Skip to main content

Referent Control as a Specific Form of Parametric Control of Actions: Empirical Demonstrations

  • Chapter
  • 790 Accesses

Abstract

In this chapter, I will describe experiments in humans and animals supporting the notion that the nervous system exercises parametric control of motor actions (see Chap. 2). It will be demonstrated that by changing task-specific parameters, the system allows physical laws to take their course to generate motor outcome without pre-programming of EMG patterns, muscle forces and kinematics. Data will be shown indicating that the nervous system exercises a specific form of parametric control by stipulating spatial thresholds for motoneuronal recruitment, i.e. the threshold muscle lengths or respective joint angles at which α-MNs begin to be activated. In this way, neural control levels pre-determine where, in the spatial domain, neuromuscular elements can work without prescribing how they should work. MNs are recruited or de-recruited depending on the difference between the actual and the threshold muscle lengths, the latter also being dependent on the rate of change in the muscle length.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamovich SV, Burlachkova NI, Feldman AG (1984) Wave nature of the central process of the formation of trajectories of single-joint movements in man. Biophysics 39:130–134

    Google Scholar 

  • Adamovich SV, Levin MF, Feldman AG (1997) Central modifications of reflex parameters may underlie the fastest arm movements. J Neurophysiol 77(3):1460–1469

    CAS  PubMed  Google Scholar 

  • Andronov AA, Khajkin SE (1949) Theory of oscillations. Princeton University Press, Princeton, NJ (Original work in Russian, published in 1937)

    Google Scholar 

  • Archambault PS, Mihaltchev P, Levin MF, Feldman AG (2005) Basic elements of arm postural control analyzed by unloading. Exp Brain Res 164(2):225–241

    Article  PubMed  Google Scholar 

  • Aristotle (350 BCE/1923) Nicomachean ethics (trans: Ros WD). Methuen, London

    Google Scholar 

  • Asatryan DG, Feldman AG (1965) Functional tuning of the nervous system with control of movements or maintenance of a steady posture: I. Mechanographic analysis of the work of the joint on execution of a postural task. Biophysics 10:925–935

    Google Scholar 

  • Bernstein NA (1935) The problem of the interrelationships between coordination and localization. Reprinted in N. Bernstein (1967)

    Google Scholar 

  • Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon, Oxford

    Google Scholar 

  • Bigland B, Lippold OCJ (1954) The relation between force, velocity and integrated electrical activity in human muscles. J Physiol 123(1):214–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bizzi E, Abend W (1982) Posture control and trajectory formation in single-and multi-joint arm movements. Adv Neurol 39:31–45

    Google Scholar 

  • Bressloff PC (2014) Wave in neural media, from single neurons to neural fields. Springer, New York, NY, p 443

    Book  Google Scholar 

  • Calota A, Feldman AG, Levin MF (2008) Spasticity measurement based on tonic stretch reflex threshold in stroke using a portable device. Clin Neurophysiol 119(10):2329–2337

    Article  PubMed  Google Scholar 

  • Capaday C (1995) The effects of baclofen on the stretch reflex parameters of the cat. Exp Brain Res 10(2):287–296

    Google Scholar 

  • Crago PE, Houk JC, Hasan Z (1976) Regulatory actions of human stretch reflex. J Neurophysiol 39(5):925–935

    CAS  PubMed  Google Scholar 

  • Davis WE, Kelso JAS (1982) Analysis of “invariant characteristics” in the motor control of down’s syndrome and normal subjects. J Mot Behav 14(3):194–211

    Article  CAS  PubMed  Google Scholar 

  • De Luca CJ (1997) The use of surface electromyography in biomechanics. J Appl Biomech 13:135–163

    Google Scholar 

  • Duysens J, Trippel M, Horstmann GA, Dietz V (1990) Gating and reversal of reflexes in ankle muscles during human walking. Exp Brain Res 82(2):351–358

    Article  CAS  PubMed  Google Scholar 

  • Fedirchuk B, Dai Y (2004) Monoamines increase the excitability of spinal neurones in the neonatal rat by hyperpolarizing the threshold for action potential production. J Physiol 557(2):355–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feldman AG (1979) Central and reflex mechanisms in the control of actions. Publishing House Nauka, Moscow, p 184

    Google Scholar 

  • Feldman AG (1986) Once more on the equilibrium-point hypothesis (lambda model) for motor control. J Mot Behav 18:17–54

    Article  CAS  PubMed  Google Scholar 

  • Feldman AG, Latash ML (2005) Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesis. Exp Brain Res 161(1):91–103

    Article  PubMed  Google Scholar 

  • Feldman AG, Levin MF (1995) The origin and use of positional frames of reference in motor control. Behav Brain Sci 18(4):723–744

    Article  Google Scholar 

  • Feldman AG, Orlovsky GN (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Exp Neurol 37(3):481–494

    Article  CAS  PubMed  Google Scholar 

  • Feldman AG, Krasovsky T, Baniña MC, Lamontagne A, Levin MF (2011) Changes in the referent body location and configuration may underlie human gait, as confirmed by findings of multi-muscle activity minimizations and phase resetting. Exp Brain Res 210(1):91–115

    Article  PubMed  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703

    CAS  PubMed  Google Scholar 

  • Foisy M, Feldman AG (2006) Threshold control of arm posture and movement adaptation to load. Exp Brain Res 175(4):726–744

    Article  PubMed  Google Scholar 

  • Ghafouri M, Feldman AG (2001) The timing of control signals underlying fast point-to-point arm movements. Exp Brain Res 137(3–4):411–423

    CAS  PubMed  Google Scholar 

  • Glansdorff P, Prigogine I (1971) Thermodynamics theory of structure, stability and fluctuations. Wiley-Interscience, London

    Google Scholar 

  • Gomi H, Kawato M (1996) Equilibrium point control hypothesis examined by measured arm stiffness during multi joint movement. Science 272(5258):117–120

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb GL (1994) The generation of the efferent command and the importance of joint compliance in fast elbow movements. Exp Brain Res 97(3):545–550

    Article  CAS  PubMed  Google Scholar 

  • Graham-Brown T (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B Biol Sci 84(572):308–319

    Article  Google Scholar 

  • Gribble PL, Ostry DJ, Sanguineti V, Laboissière R (1998) Are complex control signals required for human arm movement? J Neurophysiol 79(3):1409–1424

    CAS  PubMed  Google Scholar 

  • Gutman A (1994) Gelfand-Tsetlin principle of minimal afferentation and bistability of dendrites. Int J Neural Syst 5(2):83–86

    Article  CAS  PubMed  Google Scholar 

  • Heckman CJ, Johnson M, Mottram C, Schuster J (2008) Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. Neuroscientist 14(3):264–275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965a) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28(3):560–580

    CAS  PubMed  Google Scholar 

  • Henneman E, Wuerker R, McPhedran A (1965b) Properties of motor units in a homogeneous red muscle (soleus) of the cat. J Neurophysiol 28(1):71–84

    PubMed  Google Scholar 

  • Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4(11):2745–2754

    CAS  PubMed  Google Scholar 

  • Kistemaker DA, Van Soest AK, Bobbert MF (2007) Equilibrium point control cannot be refuted by experimental reconstruction of equilibrium point trajectories. J Neurophysiol 98(3):1075–1082

    Article  PubMed  Google Scholar 

  • Krawitz S, Fedirchuk B, Dai Y, Jordan LM, McCrea DA (2001) State-dependent hyperpolarization of voltage threshold enhances motoneuron excitability during fictive locomotion in the cat. J Physiol 532(1):271–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Latash ML (2012) Fundamentals of motor control. Elsevier, San Diego, CA

    Google Scholar 

  • Latash ML, Gottlieb GL (1991) Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements. Neuroscience 43(2):697–712

    Article  CAS  PubMed  Google Scholar 

  • Lestienne F (1979) Effects of inertial load and velocity on the braking process of voluntary limb movements. Exp Brain Res 35(3):407–418

    Article  CAS  PubMed  Google Scholar 

  • Levin MF, Selles RW, Verheul MH, Meijer OG (2000) Deficits in the coordination of agonist and antagonist muscles in stroke patients: implications for normal motor control. Brain Res 853(2):352–369

    Article  CAS  PubMed  Google Scholar 

  • Matthews PBC (1959) A study of certain factors influencing the stretch reflex of the decerebrated cat. J Physiol 147(3):547–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matthews PBC (1972) Mammalian muscle receptors and their central actions. Edward Arnold, London, pp 574–577

    Google Scholar 

  • Mullick AA, Musampa NK, Feldman AG, Levin MF (2013) Stretch reflex spatial threshold measure discriminates between spasticity and rigidity. Clin Neurophysiol 124(4):740–751

    Article  PubMed  Google Scholar 

  • Musampa NK, Mathieu PA, Levin MF (2007) Relationship between stretch reflex thresholds and voluntary arm muscle activation in patients with spasticity. Exp Brain Res 181(4):579–593

    Article  PubMed  Google Scholar 

  • Nichols TR, Steeves JD (1986) Resetting of resultant stiffness in ankle flexor and extensor muscles in the decerebrated cat. Exp Brain Res 62(2):401–410

    Article  CAS  PubMed  Google Scholar 

  • Ostry DJ, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 153(3):275–288

    Article  PubMed  Google Scholar 

  • Ostry DJ, Gribble PL, Levin MF, Feldman AG (1997) Phasic and tonic stretch reflexes in muscles with few muscle spindles: human jaw-opener muscles. Exp Brain Res 116(2):299–308

    Article  CAS  PubMed  Google Scholar 

  • Polit A, Bizzi E (1979) Characteristics of motor programs underlying arm movements in monkeys. J Neurophysiol 42:183–194

    CAS  PubMed  Google Scholar 

  • Raptis HA, Burtet L, Forget R, Feldman AG (2010) Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways. J Physiol 588(9):1551–1570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stein RB (1974) Peripheral control of movement. Physiol Rev 54(1):215–243

    CAS  PubMed  Google Scholar 

  • Stein RB, Misiaszek JE, Pearson KG (2000) Functional role of muscle reflexes for force generation in the decerebrate walking cat. J Physiol 525(3):781–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sternad D (2002) Wachholder and Altenburger 1927: foundational experiments for current hypotheses on equilibrium-point control in voluntary movements. Mot Control 6(4):299–302

    Google Scholar 

  • St-Onge N, Adamovich SV, Feldman AG (1997) Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling. Neuroscience 79(1):295–316

    Article  CAS  PubMed  Google Scholar 

  • Weeks DL, Aubert MP, Feldman AG, Levin MF (1996) One-trial adaptation of movement to changes in load. J Neurophysiol 75(1):60–74

    CAS  PubMed  Google Scholar 

  • Windhorst U (2007) Muscle proprioceptive feedback and spinal networks. Brain Res Bull 73(4):155–202

    Article  CAS  PubMed  Google Scholar 

  • Won J, Hogan N (1995) Stability properties of human reaching movements. Exp Brain Res 107(1):125–136

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feldman, A.G. (2015). Referent Control as a Specific Form of Parametric Control of Actions: Empirical Demonstrations. In: Referent control of action and perception. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2736-4_3

Download citation

Publish with us

Policies and ethics