Skip to main content

Cross-Commodity Modelling by Multivariate Ambit Fields

  • Chapter
Commodities, Energy and Environmental Finance

Part of the book series: Fields Institute Communications ((FIC,volume 74))

Abstract

This paper proposes a multivariate model for commodity forward curves which is based on multivariate ambit fields. We show how a multivariate ambit field can be used to describe complex dependencies between commodities while staying in a tractable multivariate martingale framework. Moreover, we study in detail how spread options can be priced in our new ambit framework. Here we consider both calendar spreads written on one commodity as well as spread options on different commodity futures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Audet, N., Heiskanen, P., Keppo, J., Vehviläinen, I.: Modeling electricity forward curve dynamics in the Nordic Market. In: Bunn, D.W. (ed.) Modelling Prices in Competitive Electricity Markets, pp. 251–265. Wiley, New York (2004)

    Google Scholar 

  2. Barndorff-Nielsen, O.E., Pedersen, J.: Meta-times and extended subordination. Theory Probab. Appl. 56(2), 319–327 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barndorff-Nielsen, O.E., Schmiegel, J.: Lévy-based tempo-spatial modelling; with applications to turbulence. Uspekhi Mat. NAUK 59, 65–91 (2004)

    Article  MathSciNet  Google Scholar 

  4. Barndorff-Nielsen, O.E., Shiryaev, A.: Change of Time and Change of Measure. Advanced Series on Statistical Science and Applied Probability, vol. 13. World Scientific, Singapore (2010)

    Google Scholar 

  5. Barndorff-Nielsen, O.E., Stelzer, R.: Multivariate SupOU processes. Ann. Appl. Probab. 21(1), 140–182 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barndorff-Nielsen, O.E., Benth, F.E., Veraart, A.E.D.: Modelling energy spot prices by volatility modulated Lévy-driven Volterra processes. Bernoulli 19(3), 803–845 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barndorff-Nielsen, O.E., Benth, F.E., Veraart, A.E.D.: Modelling electricity futures by ambit fields. Adv. Appl. Probab. 46(3), 719–745 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Barndorff-Nielsen, O.E., Benth, F.E., Veraart, A.E.D.: Recent advances in ambit stochastics with a view towards tempo-spatial stochastic volatility/intermittency. Banach Center Publications 104, 25–60 (2015)

    Article  Google Scholar 

  9. Barndorff-Nielsen, O.E., Lunde, A., Shephard, N., Veraart, A.E.D.: Integer-valued trawl processes: a class of stationary infinitely divisible processes. Scand. J. Stat. 41, 693–724 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Basse-O’Connor, A., Graversen, S.-E., Pedersen, J.: A unified approach to stochastic integration on the real line. Theory Probab. Appl. 58, 355–380 (2013)

    MathSciNet  Google Scholar 

  11. Benth, F.E., Zdanowicz, H.: Pricing energy spread options. In:  Roncoroni, A.  Fusai, G.,  Cummins, M. (eds.) Handbook of Multi-Commodity Markets and Products: Structuring, Trading and Risk Management. Wiley, New York (2014)

    Google Scholar 

  12. Benth, F.E., Di Nunno, G., Khedher, A., Schmeck, M.D.: Pricing of spread options on a bivariate jump market and stability to model risk. Appl. Math. Finance 22(1), 28–62 (2015)

    Article  MathSciNet  Google Scholar 

  13. Bichteler, K., Jacod, J.: Random measures and stochastic integration. In:  Kallianpur, G. (ed.) Theory and Application of Random Fields. Lecture Notes in Control and Information Sciences, vol. 49, pp. 1–18. Springer, Berlin/Heidelberg (1983)

    Chapter  Google Scholar 

  14. Bjerksund, P., Rasmussen, H., Stensland, G.: Valuation and risk management in the Nordic electricity market. In: Bjørndal, P.M.P.E.,  Bjørndal, M., Pardalos, P.,  Rönnqvist, M. (eds.) Energy, Natural Resources and Environmental Economics, pp. 167–185. Springer, Berlin (2010)

    Chapter  Google Scholar 

  15. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    Article  MATH  Google Scholar 

  16. Bollerslev, T.: Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. Rev. Econ. Stat. 72(3), 498–505 (1990)

    Article  Google Scholar 

  17. Carmona, R., Durrleman, V.: Pricing and hedging spread options. SIAM Rev. 45(4), 627–685 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cheang, G.H.L., Chiarella, C.: Exchange options under jump-diffusion dynamics. Appl. Math. Finance 18(3), 245–276 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chong, C., Klüppelberg, C.: Integrability conditions for space-time stochastic integrals: theory and applications. Bernoulli (2015, in press)

    Google Scholar 

  20. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Financial Mathematics Series. Chapman & Hall, Boca Raton (2004)

    MATH  Google Scholar 

  21. Eberlein, E., Glau, K., Papapantoleon, A.: Analysis of Fourier transform valuation formulas and applications. Appl. Math. Finance 17(3), 211–240 ( 2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Goutis, C., Casella, G.: Explaining the saddlepoint approximation. Am. Stat. 53(3), 216–224 (1999)

    MathSciNet  Google Scholar 

  23. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60(1), 77–105 ( 1992)

    Article  MATH  Google Scholar 

  24. Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 42(2), 281–300 (1987)

    Article  Google Scholar 

  25. Hurd, T.R., Zhou, Z.: A Fourier transform method for spread option pricing. SIAM J. Financ. Math. 1(1), 142–157 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kennedy, D.P.: The term structure of interest rates as a Gaussian random field. Math. Finance 4(3), 247–258 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kennedy, D.P.: Characterizing Gaussian models of the term structure of interest rates. Math. Finance 7(2), 107–116 (1997)

    Article  MATH  Google Scholar 

  28. Margrabe, W.: The value of an option to exchange one asset for another. J. Finance 33(1), 177–186 (1978)

    Article  Google Scholar 

  29. Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions, 3rd edn. Universitext. Springer, Berlin (2009)

    Google Scholar 

  30. Rajput, B., Rosinski, J.: Spectral representation of infinitely divisible distributions. Probab. Theory Relat. Fields 82, 451–487 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Veraart, A.E.D., Veraart, L.A.M.: Modelling electricity day-ahead prices by multivariate Lévy semi-stationary processes. In: Benth, F.E.,  Kholodnyi, V.,  Laurence, P. (eds.) Wolfgang Pauli Proceedings, pp. 157–188. Springer, New York (2014)

    Google Scholar 

  32. Walsh, J.: An introduction to stochastic partial differential equations. In: Carmona, R., Kesten, H., Walsh, J. (eds.) Lecture Notes in Mathematics, vol. 1180. Ecole d’Eté de Probabilités de Saint–Flour XIV—1984. Springer, New York (1986)

    Google Scholar 

Download references

Acknowledgements

We wish to thank the editors and the referee for constructive comments on an earlier draft of this article.

F.E. Benth acknowledges financial support by the Norwegian Research Council within the project “Managing Weather Risk in Electricity Markets” (MAWREM).

A.E.D. Veraart acknowledges financial support by a Marie Curie FP7 Career Integration Grant within the 7th European Union Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almut E. D. Veraart .

Editor information

Editors and Affiliations

Appendix: Proofs

Appendix: Proofs

In the following, we provide the proofs of our main results.

1.1 Proof of Proposition 1

As Y j (t, T) is assumed to have an exponential moment, F j (t, T) is integrable. We have

$$ \displaystyle\begin{array}{rcl} & & F_{j}(t,T) = F_{j}(s,T)\exp \left (\int _{A_{j}^{s}(t)}\mu _{j}(T;u,\xi )\mathit{du}d\xi +\int _{A_{j}^{s}(t)}g_{j}(T;u,\xi )\sigma _{j}(u,\xi )W_{j}(\mathit{du},d\xi )\right. {}\\ & & \qquad \qquad \left.+\int _{A_{j}^{s}(t)}\int _{\mathbb{R}}\mathit{zh}_{j}(T;u,\xi )\tilde{J}_{L_{j}}(\mathit{dz},\mathit{du},d\xi )\right ), {}\\ \end{array} $$

for s ≤ t. Hence

$$\displaystyle{ \mathbb{E}\left [F_{j}(t,T)\,\vert \,\mathcal{F}_{s}\right ] = F_{j}(s,T)\mathbb{E}\left [\exp (Z_{j}(s,t,T))\,\vert \,\mathcal{F}_{s}\right ]\,, }$$

with

$$ \displaystyle\begin{array}{rcl} & & Z_{j}(s,t,T) =\int _{A_{j}^{s}(t)}\mu _{j}(T;u,\xi )\mathit{dud}\xi +\int _{A_{j}^{s}(t)}g_{j}(T;u,\xi )\sigma _{j}(u,\xi )W_{j}(\mathit{du},d\xi ) {}\\ & & \qquad \qquad \quad +\int _{A_{j}^{s}(t)}\int _{\mathbb{R}}\mathit{zh}_{j}(T;u,\xi )\tilde{J}_{L_{j}}(\mathit{dz},\mathit{du},d\xi ). {}\\ \end{array} $$

The martingale property follows if \(\mathbb{E}[\exp (Z_{j}(s,t,T))\,\vert \,\mathcal{F}_{s}] = 1\) for all s ≤ t ≤ T. But by double conditioning using \(\mathcal{F}^{\sigma _{j}} \vee \mathcal{F}^{\mu _{j}} \vee \mathcal{F}_{s}\) we have, by independence of the two stochastic integrals,

$$ \displaystyle\begin{array}{rcl} & & \mathbb{E}\left [\exp (Z_{j}(s,t,T))\,\vert \,\mathcal{F}_{s}\right ] {}\\ & & = \mathbb{E}\left [\exp \left (\int _{A_{j}^{s}(t)}\mu _{j}(T;u,\xi )\mathit{dud}\xi + \frac{1} {2}\int _{A_{j}^{s}(t)}g_{j}^{2}(T;u,\xi )\sigma _{ j}^{2}(u,\xi )\mathit{dud}\xi \right.\right. {}\\ & & \quad \left.\left.\left.+\int _{A_{j}^{s}(t)}\int _{\mathbb{R}}e^{zh_{j}(T;u,\xi )} - 1 - zh_{ j}(T;u,\xi )\nu _{L_{j}}(\mathit{dz})\mathit{dud}\xi \right )\,\right \vert \,\mathcal{F}_{s}\right ]. {}\\ \end{array} $$

But this is equal to one by assumption. Then the result follows.

1.2 Proof of Proposition 2

Using Itô’s formula, we get

$$\displaystyle\begin{array}{rcl} F_{j}(t,T)& =& F_{j}(0,T) +\int _{ 0}^{t}F_{ j}(s-,T)d_{s}Y _{j}(s,T) + \frac{1} {2}\int _{0}^{t}F_{ j}(s-,T)d_{s}[Y ]_{j}^{c}(s,T) {}\\ & & +\sum _{0\leq s\leq t}\varDelta _{s}F_{j}(s,T) - F_{j}(s-,T)\varDelta _{s}Y _{j}(s,T) {}\\ & =& F_{j}(0,T) +\int _{ 0}^{t}F_{ j}(s-,T)d_{s}Y _{j}(s,T) + \frac{1} {2}\int _{0}^{t}F_{ j}(s-,T)d_{s}[Y ]_{j}^{c}(s,T) {}\\ & & +\sum _{0\leq s\leq t}F_{j}(s-,T)\left (\exp (\varDelta _{s}Y _{j}(s,T)) - 1 -\varDelta _{s}Y _{j}(s,T)\right ) {}\\ & =& F_{j}(0,T) +\int _{A_{j}^{0}(t)}F_{j}(s-,T)g_{j}(T;s,\xi )\sigma _{j}(s,\xi )W_{j}(\mathit{ds},d\xi ) {}\\ & & +\int _{A_{j}^{0}(t)}\int _{\mathbb{R}}F_{j}(s-,T)\left (e^{\mathit{zh}_{j} (T;s,\xi )} - 1\right )\tilde{J}_{ L_{j}}(\mathit{dz},\mathit{ds},d\xi ). {}\\ \end{array}$$

Note that we have applied the Itô formula to the process \((F_{j}(t,T))_{0\leq t\leq T}\) for fixed T. From Proposition 1 we deduce that this process is indeed a martingale and hence we can apply the classical Itô formula when we fix the parameter T. The corresponding results on the quadratic variation of Y are direct consequences of the Walsh-integration theory.

1.3 Proof of Proposition 8

Formula (16) is a direct consequence of [21, Theorem 2.2] and the functional form of \(\hat{f}\) has been derived in [21, Example 5.1]. Finally, we need to compute the extended characteristic function \(\mathbb{E}_{0}^{\tilde{\mathbb{P}}}\left [\exp (i\theta (R,u)Z(t))\right ]\), where we set \(\theta =\theta (R,u) \in \mathbb{C}\) in the proof to simplify the exposition.

For fixed t define the two random variables

$$\displaystyle\begin{array}{rcl} Z_{1}(t)&:=& \int _{A_{1}^{0}(t)}(-g_{1}(T_{1};s,\xi ) + g_{1}(T_{2};s,\xi ))\sigma _{1}(s,\xi )\hat{W}_{1}(\mathit{ds},d\xi ) {}\\ & & -\frac{1} {2}\int _{A_{1}^{0}(t)}(-g_{1}(T_{1};s,\xi ) + g_{1}(T_{2};s,\xi ))^{2}\sigma _{ 1}^{2}(s,\xi )\mathit{dsd}\xi {}\\ Z_{2}(t)&:=& \int _{A_{1}^{0}(t)}\int _{\mathbb{R}}(z_{1}h_{1}(T_{2};s,\xi ) - z_{1}h_{1}(T_{1};s,\xi ))\hat{N}_{1}(\mathit{dz}_{1},\mathit{ds},d\xi ) {}\\ & & -\int _{A_{1}^{0}(t)}\int _{\mathbb{R}}(z_{1}h_{1}(T_{2};s,\xi ) - z_{1}h_{1}(T_{1};s,\xi )) + 1 -\exp (z_{1}h_{1}(T_{2};s,\xi ) {}\\ & & -z_{1}h_{1}(T_{1};s,\xi ))\nu _{L_{1},\tilde{\mathbb{P}}}(\mathit{dz}_{1})\mathit{dsd}\xi. {}\\ \end{array}$$

Note that the σ-algebra σ(Z 2(t)) is independent of \(\sigma (\mathcal{F}_{0},Z_{1}(t))\) (assuming a suitable choice of the underlying filtration \((\mathcal{F}_{t})\)). Hence

$$\displaystyle\begin{array}{rcl} \mathbb{E}_{0}^{\tilde{\mathbb{P}}}\left [\exp (i\theta Z(t))\right ] = \mathbb{E}_{ 0}^{\tilde{\mathbb{P}}}\left [\exp (i\theta Z_{ 1}(t))\right ]\mathbb{E}^{\tilde{\mathbb{P}}}\left [\exp (i\theta Z_{ 2}(t))\right ],& & {}\\ \end{array}$$

where

$$\displaystyle\begin{array}{rcl} & & \mathbb{E}_{0}^{\tilde{\mathbb{P}}}\left [\exp (i\theta Z_{ 1}(t))\right ] {}\\ & & = \mathbb{E}_{0}^{\tilde{\mathbb{P}}}\left [\exp \left (\left (-\frac{\theta ^{2}} {2} - \frac{i\theta } {2}\right )\int _{A_{1}^{0}(t)}(-g_{1}(T_{1};s,\xi ) + g_{1}(T_{2};s,\xi ))^{2}\sigma _{ 1}^{2}(s,\xi )\mathit{dsd}\xi \right )\right ], {}\\ \end{array}$$

where we conditioned on \(\mathcal{F}^{\sigma _{1}}\). For the jump part, we have

$$\displaystyle\begin{array}{rcl} & & \mathbb{E}^{\tilde{\mathbb{P}}}\left [\exp (i\theta Z_{ 2}(t))\right ] {}\\ & & =\exp \left ((1 - i\theta )\int _{A_{1}^{0}(t)}\int _{\mathbb{R}}\left (e^{z_{1}(h_{1}(T_{2};s,\xi )-h_{1}(T_{1};s,\xi ))} - 1\right )\nu _{ L_{1},\tilde{\mathbb{P}}}(dz_{1})dsd\xi \right ). {}\\ \end{array}$$

1.4 Proof of Lemma 3

This follows directly from the martingale condition derived in Proposition 1 and a straightforward extension of the Girsanov theorem for Itô-Lévy processes, see e.g. [29, Theorem 1.33]. For the Poisson random measure, note that

$$\displaystyle\begin{array}{rcl} & & \hat{N}_{1,2}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi ) {}\\ & & =\tilde{ J}_{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi ) + (1 - e^{z_{1}h_{1}(T;s,\xi )})\nu _{ (L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dsd}\xi {}\\ & & = J_{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi ) -\nu _{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dsd}\xi {}\\ & & +(1 - e^{z_{1}h_{1}(T;s,\xi )})\nu _{ (L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dsd}\xi {}\\ & & = J_{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi ) - e^{z_{1}h_{1}(T;s,\xi )}\nu _{ (L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dsd}\xi, {}\\ \end{array}$$

denotes the compensated Poisson random measure under \(\tilde{\mathbb{P}}\).

