Skip to main content

Incorporating Managerial Information into Real Option Valuation

  • Chapter
Commodities, Energy and Environmental Finance

Part of the book series: Fields Institute Communications ((FIC,volume 74))

Abstract

The adoption of real options analysis (ROA) by practitioners, despite being widely viewed as a superior method for valuing managerial flexibility, remains limited due to varied difficulties in its implementation. In this work, we propose an approach that utilizes cash-flow estimates from managers as key inputs and results in project value cash-flows that exactly match the arbitrarily distributed estimates. We achieve this through the introduction of an observable, but not tradable, market stochastic driver process which drives the project’s cash-flow, rather than modeling the project value directly. Our framework can be used to value managerial flexibilities and obtain hedges in an easy to implement manner for a variety of real options such as entry/exit, multistage, abandonment, etc. As well, our approach to ROA provides a co-dependence between cash-flows, is consistent with financial theory, requires minimal subjective input of model parameters, and bridges the gap between theoretical ROA frameworks and practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This can be easily generalized to a project which pays out a continuous dividend.

  2. 2.

    In earlier versions of this work, we referred to this process as the market sector indicator.

  3. 3.

    In principle, it is possible to consider the cash-flow as a continuous stream of cash-flows, in which case (17a) would be modified to \(\mathit{dX}_{s} = (\mu -r)\pi _{s}\,\mathit{ds} +\sigma \,\pi _{s}\,\mathit{dB}_{s} +\varphi _{s}(S_{s})\,\mathit{ds}\). However, Managers rarely specify a continuous stream of cash-flows, and although operations can be viewed as providing income on a continuous basis, we opt to leave the cash-flows discrete as this is how managers typically estimate cash-flow streams.

  4. 4.

    Since we have diffusion processes driving the relevant dynamics.

References

  1. Ané, T., Kharoubi, C.: Dependence structure and risk measure. J. Bus. 76(3), 411–438 (2003)

    Article  Google Scholar 

  2. Berk, J., Green, R., Naik, V.: Valuation and return dynamics of new ventures. Rev. Financ. Stud. 17(1), 1–35 (2004)

    Article  Google Scholar 

  3. Borison, A.: Real options analysis: where are the emperor’s clothes? J. Appl. Corp. Finance 17(2), 17–31 (2005)

    Article  Google Scholar 

  4. Carlos, J., Nunes, J.: Pricing real options under the constant elasticity of variance diffusion. J. Futur. Mark. 31(3), 230–250 (2011)

    Article  Google Scholar 

  5. Carmona, R. (ed.): Indifference Pricing: Theory and Applications. Princeton University Press, Princeton (2008)

    Google Scholar 

  6. Copeland, T., Antikarov, V.: Real Options: A Practitioner’s Guide. W. W. Norton and Company, New York (2001)

    Google Scholar 

  7. Datar, V., Mathews, S.: European real options: an intuitive algorithm for the black- scholes formula. J. Appl. Finance 14(1), 45–51 (2004)

    Google Scholar 

  8. Davis, M.: Option pricing in incomplete markets. In:Mathematics of Derivative Securities, pp. 216–226. The Newton Institute, Cambridge University Press, Cambridge (1998)

    Google Scholar 

  9. Dixit, A., Pindyck, R.: Investment Under Uncertainty. Princeton University Press, Princeton (1994)

    Google Scholar 

  10. Föllmer, H., Schweizer, M.: Hedging of contingent claims under incomplete information. In: Davis, M.H., Elliott, R.J. (eds.) Applied Stochastic Analysis: Stochastics Monographs, pp. 389–414. Gordon and Breach, London (1991)

    Google Scholar 

  11. Grasselli, M.: Getting real with real options: a utility-based approach for finite-time investment in incomplete markets. J. Bus. Finance Account. 38(5&6), 740–764 (2011)

    Article  Google Scholar 

  12. Henderson, V.: Valuing the option to invest in an incomplete market. Math. Finan. Econ. 1, 103–128 (2007)

    Article  Google Scholar 

  13. Hugonnier, J., Morellec, E.: Corporate control and real investment in incomplete markets. J. Econ. Dyn. Control. 31, 1781–1800 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leung, T., Sircar, R.: Accounting for risk aversion, vesting, job termination risk and multiple exercises in valuation of employee stock options. Math. Financ. 19(1), 99–128 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Metcalf, G., Hasset, K.: Investment under alternative return assumptions. comparing random walk and mean revertion. J. Econ. Dyn. Control. 19, 1471–1488 (1995)

    MATH  Google Scholar 

  16. Miao, J., Wang, N.: Investment, consumption, and hedging under incomplete markets. J. Financ. Econ. 86(3), 608–42 (2007)

    Article  Google Scholar 

  17. Nelsen, R.B.: An Introduction to Copulas. Springer, New York (2006)

    MATH  Google Scholar 

  18. Oriani, R., Sobrero, M.: Uncertainty and the market valuation of R&D within a real options logic. Strateg. Manag. J. 29(4), 343–361 (2008)

    Article  Google Scholar 

  19. Pham, H.: Continuous-time Stochastic Control and Optimization with Financial Applications. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  20. Sarkar, S.: The effect of mean reversion on investment under uncertainty. J. Econ. Dyn. Control. 28, 377–396 (2003)

    Article  MATH  Google Scholar 

  21. Trigeorgis, L.: Real Options: Managerial Flexibility and Strategy in Resource Allocation. MIT Press, Cambridge (1996)

    Google Scholar 

  22. Tsekrekos, A.E.: The effect of mean reversion on entry and exit decisions under uncertainty. J. Econ. Dyn. Control. 34(4), 725–742 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

SJ would like to thank NSERC for partially funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Jaimungal .

Editor information

Editors and Affiliations

Appendix: Proof of Results

Appendix: Proof of Results

In this Appendix we provide concise proofs of the main results.

1.1 Proof of Proposition 1

We seek \(\varphi (.)\) such that \(\mathbb{P}(\varphi (S_{T}) \leq v\vert \mathcal{F}_{0}) = F^{{\ast}}(v)\). Since,

$$\displaystyle{S_{T}\vert _{\mathcal{F}_{0}}\stackrel{d}{=}S_{0}\exp \left \{(\nu -\tfrac{1} {2}\eta ^{2})T +\eta \sqrt{T}Z\right \}\quad \text{where}\quad Z\mathop{ \sim }\limits_{\mathbb{P}}\mathcal{N}(0,1),}$$

we have that

$$\displaystyle{ \mathbb{P}(\varphi (S_{T}) \leq v\vert \mathcal{F}_{0}) =\varPhi \left (\frac{\ln \frac{\varphi ^{-1}(v)} {S_{0}} - (\nu -\frac{1} {2}\eta ^{2})T} {\eta \sqrt{T}} \right ) \triangleq F^{{\ast}}(v)\,. }$$
(40)

Consequently, if F ∗(. ) is invertible then

$$\displaystyle{ \varphi (S) = F^{{\ast}-1}\left (\varPhi \left (\frac{\ln \frac{S} {S_{0}} - (\nu -\frac{1} {2}\eta ^{2})T} {\eta \sqrt{T}} \right )\right ) }$$
(41)

and the proof is complete. □ 

1.2 Proof of Proposition 2

Here, we prove that the co-dependence structure of the cash-flow distribution is governed by a Gaussian copula. We require the following joint distribution function:

$$\displaystyle\begin{array}{rcl} & & \mathbb{P}(V _{1} < v_{1},\ldots,V _{n} < v_{n}) {}\\ & & = \mathbb{P}(\varphi _{1}(S_{T_{1}}) < v_{1},\ldots,\varphi _{n}(S_{T_{n}}) < v_{n}) {}\\ & & = \mathbb{P}(F_{1}^{{\ast}-1}\left (\varPhi (z(T_{ 1},S_{T_{1}}))) < v_{1},\ldots,F_{n}^{{\ast}-1}(\varPhi (z(T_{ n},S_{T_{n}}))) < v_{n}\right )\,, {}\\ \end{array}$$

where \(z(T,S) = \frac{1} {\eta \sqrt{T}}\ln \frac{S} {S_{0}} -\frac{\nu -\frac{1} {2} \eta ^{2}} {\eta } \sqrt{T}\). Clearly,

$$\displaystyle{S_{T_{k}}\stackrel{d}{=}S_{0}\,\exp \left \{(\nu -\frac{1} {2}\eta ^{2})T_{ k} +\eta \sqrt{T_{k}}\,Z_{k}\right \}}$$

where \(\{Z_{1},\ldots,Z_{k}\}\) are jointly normal with mean zero and covariance matrix \(\varOmega _{\mathit{ij}} = \sqrt{T_{\min (i,j) } /T_{\max (i,j)}}\).

Since each distribution function F k ∗ is assumed invertible, we then have

$$\displaystyle\begin{array}{rcl} \mathbb{P}(V _{1} < v_{1},\ldots,V _{n} < v_{n})& =& \mathbb{P}\left (Z_{1} <\varPhi ^{-1}\left (F_{ 1}^{{\ast}}(v_{ 1})\right ),\ldots,Z_{n} <\varPhi ^{-1}\left (F_{ n}^{{\ast}}(v_{ n})\right )\right ) {}\\ & =& \varPhi _{\varOmega }\left (\varPhi ^{-1}\left (F_{ 1}^{{\ast}}(v_{ 1})\right ),\ldots,\varPhi ^{-1}\left (F_{ n}^{{\ast}}(v_{ n})\right )\right )\;. {}\\ \end{array}$$

This completes the proof. □ 

1.3 Proof of Theorem 1

Here we provide a sketch of the proof. The first order condition in the HJB equations (18) and (19) provide the optimal investment policy in feedback control form as

$$\displaystyle{ \pi ^{(a)} = -\frac{(\mu -r)\partial _{x}V ^{(a)} +\rho \eta \sigma S\partial _{\mathit{ xS}}V ^{(a)}} {\sigma ^{2}\partial _{\mathit{xx}}V ^{(a)}}. }$$
(42)

The HJB equations then reduce to

$$\displaystyle{ \left (\partial _{t} + \mathcal{L}_{S}\right )V ^{(a)} -\dfrac{1} {2} \frac{\left [(\mu -r)\partial _{x}V ^{(a)} +\rho \eta \sigma S\partial _{\mathit{xS}}V ^{(a)}\right ]^{2}} {\sigma ^{2}\partial _{\mathit{xx}}V ^{(a)}} = 0, }$$
(43)

subject to the appropriate terminal conditions. Writing

$$\displaystyle{V ^{(a)}(t,x,S,I) = V ^{(0)}(t,x,I)h^{(a)}(t,S),}$$

the above PDE reduces to

$$\displaystyle{ \left (\partial _{t} + \mathcal{L}_{S}\right )h^{(a)}(t,S) +\rho \eta \lambda \, S\partial _{ S}h^{(a)}(t,S) + (\rho \eta )^{2}\frac{(S\partial _{S}h^{(a)}(t,S))^{2}} {h(t,S)} = 0, }$$
(44)

Now setting \(h^{(a)}(t,S) = \left (H^{(a)}(t,S)\right )^{\beta }\) after some tedious computations, the above non-linear PDEs for h (a) reduces into the linear PDEs (23) and (24) for H (a). Moreover, the boundary conditions for V (a) become the stated boundary conditions for H (a). Since classical solutions exist for the linear PDE system (23) and (24), and the resulting feedback controls are admissible, the usual arguments imply that the solution of DPE is the solution to the original optimal control problem. The uniqueness of S ∗ follows from the fact the terminal conditions and the subsequent pasting conditions are decreasing functions of S. Hence, the H function inherits this property and, therefore, the solution to (25) is unique. □ 

1.4 Proof of Theorem 2

Here we provide a sketch of the proof. The first order condition in the HJB equations (46) and (35a) provide the optimal investment policy in feedback control form as (a = 3, 4)

$$\displaystyle{ \pi ^{(a)} = -\frac{(\mu -r)\partial _{x}V ^{(a)} +\rho \eta \sigma S\partial _{\mathit{ xS}}V ^{(a)}} {\sigma ^{2}\partial _{\mathit{xx}}V ^{(a)}}. }$$
(45)

The DPEs then reduce to

$$\displaystyle{ \begin{array}{ll} &\max \Bigg\{\left (\partial _{t} + \mathcal{L}_{S}\right )V ^{(4)} -\dfrac{1} {2} \frac{\left [(\mu -r)\partial _{x}V ^{(4)}+\rho \eta \sigma S\partial _{\mathit{ xS}}V ^{(4)}\right ]^{2}} {\sigma ^{2}\partial _{\mathit{xx}}V ^{(4)}} \,; \\ &\qquad \qquad \qquad \qquad \qquad \qquad V ^{(0)}(t,x - C,S,I) - V ^{(4)}(t,x,S,I)\Bigg\} = 0, \end{array} }$$
(46)

and

$$\displaystyle{ \left (\partial _{t} + \mathcal{L}_{S}\right )V ^{(3)} -\dfrac{1} {2} \frac{\left [(\mu -r)\partial _{x}V ^{(3)} +\rho \eta \sigma S\partial _{\mathit{xS}}V ^{(3)}\right ]^{2}} {\sigma ^{2}\partial _{\mathit{xx}}V ^{(3)}} = 0, }$$
(47)

subject to the appropriate terminal conditions. Writing

$$\displaystyle{V ^{(a)}(t,x,S,I) = V ^{(0)}(t,x,I)h^{(a)}(t,S),}$$

and setting \(h^{(a)}(t,S) = \left (H^{(a)}(t,S)\right )^{\beta }\) after some tedious computations, the above non-linear DPEs for h (a) reduce into the linear DPEs (36) and (37) for H (a). Moreover, the boundary conditions for V (a) become the stated boundary conditions for H (a). Standard results imply that the viscosity solution of the linear DPE system (36) and (37) is the solution to the original optimal control problem. The exercise point S ∗ is unique once again due to the boundary conditions and pasting conditions being decreasing in S. □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jaimungal, S., Lawryshyn, Y. (2015). Incorporating Managerial Information into Real Option Valuation. In: Aïd, R., Ludkovski, M., Sircar, R. (eds) Commodities, Energy and Environmental Finance. Fields Institute Communications, vol 74. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2733-3_8

Download citation

Publish with us

Policies and ethics