weber, N.A. Ciampa, W. Tai, W.Y.C. Lai, M.D. Morris, J.E. Bower, J.F. Miner, J. Frackoviak, W. Mansfield, D. Barr, R. Keller, C-P Chang, C-S Pai, S.N. Rogers, and R. Gregor, “Single mask metal-insulator-metal (MIM) capacitor with copper damascene metallization for sub-0.18 μm mixed-mode signal and system-on-a-chip (SOC) applications,” International Interconnect Tech. Conference, 111-113, 2000.

    Google Scholar 

  16. Z. Chen, K.M. Lin, C.C. Kuo, T.C. Ko, J.C. Huang, J.P. Wang, Y.F. Lin, T.W. Wu, T.C. Su, C.C. Liao, and M.C. Jeng, “Fabrication and integration of high performance mixed signal and RF passive components in 0.13 μm Cu BEOL technologies,” International Conference on Solid-State and Integrated Circuits Technology, 175-178, 2004.

    Google Scholar 

  17. R. Mahnkopf, K-H. Allers, M. Armacost, A. Augustin, J. Barth, G. Brase, R. Busch, E. Demm, G. Dietz, B. Flietner, G. Friese, F. Grellner, K. Han, R. Hannon, H. Ho, M. Hoinkis, K. Holloway, T. Hook, S. Iyer, P. Kim, G. Knoblinger, B. Lemaitre, C. Lin, R. Mih, W. Neumueller, J. Pape, O. Prigge, N. Robson, N. Rovedo, T. Schafbauer, T. Schimi, K. Schruefer, S. Srinivasan, M. Stetter, F. Towler, P.Wensley, C. Wann, R. Wong, R. Zoeller, and B. Chen, “’System on a chip’ technology platform for 0.18 μm digital, mixed signal & eDRAM applications,” IEEE IEDM Tech. Digest, 849-852, 1999.

    Google Scholar 

  18. P. Zurcher, P. Alluri, P. Chu, A. Duvallet, C. Happ, R. Henderson, J. Mendonca, M. Kim, M. Petras, M. Raymond, T. Remmel, D. Roberts, B. Steimle, J. Stipanuk, S. Straub, T. Sparks, M. Tarabbia, H. Thibieroz, and M. Miller, “Integration of thin film MIM capacitors and resistors into copper metallization based RF-CMOS and Bi-CMOS technologies,” IEEE IEDM Tech. Digest, 153-156, 2000.

    Google Scholar 

  19. C.H. Ng, C-S Ho, S-F S. Chu, S-C Sun, “MIM capacitor integration for mixed-signal/RF applications,” IEEE Trans. Electron Dev., 52 (97), 2005.

    Google Scholar 

  20. P-Y Chiu and M-D Ker, “Metal-layer capacitors in the 65nm CMOS process and the application for low-leakage power-rail ESD clamp circuit,” Microelectronics Reliability, 54, 64-70, 2014.

    Google Scholar 

  21. J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, E. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St.Onge, B. A. Orner, J. S. Rieh, K. J. Stein, S. H. Voldman, P. C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of rf CMOS and SiGe BiCMOS technologies,” IBM J. Research and Development, 47 (2/3), 101-138, March/May 2003.

    Google Scholar 

  22. B. El-Kareh, Silicon Devices and Process Integration, Springer p. 451, 2009.

    Google Scholar 

  23. I.C. Kizilyalli, F. A. Stevie, and J. D. Bude, “N+-polysilicon gate PMOSFETs with indium doped buried-channels,” IEEE Electron Dev. Lett. 17 (2) 46-49, 1996.

    Google Scholar 

  24. G. Guegan, S. Deleonibus, C. Caillat, S. Tedesco, B. Dal’zotto, M. Heitzmann, M. E. Nier, and P. Mur, “A 0.10 μm buried p-channel MOSFET with through the gate boron implantation and arsenic tilted halo,” Solid-State Electronics, 46 (3), 343-348, 2002.

    Google Scholar 

  25. Y. C. Kwon, H. C. Seol, S. K. Hong, and O. K. Kwon “Process optimization of integrated SiCr thin-film resistor for high-performance analog circuits,” IEEE Trans. Electron Dev., 61 (1) 8-14, 2014.

    Google Scholar 

  26. J. Ramirez-Angulo and R. Geiger, “New laser-trimmed resistor structures for very high stability requirements,” IEEE Trans. Electron Dev., 35 (4), part 2, 516-518, 1988.

    Google Scholar 

  27. Y.K. Choi, I. Y. Park, H. S. Oh, W. Lee, N. J. Kim, and K. D. Yoo, “Implementation of low Vgs (1.8V) 12V RF-LDMOS for high-frequency DC-DC converter applications,” ISPSD Proceedings, 125-128, 2012.

    Google Scholar 

  28. C. Bulucea, S. R. Bahl, W. D. French, J. J. Yang, P. Francis, T. Harjono, V. Krishnamurthy, J. Tao, and C. Parkerl, “Physics, technology, and modeling of complementary asymmetric MOSFETs,” IEEE Trans. Electron Dev., 57 (10), 2363-2380, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badih El-Kareh .

Problems

Problems

The temperature is 25 °C unless otherwise stated.

  1. 1.

    Describe a process with one polysilicon level and eight copper metal levels to fabricate the following components: LV CMOS, HV CMOS, isolated CMOS, DECMOS, LFC, NPN, and inductor. Assume existing metal levels are used for the inductor.

  2. 2.

    The four identical NMOS devices in the figure below must be isolated from substrate without changing their layout. Show a top view and cross-sectional view for how this can be done while minimizing the overall area consumed. Discuss your assumptions.

  3. 3.

    For an isolated native NMOSFET with a substrate concentration of 1015 cm−3 and a maximum drain voltage of 5.5 V

    1. (a)

      Show a top- and cross-sectional view.

    2. (b)

      Estimate the minimum channel length to avoid punch-through between source and drain.

    3. (c)

      Estimate the minimum distance between drain and underlying N-region required to avoid punch-through between the two regions.

Assume a step junction in both cases and N D = 5 × 1017 cm−3 in the deep N-region.

  1. 4.

    The figure below describes via etching to both plates of a MIM capacitor with oxide as the dielectric. Determine the minimum capacitor top-plate thickness under the following conditions: (a) IMD thickness = 1 μm. (b) Capacitor density = 1 fF/μm2. (c) A 10 % via over-etch of IMD is done. (d) The IMD to top-plate metal selectivity is 25:1. (e) The etched thickness of the top-plate metal must be <25 % of the original top-plate thickness.

  2. 5.

    Assume that the LDD of an NMOSFET with a rectangular polysilicon gate is implanted in a “4-way rotation” mode at an angle of 45° immediately after growing a 10-nm sidewall oxide, using resist as a mask. For a resist thickness of 800 nm, estimate the minimum space between resist edge and poly-edge required to avoid “shadowing” and ensure that the implanted dopants reach their maximum penetration and dose under the polysilicon. Assume that both the resist and poly-edges are vertical.

  3. 6.

    Consider an N+-polysilicon resistor placed on STI. A voltage of +5 V is applied to the resistor with respect to the underlying P-type substrate at ground.

    1. (a)

      Describe qualitatively how the resistor to substrate capacitance changes when a floating N-well is placed under the STI.

    2. (b)

      Estimate this change for an STI oxide thickness of 0.4 μm, a uniform N-well concentration of 1017 cm−3, and a uniform substrate concentration of N A = 1015 cm−3.

  4. 7.

    Estimate the minimum drawn NBL to NBL spacing required to achieve a 50 V punch-through voltage between two NBL regions shown in the figure below. Assume an epi thickness of 8 μm, a degenerately doped NBL with 1.7 μm lateral diffusion, N A = 1015 cm−3 in both epi and substrate, and planar NBL sidewalls (do not use cylindrical coordinates).

  5. 8.

    For a BCD epitaxy process using NBL, calculate the minimum epi thickness needed to achieve a 50 V avalanche breakdown voltage between P-body and NBL under the following conditions: P-body junction depth: x j = 1.5 μm; NBL up-diffusion into epi: 2 μm; P-epi concentration: N D = 1 × 1015 cm−3. Assume uniform P-body concentration N A = 5 × 1017 cm−3 and degenerately doped NBL.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

El-Kareh, B., Hutter, L.N. (2015). Process Integration. In: Silicon Analog Components. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2751-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2751-7_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2750-0

  • Online ISBN: 978-1-4939-2751-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics