Skip to main content
  • 827 Accesses

Abstract

The notion of referent control helps solve both problems of action as well as some problems of perception or better to say, problems of action-perception coupling since it has been recognized for over a century that perception and action are interdependent (Helmholtz 1866). Previous attempts to solve action-perception problems that will be considered in this Chapter have been based on the efference copy (EC) concept introduced by von Holst and Mittelstaedt (von Holst and Mittelstaedt 1950; Holst 1954) or a similar concept of corollary discharges introduced by Sperry (1950). The feasibility of these concepts has been questioned, both on physical and physiological grounds (Chaps. 2 and 6). I will offer alternative solutions to some action-perception problems in the framework of referent control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archambault PS, Mihaltchev P, Levin MF, Feldman AG (2005) Basic elements of arm postural control analyzed by unloading. Exp Brain Res 164(2):225–241

    Article  PubMed  Google Scholar 

  • Arshavsky YI, Gelfand IM, Orlovsky GN, Pavlova GA (1978a) Messages conveyed by spinocerebellar pathways during scratching in the cat. I. Activity of neurons of the lateral reticular nucleus. Brain Res 151(3):479–491

    Article  CAS  PubMed  Google Scholar 

  • Arshavsky YI, Gelfand IM, Orlovsky GN, Pavlova GA (1978b) Messages conveyed by spinocerebellar pathways during scratching in the cat. II. Activity of neurons of the ventral spinocerebellar tract. Brain Res 151(3):493–506

    Article  CAS  PubMed  Google Scholar 

  • Arzy S, Seeck M, Ortigue S, Spinelli L, Blanke O (2006) Induction of an illusory shadow person. Nature 443(7109):287

    Article  CAS  PubMed  Google Scholar 

  • Bässler U (1993) The femur-tibia control system of stick insects—a model system for the study of the neural basis of joint control. Brain Res Rev 18(2):207–226

    Article  PubMed  Google Scholar 

  • Bräunig P, Eder M (1998) Locust dorsal unpaired median (DUM) neurones directly innervate and modulate hindleg proprioceptors. J Exp Biol 201(24):3333–3338

    PubMed  Google Scholar 

  • Bridgeman B (2007) Efference copy and its limitations. Comput Biol Med 37(7):924–929

    Article  PubMed  Google Scholar 

  • Bridgeman B (2010) How the brain makes the world appear stable. i-Perception 1(2):69–72

    Article  PubMed Central  PubMed  Google Scholar 

  • Chan BL, Witt R, Charrow AP, Magee A, Howard R, Pasquina PF, Heilman KM, Tsao JW (2007) Mirror therapy for phantom limb pain. N Engl J Med 357(21):2206–2207

    Article  CAS  PubMed  Google Scholar 

  • Clarac F (2008) Some historical reflections on the neural control of locomotion. Brain Res Rev 57(1):13–21

    Article  PubMed  Google Scholar 

  • Dancause N, Taylor MD, Plautz EJ, Radel JD, Whittaker T, Nudo RJ, Feldman AG (2007) A stretch reflex in extraocular muscles of species purportedly lacking muscle spindles. Exp Brain Res 180(1):15–21

    Article  PubMed Central  PubMed  Google Scholar 

  • Desmurget M, Reilly KT, Richard N, Szathmari A, Mottolese C, Sirigu A (2009) Movement intention after parietal cortex stimulation in humans. Science 324(5928):811–813

    Article  CAS  PubMed  Google Scholar 

  • Deubel H, Koch C, Bridgeman B (2010) Landmarks facilitate visual space constancy across saccades and during fixation. Vis Res 50(2):249–259

    Article  PubMed  Google Scholar 

  • Donaldson IML (2000) The functions of the proprioceptors of the eye muscles. Philos Trans R Soc B: Biol Sci 355(1404):1685–1754

    Article  CAS  Google Scholar 

  • Feldman AG (2009) New insights into action-perception coupling. Exp Brain Res 194(1):39–58

    Article  PubMed  Google Scholar 

  • Feldman AG, Latash ML (1982a) Afferent and efferent components of joint position sense: interpretation of kinaesthetic illusions. Biol Cybern 42(3):205–214

    CAS  PubMed  Google Scholar 

  • Feldman AG, Latash ML (1982b) Inversions of vibration-induced senso-motor events caused by supraspinal influences in man. Neurosci Lett 31(2):147–151

    Article  CAS  PubMed  Google Scholar 

  • Feldman AG, Goussev V, Sangole A, Levin MF (2007) Threshold position control and the principle of minimal interaction in motor actions. In: Cisek P, Drew T, Kalaska J (eds) Computational neuroscience: theoretical insights into brain function: theoretical insights into brain function, vol 165, Progress in brain research., pp 267–281

    Chapter  Google Scholar 

  • Feldman AG, Ilmane N, Sangani S, Raptis H, Esmailzadeh N (2013) Action-perception coupling in kinesthesia: a new approach. Neuropsychologia 51(13):2590–2599

    Article  PubMed  Google Scholar 

  • Fukson OI, Berkinblit MB, Feldman AG (1980) The spinal frog takes into account the scheme of its body during the wiping reflex. Science 209(4462):1260–1263

    Article  Google Scholar 

  • Gandevia SC (1996) Kinesthesia: roles for afferent signals and motor commands. In: Rowell L, Shepherd JT (eds) Handbook of physiology, exercise: regulation and integration of multiple systems. American Physiological Society, New York, NY, pp 128–172, Section 12

    Google Scholar 

  • Ghafouri M, Feldman AG (2001) The timing of control signals underlying fast point-to-point arm movements. Exp Brain Res 137(3–4):411–423

    CAS  PubMed  Google Scholar 

  • Ghez C, Vicario D (1978) The control of rapid limb movement in the cat II. Scaling of isometric force adjustments. Exp Brain Res 33(2):191–202

    CAS  PubMed  Google Scholar 

  • Gossard JP, Cabelguen JM, Rossignol S (1990) Phase-dependent modulation of primary afferent depolarization in single cutaneous primary afferents evoked by peripheral stimulation during fictive locomotion in the cat. Brain Res 537(1):14–23

    Article  CAS  PubMed  Google Scholar 

  • Grillner S (1975) Locomotion in vertebrates: control mechanisms and reflex interactions. Physiol Rev 55(2):247–304

    CAS  PubMed  Google Scholar 

  • Helmholtz H (1866) Handbuch der Physiologischen Optik. Voss, Leipzig

    Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci 126(843):136–195

    Article  Google Scholar 

  • Hulliger M, Nordh E, Vallbo AB (1982) The absence of position response in spindle afferent units from human finger muscles during accurate position holding. J Physiol 322(1):167–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hultborn H (2001) State-dependent modulation of sensory feedback. J Physiol 533(1):5–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol 38(4):335–378

    Article  CAS  PubMed  Google Scholar 

  • Keller EL, Robinson DA (1971) Absence of a stretch reflex in extraocular muscles of the monkey. J Neurophysiol 34(5):908–919

    CAS  PubMed  Google Scholar 

  • Lennerstrand G (2007) Strabismus and eye muscle function. Acta Ophthalmol Scand 85(7):711–723

    Article  PubMed  Google Scholar 

  • Maidhof C (2013) Error monitoring in musicians. Front Hum Neurosci 7:401

    PubMed Central  PubMed  Google Scholar 

  • Matthews PBC (1972) Mammalian muscle receptors and their central actions. Edward Arnold, London, pp 574–577

    Google Scholar 

  • McCloskey DI (1981) Corollary discharges: motor commands and perception. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology: the nervous system, 2. American Physiological Society, Bethesda, MD, pp 1415–1447

    Google Scholar 

  • Melzack R (1992) Phantom limb pain. Patologicheskaya Fiziologiya i Eksperimentalnaya Terapiya 4:52–54

    Google Scholar 

  • Mitchell SW (1871) Phantom limbs. Lippincott’s magazine of popular literature and science 8:563–569

    Google Scholar 

  • Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci 31:69–89

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175

    Article  PubMed  Google Scholar 

  • O’Keefe J, Burgess N, Donnett JG, Jeffery KJ, Maguire EA (1998) Place cells, navigational accuracy, and the human hippocampus. Philos Trans R Soc Lond Ser B: Biol Sci 353(1373):1333–1340

    Article  Google Scholar 

  • Ostry DJ, Gribble PL, Levin MF, Feldman AG (1997) Phasic and tonic stretch reflexes in muscles with few muscle spindles: human jaw-opener muscles. Exp Brain Res 116(2):299–308

    Article  CAS  PubMed  Google Scholar 

  • Paillard J (1991) Motor and representational framing of space. In: Paillard J (ed) Brain and space. Oxford University Press, Oxford, pp 163–182

    Google Scholar 

  • Ramachandran VS, Hirstein W (1998) The perception of phantom limbs. The D.O. Hebb lecture. Brain 121(9):1603–1630

    Article  PubMed  Google Scholar 

  • Roll JP, Gilhodes JC, Tardy-Gervet MF (1980) Perceptive and motor effects of muscular vibrations in the normal human: demonstration of a response by opposing muscles. Arch Ital Biol 118(1):51–71

    CAS  PubMed  Google Scholar 

  • Ruiz MH, Jabusch HC, Altenmüller E (2009) Detecting wrong notes in advance: neuronal correlates of error monitoring in pianists. Cereb Cortex 19(11):2625–2639

    Article  PubMed  Google Scholar 

  • Ruiz MH, Strübing F, Jabusch HC, Altenmüller E (2011) EEG oscillatory patterns are associated with error prediction during music performance and are altered in musician’s dystonia. Neuroimage 55(4):1791–1803

    Article  PubMed  Google Scholar 

  • Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40(1–2):28–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43(6):482–489

    Article  CAS  PubMed  Google Scholar 

  • Tunik E, Poizner H, Levin MF, Adamovich SV, Messier J, Lamarre Y, Feldman AG (2003) Arm-trunk coordination in the absence of proprioception. Exp Brain Res 153(3):343–355

    Article  CAS  PubMed  Google Scholar 

  • Turvey MT, Fonseca ST (2014) The medium of haptic perception: a tensegrity hypothesis. J Mot Behav 46(3):143–187

    Article  PubMed  Google Scholar 

  • Vallbo AB (1974) Human muscle spindle discharge during isometric voluntary contractions. Amplitude relations between spindle frequency and torque. Acta Physiol Scand 90(2):319–336

    Article  CAS  PubMed  Google Scholar 

  • Von Holst H (1954) Relations between the central nervous system and the peripheral organs. Br J Anim Behav 2(3):89–94

    Article  Google Scholar 

  • Von Holst E, Mittelstaedt H (1950/1973) Das reafferezprincip. Wechselwirkungen zwischen Zentralnerven-system und Peripherie, Naturwissenschaften 37: 467–476. The reafference principle. In: Martin R (Trans.), The behavioral physiology of animals and man. The collected papers of Erich von Holst. University of Miami Press, Coral Gables, FL, pp. 139–173, 176–209

    Google Scholar 

  • Weir CR, Knox PC, Dutton GN (2000) Does extraocular muscle proprioception influence oculomotor control? Br J Ophthalmol 84(9):1071–1074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Windhorst U (2007) Muscle proprioceptive feedback and spinal networks. Brain Res Bull 73(4):155–202

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Wang X, Peck C, Goldberg ME (2011) The time course of the tonic oculomotor proprioceptive signal in area 3a of somatosensory cortex. J Neurophysiol 106(1):71–77

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feldman, A.G. (2015). Action-Perception Coupling. In: Referent control of action and perception. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2736-4_8

Download citation

Publish with us

Policies and ethics