1.5 Proof of Lemma 4

First of all, we apply the Itô formula for higher dimensions and get

$$\displaystyle\begin{array}{rcl} \frac{d\left (\frac{S_{2}(t)} {S_{1}(t)}\right )} {S_{2}(t-)/S_{1}(t-)}& =& -\frac{\mathit{dS}_{1}(t)} {S_{1}(t-)} + \frac{\mathit{dS}_{2}(t)} {S_{2}(t-)} + \frac{d[S_{1}]^{c}(t)} {S_{1}^{2}(t-)} - \frac{1} {S_{1}(t-)S_{2}(t-)}d[S_{1},S_{2}]^{c}(t) {}\\ & & + \frac{S_{1}(t-)} {S_{2}(t-)}\left (\frac{S_{2}(t)} {S_{1}(t)} -\frac{S_{2}(t-)} {S_{1}(t-)} -\varDelta S_{1}(t)\left (-\frac{S_{2}(t-)} {S_{1}^{2}(t-)}\right )\right. {}\\ & & \left.-\varDelta S_{2}(t)\left ( \frac{1} {S_{1}(t-)}\right )\right ) {}\\ & =& -\frac{\mathit{dS}_{1}(t)} {S_{1}(t-)} + \frac{\mathit{dS}_{2}(t)} {S_{2}(t-)} + \frac{d[S_{1}]^{c}(t)} {S_{1}^{2}(t-)} - \frac{1} {S_{1}(t-)S_{2}(t-)}d[S_{1},S_{2}]^{c}(t) {}\\ & & + \frac{S_{1}(t-)} {S_{2}(t-)}\varDelta \left (\frac{S_{2}(t)} {S_{1}(t)}\right ) -\varDelta S_{1}(t)\left (-\frac{S_{2}(t-)} {S_{1}^{2}(t-)}\right )\frac{S_{1}(t-)} {S_{2}(t-)} {}\\ & & -\varDelta S_{2}(t)\left ( \frac{1} {S_{1}(t-)}\right )\frac{S_{1}(t-)} {S_{2}(t-)} {}\\ &=& -\frac{\mathit{dS}_{1}(t)} {S_{1}(t-)} + \frac{\mathit{dS}_{2}(t)} {S_{2}(t-)} + \frac{d[S_{1}]^{c}(t)} {S_{1}^{2}(t-)} - \frac{1} {S_{1}(t-)S_{2}(t-)}d[S_{1},S_{2}]^{c}(t) {}\\ & & + \frac{1} {S_{2}(t-)/S_{1}(t-)}\varDelta \left (\frac{S_{2}(t)} {S_{1}(t)}\right ) + \frac{\varDelta S_{1}(t)} {S_{1}(t-)} - \frac{\varDelta S_{2}(t)} {S_{2}(t-)}. {}\\ \end{array}$$

Since

$$\displaystyle{ \frac{d[S_{1}]^{c}(t)} {S_{1}^{2}(t-)} =\int _{ 0}^{\infty }g_{ 1}^{2}(T;t,\xi )\sigma _{ 1}^{2}(t,\xi )\mathit{dtd}\xi, }$$

and

$$\displaystyle{ \frac{d[S_{1},S_{2}]^{c}(t)} {S_{1}(t-)S_{2}(t-)} =\int _{ 0}^{\infty }g_{ 1}(T;t,\xi )g_{2}(T;t,\xi )\sigma _{1}(t,\xi )\sigma _{2}(t,\xi )\rho \mathit{dtd}\xi, }$$

we have

$$\displaystyle\begin{array}{rcl} & & \frac{d\left (\frac{S_{2}(t)} {S_{1}(t)}\right )} {S_{2}(t-)/S_{1}(t-)} {}\\ & & = -\int _{0}^{\infty }g_{ 1}(T;t,\xi )\sigma _{1}(t,\xi )W_{1}(\mathit{dt},d\xi ) -\int _{0}^{\infty }\int _{ \mathbb{R}}\left (e^{\mathit{zh}_{1} (T;t,\xi )} - 1\right )\tilde{J}_{ L_{1}}(\mathit{dz},\mathit{dt},d\xi ) {}\\ & & \quad +\int _{ 0}^{\infty }g_{ 2}(T;t,\xi )\sigma _{2}(t,\xi )W_{2}(\mathit{dt},d\xi ) +\int _{ 0}^{\infty }\int _{ \mathbb{R}}\left (e^{\mathit{zh}_{2} (T;t,\xi )} - 1\right )\tilde{J}_{ L_{2}}(\mathit{dz},\mathit{dt},d\xi ) {}\\ & & \quad +\int _{ 0}^{\infty }g_{ 1}^{2}(T;t,\xi )\sigma _{ 1}^{2}(s,\xi )\mathit{dt}d\xi -\rho \int _{ 0}^{\infty }g_{ 1}(T;t,\xi )g_{2}(T;t,\xi )\sigma _{1}(t,\xi )\sigma _{2}(t,\xi )\mathit{dtd}\xi {}\\ & & \quad + \frac{1} {S_{2}(t-)/S_{1}(t-)}\varDelta \left (\frac{S_{2}(t)} {S_{1}(t)}\right ) +\int _{ 0}^{\infty }\int _{ \mathbb{R}}\left (e^{\mathit{zh}_{1} (T;t,\xi )} - 1\right )\tilde{J}_{ L_{1}}(\mathit{dz},\mathit{dt},d\xi ) {}\\ & & \quad -\int _{0}^{\infty }\int _{ \mathbb{R}}\left (e^{\mathit{zh}_{2} (T;t,\xi )} - 1\right )\tilde{J}_{ L_{2}}(\mathit{dz},\mathit{dt},d\xi ). {}\\ \end{array}$$

In the case of jumps of finite variation, we can further simplify and get

$$\displaystyle\begin{array}{rcl} & & \frac{d\left (\frac{S_{2}(t)} {S_{1}(t)}\right )} {S_{2}(t-)/S_{1}(t-)} {}\\ & & = -\int _{0}^{\infty }g_{ 1}(T;t,\xi )\sigma _{1}(t,\xi )W_{1}(\mathit{dt},d\xi ) +\int _{ 0}^{\infty }g_{ 2}(T;t,\xi )\sigma _{2}(t,\xi )W_{2}(\mathit{dt},d\xi ) {}\\ & & \quad +\int _{ 0}^{\infty }g_{ 1}^{2}(T;t,\xi )\sigma _{ 1}^{2}(t,\xi )\mathit{dtd}\xi -\rho \int _{ 0}^{\infty }g_{ 1}(T;t,\xi )g_{2}(T;t,\xi )\sigma _{1}(t,\xi )\sigma _{2}(t,\xi )\mathit{dtd}\xi {}\\ & & \quad + \frac{1} {S_{2}(t-)/S_{1}(t-)}\varDelta \left (\frac{S_{2}(t)} {S_{1}(t)}\right ). {}\\ \end{array}$$

In the general case—writing formally—we have

$$\displaystyle\begin{array}{rcl} & & \frac{1} {S_{2}(t-)/S_{1}(t-)}\varDelta \left (\frac{S_{2}(t)} {S_{1}(t)}\right ) {}\\ & & = \frac{S_{1}(t-)} {S_{2}(t-)}\varDelta \left (\frac{S_{2}(t)} {S_{1}(t)}\right ) = \frac{\exp (Y _{1}(t-,T)} {\exp (Y _{2}(t-,T))}\varDelta \left (\frac{\exp (Y _{2}(t,T)} {\exp (Y _{1}(t,T)}\right ) {}\\ & & = \frac{\exp (Y _{1}(t-,T)} {\exp (Y _{2}(t-,T))}\left (\frac{\exp (Y _{2}(t,T)} {\exp (Y _{1}(t,T)} -\frac{\exp (Y _{2}(t-,T)} {\exp (Y _{1}(t-,T)}\right ) {}\\ & & =\exp (Y _{1}(t-,T) - Y _{2}(t-,T))\left (\exp (Y _{2}(t,T) - Y _{1}(t,T))\right. {}\\ & & \left.-\exp (Y _{2}(t-,T) - Y _{1}(t-,T))\right ) {}\\ & & =\exp (\varDelta Y _{2}(t) -\varDelta Y _{1}(t)) - 1. {}\\ \end{array}$$

So altogether the finite variation jump term, has the form

$$\displaystyle{ \frac{1} {S_{2}(t-)/S_{1}(t-)}\varDelta \left (\frac{S_{2}(t)} {S_{1}(t)}\right )+ \frac{\varDelta S_{1}(t)} {S_{1}(t-)}- \frac{\varDelta S_{2}(t)} {S_{2}(t-)}=e^{\varDelta Y _{2}(t)-\varDelta Y _{1}(t)}+e^{\varDelta Y _{1}(t)}-e^{\varDelta Y _{2}(t)}-1. }$$

Summing up and using the joint Poisson random measure, we have

$$\displaystyle\begin{array}{rcl} & & \sum _{0\leq s\leq t}\left ( \frac{1} {S_{2}(s-)/S_{1}(s-)}\varDelta \left (\frac{S_{2}(s)} {S_{1}(s)}\right ) + \frac{\varDelta S_{1}(s)} {S_{1}(s-)} - \frac{\varDelta S_{2}(s)} {S_{2}(s-)}\right ) {}\\ & & =\int _{A_{j}(t)}\int _{\mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;s,\xi )-z_{1}h_{1}(T;s,\xi )} + e^{z_{1}h_{1}(T;s,\xi )} - e^{z_{2}h_{2}(T;s,\xi )} - 1\right ) {}\\ & & \qquad \quad \cdot J_{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi ). {}\\ \end{array}$$

Also,

$$\displaystyle\begin{array}{rcl} & & -\int _{A_{j}(t)}\int _{\mathbb{R}}\left (e^{z_{1}h_{1}(T;s,\xi )} - 1\right )\tilde{J}_{ L_{1}}(\mathit{dz}_{1},\mathit{ds},d\xi ) {}\\ & & \qquad +\int _{A_{j}(t)}\int _{\mathbb{R}}\left (e^{z_{2}h_{2}(T;s,\xi )} - 1\right )\tilde{J}_{ L_{2}}(\mathit{dz}_{2},\mathit{ds},d\xi ) {}\\ & & \qquad \qquad =\int _{A_{j}(t)}\int _{\mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;s,\xi )} - e^{z_{1}h_{1}(T;s,\xi )}\right )\tilde{J}_{ (L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi ). {}\\ \end{array}$$

Adding the jump terms, we get

$$\displaystyle\begin{array}{rcl} & & \int _{A_{j}(t)}\int _{\mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;s,\xi )} - e^{z_{1}h_{1}(T;s,\xi )}\right )\tilde{J}_{ (L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi ) {}\\ & & \quad +\int _{A_{j}(t)}\int _{\mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;s,\xi )-z_{1}h_{1}(T;s,\xi )} + e^{z_{1}h_{1}(T;s,\xi )} - e^{z_{2}h_{2}(T;s,\xi )} - 1\right ) {}\\ & & \qquad \quad \cdot J_{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi ) {}\\ & & =\int _{A_{j}(t)}\int _{\mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;s,\xi )-z_{1}h_{1}(T;s,\xi )} - 1\right )\tilde{J}_{ (L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi ) {}\\ & & \quad +\int _{A_{j}(t)}\int _{\mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;s,\xi )-z_{1}h_{1}(T;s,\xi )} - 1 + e^{z_{1}h_{1}(T;s,\xi )} - e^{z_{2}h_{2}(T;s,\xi )}\right ) {}\\ & & \qquad \quad \cdot \nu _{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dsd}\xi. {}\\ \end{array}$$

1.6 Proof of Proposition 9

This is a direct consequence of the preceding two lemmas. Note in particular, that for the Gaussian part, we have that W 1 and W 2 are Gaussian bases with correlation coefficient ρ, meaning that there exists a homogeneous, factorisable Gaussian basis W 3 (under \(\mathbb{P}\)) such that \(W_{2} =\rho W_{1} + \sqrt{1 -\rho ^{2}}W_{3}\). Under the new measure \(\tilde{\mathbb{P}}\), we have that W 3 does not change and

$$\displaystyle\begin{array}{rcl} \hat{W}_{1}(\mathit{ds},d\xi )& =& W_{1}(\mathit{ds},d\xi ) - g_{1}(T;s,\xi )\sigma (s,\xi )\mathit{dsd}\xi, {}\\ \hat{W}_{3}(\mathit{ds},d\xi )& =& W_{3}(\mathit{ds},d\xi ), {}\\ \hat{W}_{2}(\mathit{ds},d\xi )& =& \rho \hat{W}_{1}(\mathit{ds},d\xi ) + \sqrt{1 -\rho ^{2}}\hat{W}_{3}(\mathit{ds},d\xi ) {}\\ & =& W_{2}(\mathit{ds},d\xi ) -\rho g_{1}(T;s,\xi )\sigma (s,\xi )\mathit{dsd}\xi, {}\\ \end{array}$$

are homogeneous, factorisable Gaussian bases under \(\tilde{\mathbb{P}}\), where \(\hat{W}_{1}\) and \(\hat{W}_{3}\) are independent and \(\hat{W}_{1}\) and \(\hat{W}_{2}\) have correlation coefficient ρ. So for the mixed Gaussian part, we have

$$\displaystyle\begin{array}{rcl} & & -\int _{0}^{\infty }g_{ 1}(T;t,\xi )\sigma _{1}(t,\xi )W_{1}(\mathit{dt},d\xi ) +\int _{ 0}^{\infty }g_{ 2}(T;t,\xi )\sigma _{2}(t,\xi )W_{2}(\mathit{dt},d\xi ) {}\\ & & \quad +\int _{ 0}^{\infty }g_{ 1}^{2}(T;t,\xi )\sigma _{ 1}^{2}(t,\xi )\mathit{dtd}\xi -\rho \int _{ 0}^{\infty }g_{ 1}(T;t,\xi )g_{2}(T;t,\xi )\sigma _{1}(t,\xi )\sigma _{2}(t,\xi )\mathit{dtd}\xi {}\\ & & = -\int _{0}^{\infty }g_{ 1}(T;t,\xi )\sigma _{1}(t,\xi )(W_{1}(\mathit{dt},d\xi ) - g_{1}(T;t,\xi )\sigma _{1}(t,\xi )\mathit{dtd}\xi ) {}\\ & & \quad +\int _{ 0}^{\infty }g_{ 2}(T;t,\xi )\sigma _{2}(t,\xi )(W_{2}(\mathit{dt},d\xi ) -\rho g_{1}(T;t,\xi )\sigma _{1}(t,\xi )\mathit{dtd}\xi ) {}\\ & & = -\int _{0}^{\infty }g_{ 1}(T;t,\xi )\sigma _{1}(t,\xi )\hat{W}_{1}(\mathit{dt},d\xi ) +\int _{ 0}^{\infty }g_{ 2}(T;t,\xi )\sigma _{2}(t,\xi )\hat{W}_{2}(\mathit{dt},d\xi ). {}\\ \end{array}$$

For the jump part, we have

$$\displaystyle\begin{array}{rcl} & & \int _{0}^{\infty }\int _{ \mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;t,\xi )-z_{1}h_{1}(T;t,\xi )} - 1\right )\tilde{J}_{ (L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{dt},d\xi ) {}\\ & & \quad +\int _{ 0}^{\infty }\int _{ \mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;t,\xi )-z_{1}h_{1}(T;t,\xi )} - 1 + e^{z_{1}h_{1}(T;t,\xi )} - e^{z_{2}h_{2}(T;t,\xi )}\right ) {}\\ & & \quad \qquad \cdot \nu _{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dtd}\xi {}\\ & & =\int _{ 0}^{\infty }\int _{ \mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;t,\xi )-z_{1}h_{1}(T;t,\xi )} - 1\right )(\hat{N}_{ 1,2}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{dt},d\xi ) + (e^{z_{1}h_{1}(T;t,\xi )} - 1) {}\\ & & \quad \qquad \cdot \nu _{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dtd}\xi ) {}\\ & & \quad +\int _{ 0}^{\infty }\int _{ \mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;t,\xi )-z_{1}h_{1}(T;t,\xi )} - 1 + e^{z_{1}h_{1}(T;t,\xi )} - e^{z_{2}h_{2}(T;t,\xi )}\right ) {}\\ & & \quad \qquad \cdot \nu _{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dtd}\xi {}\\ & & =\int _{ 0}^{\infty }\int _{ \mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;t,\xi )-z_{1}h_{1}(T;t,\xi )} - 1\right )\hat{N}_{ 1,2}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{dt},d\xi ) {}\\ & & \quad +\int _{ 0}^{\infty }\int _{ \mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;t,\xi )-z_{1}h_{1}(T;t,\xi )} - 1\right )(e^{z_{1}h_{1}(T;t,\xi )} - 1)\nu _{ (L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dtd}\xi {}\\ & & \quad +\int _{ 0}^{\infty }\int _{ \mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;t,\xi )-z_{1}h_{1}(T;t,\xi )} - 1 + e^{z_{1}h_{1}(T;t,\xi )} - e^{z_{2}h_{2}(T;t,\xi )}\right ) {}\\ & & \quad \qquad \cdot \nu _{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dtd}\xi {}\\ & & =\int _{ 0}^{\infty }\int _{ \mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;t,\xi )-z_{1}h_{1}(T;t,\xi )} - 1\right )\hat{N}_{ 1,2}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{dt},d\xi ). {}\\ \end{array}$$

Note in particular, that

$$\displaystyle\begin{array}{rcl} & & \hat{N}_{1,2}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{dt},d\xi ) {}\\ & & =\tilde{ J}_{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{dt},d\xi ) + (1 - e^{z_{1}h_{1}(T;t,\xi )})\nu _{ (L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dtd}\xi {}\\ & & = J_{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{dt},d\xi ) -\nu _{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dtd}\xi + (1 - e^{z_{1}h_{1}(T;t,\xi )}) {}\\ & & \qquad \cdot \nu _{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dtd}\xi {}\\ & & = J_{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{dt},d\xi ) - e^{z_{1}h_{1}(T;t,\xi )}\nu _{ (L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dtd}\xi, {}\\ \end{array}$$

i.e. \(\nu _{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\) has become \(e^{z_{1}h_{1}(T;t,\xi )}\nu _{(L_{ 1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2})\) under the new measure \(\tilde{\mathbb{P}}\). Overall, we get

$$\displaystyle{ \frac{d\left (\frac{S_{2}(t)} {S_{1}(t)}\right )} {S_{2}(t-)/S_{1}(t-)} = d\varXi (t), }$$

with

$$\displaystyle\begin{array}{rcl} & & d\varXi (t) = -\int _{0}^{\infty }g_{ 1}(T;t,\xi )\sigma _{1}(t,\xi )\hat{W}_{1}(\mathit{dt},d\xi ) +\int _{ 0}^{\infty }g_{ 2}(T;t,\xi )\sigma _{2}(t,\xi )\hat{W}_{2}(\mathit{dt},d\xi ) {}\\ & & \qquad \qquad +\int _{ 0}^{\infty }\int _{ \mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;t,\xi )-z_{1}h_{1}(T;t,\xi )} - 1\right )\hat{N}_{ 1,2}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{dt},d\xi ). {}\\ \end{array}$$

Note that this differential notation should be understood in the sense that we need to consider stochastic integration over the ambit sets \(A_{j}^{0}(t) = [0,t] \times [0,\infty )\). This implies that Ξ(0) = 0. Also, the initial value is given by \(\frac{S_{2}(0)} {S_{1}(0)} =\exp (Y _{2}(0,T) - Y _{1}(0,T))\), which depends on the corresponding stochastic integrals when we integrate over the range (−, 0] × [0, ). We can solve this stochastic differential equation using the stochastic exponential. More precisely, we have

$$\displaystyle\begin{array}{rcl} \frac{S_{2}(t)} {S_{1}(t)}& =& \frac{S_{2}(0)} {S_{1}(0)}\exp \left (\varXi (t) -\varXi (0) -\frac{1} {2}[\varXi ](t)\right ) {}\\ & & \qquad \cdot \prod _{0\leq s\leq t}(1 +\varDelta \varXi _{s})\exp \left (-\varDelta \varXi _{s} + \frac{1} {2}(\varDelta \varXi _{s})^{2}\right ) {}\\ & = &\frac{S_{2}(0)} {S_{1}(0)}\exp \left (\varXi (t) -\varXi (0) -\frac{1} {2}\langle \varXi \rangle ^{c}(t)\right )\prod _{ 0\leq s\leq t}(1 +\varDelta \varXi _{s})\exp \left (-\varDelta \varXi _{s}\right ). {}\\ \end{array}$$

Note that

$$\displaystyle\begin{array}{rcl} & & \log \left (\prod _{0\leq s\leq t}(1 +\varDelta \varXi _{s})\exp \left (-\varDelta \varXi _{s}\right )\right ) =\sum _{0\leq s\leq t}(\log (1 +\varDelta \varXi _{s}) -\varDelta \varXi _{s}) {}\\ & & =\int _{A_{j}^{0}(t)}\int _{\mathbb{R}^{2}}(z_{2}h_{2}(T;s,\xi ) - z_{1}h_{1}(T;s,\xi )) + 1 -\exp (z_{2}h_{2}(T;s,\xi ) {}\\ & & \quad - z_{1}h_{1}(T;s,\xi ))J_{(L_{1},L_{2})}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi ) {}\\ & & =\int _{A_{j}^{0}(t)}\int _{\mathbb{R}^{2}}(z_{2}h_{2}(T;s,\xi ) - z_{1}h_{1}(T;s,\xi )) + 1 -\exp (z_{2}h_{2}(T;s,\xi ) {}\\ & & \quad - z_{1}h_{1}(T;s,\xi ))\hat{N}_{1,2}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi ) {}\\ & & \quad +\int _{A_{j}^{0}(t)}\int _{\mathbb{R}^{2}}(z_{2}h_{2}(T;s,\xi ) - z_{1}h_{1}(T;s,\xi )) + 1 -\exp (z_{2}h_{2}(T;s,\xi ) {}\\ & & \quad - z_{1}h_{1}(T;s,\xi ))\hat{\nu }_{(L_{1},L_{2}),\tilde{\mathbb{P}}}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dsd}\xi. {}\\ \end{array}$$

From the jump terms we get the following overall contribution:

$$\displaystyle\begin{array}{rcl} & & \varXi (t)^{d} +\log \left (\prod _{ 0\leq s\leq t}(1 +\varDelta \varXi _{s})\exp \left (-\varDelta \varXi _{s}\right )\right ) {}\\ & & =\int _{A_{j}^{0}(t)}\int _{\mathbb{R}^{2}}(z_{2}h_{2}(T;s,\xi ) - z_{1}h_{1}(T;s,\xi ))\hat{N}_{1,2}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi ) {}\\ & & \quad +\int _{A_{j}^{0}(t)}\int _{\mathbb{R}^{2}}(z_{2}h_{2}(T;s,\xi ) - z_{1}h_{1}(T;s,\xi )) + 1 -\exp (z_{2}h_{2}(T;s,\xi ) {}\\ & & \quad - z_{1}h_{1}(T;s,\xi ))\hat{\nu }_{(L_{1},L_{2}),\tilde{\mathbb{P}}}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dsd}\xi. {}\\ \end{array}$$

Overall we have

$$\displaystyle{ \frac{S_{2}(t)} {S_{1}(t)} = \frac{S_{2}(0)} {S_{1}(0)}\exp (Z(t)), }$$

where

$$\displaystyle\begin{array}{rcl} Z(t)& =& -\int _{A_{j}^{0}(t)}g_{1}(T;s,\xi )\sigma _{1}(s,\xi )\hat{W}_{1}(\mathit{ds},d\xi ) +\int _{A_{j}^{0}(t)}g_{2}(T;s,\xi )\sigma _{2}(s,\xi )\hat{W}_{2}(\mathit{ds},d\xi ) {}\\ & & -\frac{1} {2}\int _{A_{j}^{0}(t)}g_{1}^{2}(T;s,\xi )\sigma _{ 1}^{2}(s,\xi )\mathit{dsd}\xi -\frac{1} {2}\int _{A_{j}^{0}(t)}g_{2}^{2}(T;s,\xi )\sigma _{ 2}^{2}(s,\xi )\mathit{dsd}\xi {}\\ & & +\rho \int _{A_{j}^{0}(t)}g_{1}(T;s,\xi )g_{2}(T;s,\xi )\sigma _{1}(s,\xi )\sigma _{2}(s,\xi )\mathit{dsd}\xi {}\\ & & +\int _{A_{j}^{0}(t)}\int _{\mathbb{R}^{2}}(z_{2}h_{2}(T;s,\xi ) - z_{1}h_{1}(T;s,\xi ))\hat{N}_{1,2}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi ) {}\\ & & +\int _{A_{j}^{0}(t)}\int _{\mathbb{R}^{2}}(z_{2}h_{2}(T;s,\xi ) - z_{1}h_{1}(T;s,\xi )) + 1 -\exp (z_{2}h_{2}(T;s,\xi ) {}\\ & & -z_{1}h_{1}(T;s,\xi ))\nu _{(L_{1},L_{2}),\tilde{\mathbb{P}}}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dsd}\xi. {}\\ \end{array}$$

1.7 Proof of Proposition 12

The first part of the proof is analogue to the proof of Proposition 8. Hence we only need to compute the extended characteristic function \(\mathbb{E}^{\tilde{\mathbb{P}}}\left [\exp (i\theta (R,u)Z(t))\right ]\), where we again set \(\theta =\theta (R,u) \in \mathbb{C}\). Then

$$\displaystyle{ \mathbb{E}_{0}^{\tilde{\mathbb{P}}}\left [\exp (i\theta Z(t))\right ] = \mathbb{E}_{ 0}^{\tilde{\mathbb{P}}}\left [\exp (i\theta Z_{ 1}(t))\right ]\mathbb{E}^{\tilde{\mathbb{P}}}\left [\exp (i\theta Z_{ 2}(t))\right ], }$$

where

$$\displaystyle\begin{array}{rcl} & & \mathbb{E}_{0}^{\tilde{\mathbb{P}}}\left [\exp (i\theta Z_{ 1}(t))\right ] {}\\ & &:= \mathbb{E}_{0}^{\tilde{\mathbb{P}}}\left [\exp \left (-i\theta \int _{ A_{j}^{0}(t)}g_{1}(T;s,\xi )\sigma _{1}(s,\xi )\hat{W}_{1}(\mathit{ds},d\xi )\right.\right. {}\\ & & \quad + i\theta \int _{A_{j}^{0}(t)}g_{2}(T;s,\xi )\sigma _{2}(s,\xi )\hat{W}_{2}(\mathit{ds},d\xi ) {}\\ & & \quad -\frac{1} {2}i\theta \int _{A_{j}^{0}(t)}g_{1}^{2}(T;s,\xi )\sigma _{ 1}^{2}(s,\xi )\mathit{dsd}\xi -\frac{1} {2}i\theta \int _{A_{j}^{0}(t)}g_{2}^{2}(T;s,\xi )\sigma _{ 2}^{2}(s,\xi )\mathit{dsd}\xi {}\\ & & \quad \left.\left.+\rho i\theta \int _{A_{j}^{0}(t)}g_{1}(T;s,\xi )g_{2}(T;s,\xi )\sigma _{1}(s,\xi )\sigma _{2}(s,\xi )\mathit{dsd}\xi \right )\right ] {}\\ & & = \mathbb{E}_{0}^{\tilde{\mathbb{P}}}\left [\exp \left (\left (-\frac{\theta ^{2}} {2} - \frac{i\theta } {2}\right )\int _{A_{1}^{0}(t)}(g_{1}^{2}(T;s,\xi )\sigma _{ 1}^{2}(s,\xi )\right.\right. {}\\ & & \qquad \left.\left.-2\rho g_{1}(T;s,\xi )g_{2}(T;s,\xi )\sigma _{1}(s,\xi )\sigma _{2}(s,\xi ) + g_{2}^{2}(T;s,\xi )\sigma _{ 2}^{2}(s,\xi ))dsd\xi \right )\right ], {}\\ \end{array}$$

where we conditioned on \(\mathcal{F}^{\sigma _{1}} \vee \mathcal{F}^{\sigma _{2}}\). For the jump part, we have

$$\displaystyle\begin{array}{rcl} & & \mathbb{E}^{\tilde{\mathbb{P}}}\left [\exp (i\theta Z_{ 2}(t))\right ] {}\\ & & \quad:= \mathbb{E}^{\tilde{\mathbb{P}}}\left [\exp \left (i\theta \int _{ A_{1}^{0}(t)}\int _{\mathbb{R}^{2}}(z_{2}h_{2}(T;s,\xi ) - z_{1}h_{1}(T;s,\xi ))\hat{N}_{1,2}(\mathit{dz}_{1},\mathit{dz}_{2},\mathit{ds},d\xi )\right.\right. {}\\ & & \qquad + i\theta \int _{A_{1}^{0}(t)}\int _{\mathbb{R}^{2}}(z_{2}h_{2}(T;s,\xi ) - z_{1}h_{1}(T;s,\xi )) + 1 -\exp (z_{2}h_{2}(T;s,\xi ) {}\\ & & \qquad \left.\left.-z_{1}h_{1}(T;s,\xi ))\nu _{(L_{1},L_{2}),\tilde{\mathbb{P}}}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dsd}\xi \right )\right ] {}\\ & & =\exp \left ((1 - i\theta )\int _{A_{1}^{0}(t)}\int _{\mathbb{R}^{2}}\left (e^{z_{2}h_{2}(T;s,\xi )-z_{1}h_{1}(T;s,\xi )} - 1\right )\nu _{ (L_{1},L_{2}),\tilde{\mathbb{P}}}(\mathit{dz}_{1},\mathit{dz}_{2})\mathit{dsd}\xi \right ). {}\\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barndorff-Nielsen, O.E., Benth, F.E., Veraart, A.E.D. (2015). Cross-Commodity Modelling by Multivariate Ambit Fields. In: Aïd, R., Ludkovski, M., Sircar, R. (eds) Commodities, Energy and Environmental Finance. Fields Institute Communications, vol 74. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2733-3_5

Download citation

Publish with us

Policies and ethics