Physiology of the Cardiac Conduction System

  • Adam C. KeanEmail author
  • Peter S. Fischbach


The diagnosis and management of cardiac arrhythmias has progressed rapidly as a science. Advances in the ability to diagnose and either suppress or eliminate arrhythmic substrates has taken an exponential trajectory. Whether utilizing three-dimensional electro-anatomic mapping systems for examining complex arrhythmias in patients with palliated congenital heart disease or genetic analysis in a search for evidence of heritable arrhythmia syndromes, technological advances have improved our ability to observe, diagnosis, and manage rhythm disturbances in patients from fetal life through adulthood. To fully harness the possibilities and continue advancements offered by these new technologies, an understanding of cardiac anatomy and cellular electrophysiology is imperative.


Automaticity Cardiac action potential Ion channels Reentry Resting membrane potential Signal propagation Triggered activity 

Suggested Reading

  1. Allessie MA, Bonke FI, Schopman FJ. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res. 1977;41:9–18.CrossRefPubMedGoogle Scholar
  2. Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res. 2002;54:230–46.CrossRefPubMedGoogle Scholar
  3. Anderson ME, Al-Khatib SM, Roden DM, Califf RM, Duke Clinical Research Institute/American Heart Journal Expert Meeting on Repolarization Changes. Cardiac repolarization: current knowledge, critical gaps, and new approaches to drug development and patient management. Am Heart J. 2002;144:769–81.CrossRefPubMedGoogle Scholar
  4. Antzelevitch C, Fish J. Electrical heterogeneity within the ventricular wall. Basic Res Cardiol. 2001;96:517–27.CrossRefPubMedGoogle Scholar
  5. Antzelevitch C, Shimizu W, Yan GX, et al. The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol. 1999;10:1124–52.CrossRefPubMedGoogle Scholar
  6. Armoundas AA, Wu R, Juang G, et al. Electrical and structural remodeling of the failing ventricle. Pharmacol Ther. 2001;92:213–30.CrossRefPubMedGoogle Scholar
  7. Barry DM, Nerbonne JM. Myocardial potassium channels: electrophysiological and molecular diversity. Annu Rev Physiol. 1996;58:363–94.CrossRefPubMedGoogle Scholar
  8. Davis LM, Rodefeld ME, Green K, et al. Gap junction protein phenotypes of the human heart and conduction system. J Cardiovasc Electrophysiol. 1995;6:813–22.CrossRefPubMedGoogle Scholar
  9. Dhein S, Rothe S, Busch A, et al. Effects of metoprolol therapy on cardiac gap junction remodelling and conduction in human chronic atrial fibrillation. Br J Pharmacol. 2011;164:607–16.PubMedCentralCrossRefPubMedGoogle Scholar
  10. DiFrancesco D, Noble D. The funny current has a major pacemaking role in the sinus node. Heart Rhythm. 2011;9:457–8.CrossRefPubMedGoogle Scholar
  11. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90(1):291–366.CrossRefPubMedGoogle Scholar
  12. Hille B. Ion channels of excitable membranes. Sinauer: Sunderland; 2001.Google Scholar
  13. Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res. 1993;72:671–87.CrossRefPubMedGoogle Scholar
  14. Members of the Sicilian Gambit. New approaches to antiarrhythmic therapy: emerging therapeutic applications of the cell biology of cardiac arrhythmias. Eur Heart J. 2001;22:2148–63.CrossRefGoogle Scholar
  15. Pandit SV, Jalife J. Rotors and the dynamics of cardiac fibrillation. Circ Res. 2013;112:849–62.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Priori SG, Chen SR. Inherited dysfunction of sarcoplasmic retriculum Ca2+ handling and arrhythmogenesis. Circ Res. 2011;108:871–83.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Roden DM, George AL. Structure and function of cardiac sodium and potassium channels. Am J Physiol. 1997;273:H511–25.PubMedGoogle Scholar
  18. Roden DM, Balser JR, Geroge AL, Anderson ME. Cardiac ion channels. Annu Rev Physiol. 2002;64:431–75.CrossRefPubMedGoogle Scholar
  19. Salameh A, Blanke K, Daehnert I. Role of connexins in human congenital heart disease: the chicken and egg problem. Front Pharmacol. 2013;4:70.PubMedCentralPubMedGoogle Scholar
  20. Schram G, Pourrier M, Melnyk P, Nattel S. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res. 2002;90:939–50.CrossRefPubMedGoogle Scholar
  21. Schumacher SM, McEwen DP, Zhang L, et al. Antiarrhythmic drug-induced internalization of the atrial-specific k + channel kv1.5. Circ Res. 2009;104:1390–8.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Singh BN, Sarma JS. Mechanisms of action of antiarrhythmic drugs relative to the origin and perpetuation of cardiac arrhythmias. J Cardiovasc Pharmacol Ther. 2001;6:69–87.CrossRefPubMedGoogle Scholar
  23. Smythe JW, Shaw RW. Forward trafficking of ion channels: what the clinician needs to know. Heart Rhythm. 2010;7:1135–40.CrossRefGoogle Scholar
  24. Snyders DJ. Structure and function of cardiac potassium channels. Cardiovasc Res. 1999;42:377–90.CrossRefPubMedGoogle Scholar
  25. Sosunov EA, Anyukhovsky EP, Rosen MR. Differential effects of ivabradine and ryanodine on automaticity of canine sinoatrial node and Purkinje fibers. J Cardiovasc Electrophysiol. 2012;23:650–5.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Tamargo J, Caballero R, Gómez R, Valenzuela C, Delpón E. Pharmacology of cardiac potassium channels. Cardiovasc Res. 2004;62:9–33.CrossRefPubMedGoogle Scholar
  27. Wantanabe H, Koopmann TT, Le SS, et al. Sodium channel beta 1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260–8.Google Scholar
  28. Williams J. The functions of two species of calcium channel in cardiac muscle excitation-contraction coupling. Eur Heart J. 1997;18(suppl A):A27–35.CrossRefPubMedGoogle Scholar
  29. Yaniv Y, Maltsev VA, Escobar AL, et al. Beat-to-beat Ca(2+)-dependent regulation of sinoatrial nodal pacemaker cell rate and rhythm. J Mol Cell Cardiol. 2011;51:902–5.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Philadelphia, PA; Saunders, 2000.Google Scholar

Copyright information

© Springer Science+Business Media, New York 2015

Authors and Affiliations

  1. 1.Section of Pediatric CardiologyIndiana University School of MedicineIndianapolisUSA
  2. 2.Sibley Heart Center, Children’s Healthcare of Atlanta, Department of PediatricsEmory University School of MedicineAtlantaUSA

Personalised recommendations