Skip to main content

Abstract

At birth, the eye is short and hyperopic, and while hyperopia regresses in the first 3–5 years of life, some eyes progress toward further myopia. Myopia can be associated with increased axial length, steep corneal curvature, or lenticular changes. Contributing factors to myopia and its progression include hereditary factors, environmental factors, as well as concurrent ocular and systemic disorders. Depending on patient age and degree of myopia, various modalities of refractive correction can be considered to aid in visual development and to meet the visual requirements of the patient. Current research is focused on understanding the underlying genetics of myopia and on developing interventions to reduce myopic progression in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Academy of Ophthalmology. Basic and clinical science course: clinical optics. San Francisco, CA: American Academy of Ophthalmology. 2013–2014;83–90.

    Google Scholar 

  2. American Academy of Ophthalmology. Basic and clinical science course: pediatric ophthalmology and strabismus. San Francisco, CA: American Academy of Ophthalmology. 2013–2014;168–9.

    Google Scholar 

  3. Mutti D, Mitchell G, et al. Accommodation, acuity, and their relationship to emmetropization in infants. Optom Vis Sci. 2009;86(6):666–76.

    Article  PubMed  PubMed Central  Google Scholar 

  4. American Academy of Ophthalmology. Pediatric eye evaluations, preferred practice pattern. San Francisco, CA: American Academy of Ophthalmology; 2012.

    Google Scholar 

  5. Quinn G, Dobson V, Davitt B. Progression of myopia and high myopia in the early treatment for retinopathy of prematurity study: findings at 4 to 6 years of age. J AAPOS. 2013;17(2):124–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yoshimura N, Aung T, Young TL, Wong TY, Teo YY, Saw SM. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia. PLoS Genet. 2012;8(6), e1002753. Epub 2012 Jun 7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Low W, Dirani M, Gazzard G, Chan Y-H, Zhou HJ, Prabakaran S, Au-Eong KG, Young TL, Mitchell P, Wong TY, Saw S-M. Family history, near work, outdoor activity, and myopia in Singapore Chinese preschool children. Br J Ophthalmol. 2010;94:1012–6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fotedar R, Rochtchina E, et al. Necessity of cycloplegia for assessing refractive error in 12 year old children: a population-based study. Am J Ophthalmol. 2007;144(2):307–9.

    Article  PubMed  Google Scholar 

  9. Wang J, Ren X, Shen L, Yanni SE, Leffler JN, Birch EE. Development of refractive error in individual children with regressed retinopathy of prematurity. Invest Ophthalmol Sci. 2013;54(9):6018–24.

    Article  Google Scholar 

  10. Daoud Y, Hutchinson A, Wallace D. Perspective: refractive surgery in children: treatment options, outcomes, and controversies. AJO. 2009;April:573–82.

    Google Scholar 

  11. Paysse E, Coats D, et al. Long-term outcomes of photorefractive keratectomy for anisometropic amblyopia in children. Ophthalmology. 2006;113(2):169–76.

    Article  PubMed  Google Scholar 

  12. Gwiazda J, Hyman L, et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest Ophthalmol Vis Sci. 2003;44(4):1492–500.

    Article  PubMed  Google Scholar 

  13. Katz J, Schein O, et al. A randomized trial of rigid gas permeable contact lenses to reduce the progression of children’s myopia. Am J Ophthalmol. 2003;136(1):82–90.

    Article  PubMed  Google Scholar 

  14. Tong L, Huang X, et al. Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine. Ophthalmology. 2009;116(3):572–9.

    Article  PubMed  Google Scholar 

  15. Chua W-H, Balakrishnan V, et al. Atropine for the treatment of childhood myopia. Ophthalmology. 2006;113(12):2285–90.

    Article  PubMed  Google Scholar 

  16. Gwiazda J. Treatment options for myopia. Optom Vis Sci. 2009;86(6):624–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leo SW, Young TL. An evidence-based update on myopia and interventions to retard its progression. J AAPOS. 2011;15(2):181–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Hug OD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hug, T.E. (2016). Myopia. In: Traboulsi, E., Utz, V. (eds) Practical Management of Pediatric Ocular Disorders and Strabismus. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2745-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2745-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2744-9

  • Online ISBN: 978-1-4939-2745-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics