Skip to main content

Dynamic Cournot Models for Production of Exhaustible Commodities Under Stochastic Demand

  • Chapter

Part of the book series: Fields Institute Communications ((FIC,volume 74))

Abstract

We extend the dynamic Cournot model of Ludkovski and Sircar (2011) by considering stochastic demand. We analyze a duopoly between an exhaustible producer and a “green” competitor. Both producers dynamically make decisions regarding their production rates; in addition the exhaustible producer optimizes search for new reserves. The aggregate price earned by the producers switches between high and low demand regimes with exogenously given holding rates. We study how the regime changes and the relative cost of production, which is a proxy for market competitiveness, affect game equilibria, and compare with the case of deterministic demand. A novel feature driven by stochasticity of demand is that production may shut down during low demand to conserve reserves.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arrow, K.J., Chang, S.: Optimal pricing, use, and exploration of uncertain resource stocks. J. Environ. Econ. Manag. 9 (1), 1–10 (1982)

    Article  Google Scholar 

  2. Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory. Springer, New York (2013)

    Book  MATH  Google Scholar 

  3. Chan, P., Sircar, R.: Bertrand & Cournot mean field games. Technical Report SSRN (2014). http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2387226

  4. Conrad, J.: Resource Economics. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  5. Davis, M.H.A.: Markov Models and Optimization. Chapman & Hall, London (1993)

    Book  MATH  Google Scholar 

  6. Deshmukh, S.D., Pliska, S.R.: Optimal consumption of a nonrenewable resource with stochastic discoveries and a random environment. Rev. Econ. Stud. 50(3), 543–554 (1983)

    Article  MATH  Google Scholar 

  7. Dockner, E.J., Jørgensen, S., Long, N.V., Sorger, G.: Differential Games in Economics and Management Science. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  8. Guéant, O., Lasry, J.M., Lions, P.L.: Mean field games and applications. In: Paris-Princeton Lectures on Mathematical Finance 2010, pp. 205–266. Springer, Berlin (2011)

    Google Scholar 

  9. Harris, C., Howison, S., Sircar, R.: Games with exhaustible resources. SIAM J. Appl. Math. 70, 2556–2581 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hotelling, H.: The economics of exhaustible resources. J. Polit. Econ. 39 (2), 137–175 (1931)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ledvina, A., Sircar, R.: Dynamic Bertrand oligopoly. Appl. Math. Optim. 63(1), 11–44 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ledvina, A., Sircar, R.: Oligopoly games under asymmetric costs and an application to energy production. Math. Finan. Econ. 6, 1–33 (2012)

    Article  MathSciNet  Google Scholar 

  13. Ludkovski, M., Sircar, R.: Exploration and exhaustibility in dynamic Cournot games. Eur. J. Appl. Math. 23(3), 343–372 (2011)

    Article  MathSciNet  Google Scholar 

  14. Ludkovski, M., Sircar, R.: Game models for exhaustible resources. In: Aid, R., Ludkovski, M., Sircar, R. (eds.): Energy, Commodities and Environmental Finance, Fields Insititute Communications. Springer, Heidelberg (2014)

    Google Scholar 

  15. Pliska, S.R.: On a functional differential equation that arises in a Markov control problem. J. Differ. Equ. 28(3), 390–405 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Vives, X.: Oligopoly Pricing: Old Ideas and New Tools. MIT press, Cambridge (2001)

    Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for helpful questions and comments that have improved our final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ludkovski .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Lemma 1

Proof.

To derive the asymptotic game functions as \(\lambda _{01} \rightarrow +\infty \), we set \(\lambda _{01} = \frac{1} {\epsilon }\). Without loss of generality, we assume that the asymptotic expansion of v M (x) with respect to ε is

$$\displaystyle{ v_{i}^{\epsilon } = v_{ i}^{0} + g(\epsilon )v_{ i}^{1} + o(g(\epsilon )),\qquad i = L,H }$$
(25)

where \(g(\epsilon ) \rightarrow 0\), as \(\epsilon \rightarrow 0\).

We substitute the v L and v H in the HJB ODEs with their asymptotic expansion to obtain

$$\displaystyle\begin{array}{rcl} & & \left [\frac{2} {3}\left (\frac{L + c} {2} - (v_{L}^{\epsilon })^{{\prime}}(x)\right )^{+} -\frac{1} {6}\left (2c - L - (v_{L}^{\epsilon })^{{\prime}}(x)\right )^{+}\right ]^{2} + \frac{1} {\gamma } [(\lambda \varDelta v_{L}^{\epsilon }(x)-\kappa )^{+}]^{\gamma } \\ & & \quad + \frac{1} {\epsilon } \left (v_{H}^{0}(x) - v_{ L}^{0}(x)\right ) + \frac{1} {\epsilon } \left (g(\epsilon )[v_{H}^{1}(x) - v_{ L}^{1}(x)] + o(g(\epsilon ))\right ) - rv_{ L}^{\epsilon }(x) = 0,{}\end{array}$$
(26)
$$\displaystyle\begin{array}{rcl} & & \left [\frac{2} {3}\left (\frac{H + c} {2} - (v_{H}^{\epsilon })^{{\prime}}(x)\right )^{+} -\frac{1} {6}\left (2c - H - (v_{H}^{\epsilon })^{{\prime}}(x)\right )^{+}\right ]^{2} + \frac{1} {\gamma } [(\lambda \varDelta v_{H}^{\epsilon }(x)-\kappa )^{+}]^{\gamma } \\ & & \quad +\lambda _{10}\left (v_{L}^{0}(x) - v_{ H}^{0}(x)\right ) + g(\epsilon )\lambda _{ 10}(v_{L}^{1}(x) - v_{ H}^{1}(x)) - rv_{ H}^{\epsilon }(x) + o(g(\epsilon )) = 0.{}\end{array}$$
(27)

We must have that \(\lim _{\epsilon \rightarrow 0}v_{L}^{\epsilon } =\lim _{\epsilon \rightarrow 0}v_{L}^{\epsilon }\), i.e. \(v_{L}^{0} = v_{H}^{0} =:\tilde{ v}\), otherwise the term \(\epsilon ^{-1}(v_{H}^{0} - v_{L}^{0})\) will explode as \(\epsilon \rightarrow 0\). Making that simplification, multiplying (26) by ε λ 10 and adding (27) we obtain

$$\displaystyle\begin{array}{rcl} 0& =& \epsilon \lambda _{10}\left [\frac{2} {3}\left (\frac{L + c} {2} - (v_{L}^{\epsilon })^{{\prime}}(x)\right )^{+} -\frac{1} {6}\left (2c - L - (v_{L}^{\epsilon })^{{\prime}}(x)\right )^{+}\right ]^{2} \\ & & +\left [\frac{2} {3}\left (\frac{H + c} {2} - (v_{H}^{\epsilon })^{{\prime}}(x)\right )^{+} -\frac{1} {6}\left (2c - H - (v_{H}^{\epsilon })^{{\prime}}(x)\right )^{+}\right ]^{2} \\ & & +\frac{\epsilon \lambda _{10}} {\gamma } [(\lambda \varDelta v_{L}^{\epsilon }(x)-\kappa )^{+}]^{\gamma } + \frac{1} {\gamma } [(\lambda \varDelta v_{H}^{\epsilon }(x)-\kappa )^{+}]^{\gamma } - r\left (\lambda _{ 10}\epsilon v_{L}^{\epsilon }(x) + v_{ H}^{\epsilon }(x)\right ).{}\end{array}$$
(28)

One can now take ε → 0 which reduces to a regular perturbation of the following ODE for \(\tilde{v}(x)\) (note that the first term involving L vanishes):

$$\displaystyle\begin{array}{rcl} & & \left [\frac{2} {3}\left (\frac{H + c} {2} - (\tilde{v}_{H})^{{\prime}}(x)\right )^{+} -\frac{1} {6}\left (2c - H - (\tilde{v}_{H})^{{\prime}}(x)\right )^{+}\right ]^{2} {}\\ & & \quad + \frac{1} {\gamma } [(\lambda \varDelta \tilde{v}_{H}(x)-\kappa )^{+}]^{\gamma } - r\tilde{v}_{ H}(x) = 0, {}\\ \end{array}$$

which matches the solution of an exploration duopoly game studied in [13] with linear inverse demand p t  = Hq t 1q t 2.

For the boundary conditions, we re-write (6) as

$$\displaystyle{ \left (v_{H}^{\epsilon }(0) - v_{ L}^{\epsilon }(0)\right )\left (\frac{1} {\epsilon } \right ) + v_{L}^{\epsilon }(\delta )\lambda a_{ L}^{\epsilon }(0) - C(a_{ L}^{\epsilon }(0)) -\left (r +\lambda a_{ L}^{\epsilon }(0)\right )v_{ L}^{\epsilon }(0) = 0, }$$
(29)
$$\displaystyle{ \left (v_{L}^{\epsilon }(0) - v_{ H}^{\epsilon }(0)\right )\lambda _{ 10} + v_{H}^{\epsilon }(\delta )\lambda a_{ H}^{\epsilon }(0) - C(a_{ H}^{\epsilon }(0)) -\left (r +\lambda a_{ H}^{\epsilon }(0)\right )v_{ H}^{\epsilon }(0) = 0. }$$
(30)

We multiply (29) by ε λ 10 and add to (30) to obtain

$$\displaystyle\begin{array}{rcl} & & \epsilon \lambda _{10}\left [v_{L}^{\epsilon }(\delta )\lambda a_{ L}^{\epsilon }(0) - C(a_{ L}^{\epsilon }(0)) -\left (r +\lambda a_{ L}^{\epsilon }(0)\right )v_{ L}^{\epsilon }(0)\right ] \\ & & \quad + \left [v_{H}^{\epsilon }(\delta )\lambda a_{ H}^{\epsilon }(0) - C(a_{ H}^{\epsilon }(0)) -\left (r +\lambda a_{ H}^{\epsilon }(0)\right )v_{ H}^{\epsilon }(0)\right ] = 0.{}\end{array}$$
(31)

Letting \(\epsilon \rightarrow 0\) removes the first terms and we are left with

$$\displaystyle{ \tilde{v}(\delta )\lambda \tilde{a}(0) - C(\tilde{a}(0)) -\left (r +\lambda \tilde{ a}(0)\right )\tilde{v}(0) = 0, }$$

which is equivalent to

$$\displaystyle{ \tilde{v}(0) = \frac{\tilde{v}(\delta )\lambda \tilde{a}(0) - C(\tilde{a}(0))} {\left (r +\lambda \tilde{ a}(0)\right )} =\sup _{a}\frac{\tilde{v}(\delta )\lambda a - C(a)} {\left (r +\lambda a\right )}, }$$
(32)

again matching the corresponding boundary condition in the deterministic demand setting.

1.2 Proof of Lemma 2

Proof.

We set \(\lambda _{01} = \frac{b_{L}} {\epsilon },\lambda _{10} = \frac{b_{H}} {\epsilon }\), where b L , b H are some constants, and ε > 0 can be arbitrarily small. The stationary distribution \(\boldsymbol{\pi }\) given by \(\pi _{L} = \frac{\lambda _{10}} {\lambda _{01}+\lambda _{10}} = \frac{b_{H}} {b_{L}+b_{H}}\), \(\pi _{H} = \frac{b_{L}} {b_{L}+b_{H}}\) is unchanged as \(\epsilon \rightarrow 0\).

We consider the asymptotic expansions of v M in terms of ε:

$$\displaystyle{ v_{i}^{\epsilon } = v_{ i}^{0} + f(\epsilon )v_{ i}^{1} + o(\,f(\epsilon )),\qquad i = L,H, }$$
(33)

where \(f(\epsilon ) \rightarrow 0\), as \(\epsilon \rightarrow 0\). Substituting (33) into (15) yields

$$\displaystyle\begin{array}{rcl} & & \left [\frac{2} {3}\left (\frac{L + c} {2} - (v_{L}^{\epsilon })^{{\prime}}(x)\right )^{+} -\frac{1} {6}\left (2c - L - (v_{L}^{\epsilon })^{{\prime}}(x)\right )^{+}\right ]^{2} + \frac{1} {\gamma } [(\lambda \varDelta v_{L}^{\epsilon }(x)-\kappa )^{+}]^{\gamma } \\ & & \quad + \frac{b_{L}} {\epsilon } \left (v_{H}^{0}(x) + f(\epsilon )v_{ H}^{1}(x) - v_{ L}^{0}(x) - f(\epsilon )v_{ L}^{1}(x)\right ) - rv_{ L}^{\epsilon }(x) + o(\,f(\epsilon )) = 0;{}\end{array}$$
(34)
$$\displaystyle\begin{array}{rcl} & & \left [\frac{2} {3}\left (\frac{H + c} {2} - (v_{H}^{\epsilon })^{{\prime}}(x)\right )^{+} -\frac{1} {6}\left (2c - H - (v_{H}^{\epsilon })^{{\prime}}(x)\right )^{+}\right ]^{2} + \frac{1} {\gamma } [(\lambda \varDelta v_{H}^{\epsilon }(x)-\kappa )^{+}]^{\gamma } \\ & & \quad + \frac{b_{H}} {\epsilon } \left (v_{L}^{0}(x) + f(\epsilon )v_{ L}^{1}(x) - v_{ H}^{0}(x) - f(\epsilon )v_{ H}^{1}(x)\right ) - rv_{ H}^{\epsilon }(x) + o(\,f(\epsilon )) = 0.{}\end{array}$$
(35)

We must have that \(\lim _{\epsilon \rightarrow 0}v_{L}^{\epsilon } =\lim _{\epsilon \rightarrow 0}v_{L}^{\epsilon }\), i.e. \(v_{L}^{0} = v_{H}^{0} =\bar{ v}\), otherwise the terms \(\frac{b_{L}} {\epsilon } \left (v_{H}^{\epsilon } - v_{L}^{\epsilon }\right )\) and \(\frac{b_{H}} {\epsilon } \left (v_{L}^{\epsilon } - v_{H}^{\epsilon }\right )\) above would explode as \(\epsilon \rightarrow 0\). Indeed, it is clear that | v L (x) − v H (x) | → 0 as ε → 0 due to the fast switching of the regimes, making the initial macroeconomic conditions irrelevant.

Canceling the terms \(v_{L}^{0} - v_{H}^{0} \equiv 0\) in (34)–(35), multiplying (34) by b H ∕(b L + b H ), (35) by \(b_{L}/(b_{L} + b_{H})\), and adding them up we obtain

$$\displaystyle\begin{array}{rcl} 0& =& \pi _{L}\left [\frac{2} {3}\left (\frac{L + c} {2} - (v_{L}^{\epsilon })^{{\prime}}(x)\right )^{+} -\frac{1} {6}\left (2c - L - (v_{L}^{\epsilon })^{{\prime}}(x)\right )^{+}\right ]^{2} {}\\ & & \quad +\pi _{H}\left [\frac{2} {3}\left (\frac{H + c} {2} - (v_{H}^{\epsilon })^{{\prime}}(x)\right )^{+} -\frac{1} {6}\left (2c - H - (v_{H}^{\epsilon })^{{\prime}}(x)\right )^{+}\right ]^{2} {}\\ & & \quad + \frac{\pi _{L}} {\gamma } [(\lambda \varDelta v_{L}^{\epsilon }(x)-\kappa )^{+}]^{\gamma } + \frac{\pi _{H}} {\gamma } [(\lambda \varDelta v_{H}^{\epsilon }(x)-\kappa )^{+}]^{\gamma } {}\\ & & \quad - r\left (\pi _{L}v_{L}^{\epsilon }(x) +\pi _{ H}v_{H}^{\epsilon }(x)\right ) + o(\,f(\epsilon )). {}\\ \end{array}$$

Note that all the terms involving ε −1 have cancelled out. Once again plugging in (33) we can now take ε → 0 since this just amounts to a regular perturbation; the result is precisely (21).

For the boundary conditions, we re-write the original

$$\displaystyle\begin{array}{rcl} v_{i}^{\epsilon }(0)& =& \frac{v_{j}^{\epsilon }(0)(\frac{b_{i}} {\epsilon } ) + v_{i}^{\epsilon }(\delta )\lambda a_{i}^{\epsilon }(0) - C(a_{i}^{\epsilon }(0))} {r + \frac{b_{i}} {\epsilon } +\lambda a_{i}^{\epsilon }(0)},\quad i,j = L,H {}\\ \end{array}$$

as

$$\displaystyle{ \left (v_{H}^{\epsilon }(0) - v_{ L}^{\epsilon }(0)\right )\left (\frac{b_{L}} {\epsilon } \right ) + v_{L}^{\epsilon }(\delta )\lambda a_{ L}^{\epsilon }(0) - C(a_{ L}^{\epsilon }(0)) -\left (r +\lambda a_{ L}^{\epsilon }(0)\right )v_{ L}^{\epsilon }(0) = 0, }$$
(36)
$$\displaystyle{ \left (v_{L}^{\epsilon }(0) - v_{ H}^{\epsilon }(0)\right )\left (\frac{b_{H}} {\epsilon } \right ) + v_{H}^{\epsilon }(\delta )\lambda a_{ H}^{\epsilon }(0) - C(a_{ H}^{\epsilon }(0)) -\left (r +\lambda a_{ H}^{\epsilon }(0)\right )v_{ H}^{\epsilon }(0) = 0. }$$
(37)

Once again multiplying (36) by \(b_{H}/(b_{L} + b_{H})\) and (37) by \(b_{L}/(b_{L} + b_{H})\), and summing produces

$$\displaystyle\begin{array}{rcl} & & \pi _{L}v_{L}^{\epsilon }(\delta )\lambda a_{ L}^{\epsilon }(0) +\pi _{ H}v_{H}^{\epsilon }(\delta )\lambda a_{ H}^{\epsilon }(0) -\pi _{ L}C(a_{L}^{\epsilon }(0)) -\pi _{ H}C(a_{H}^{\epsilon }(0)) \\ & & \quad -\pi _{L}\left (r +\lambda a_{L}^{\epsilon }(0)\right )v_{ L}^{\epsilon }(0) -\pi _{ H}\left (r +\lambda a_{H}^{\epsilon }(0)\right )v_{ H}^{\epsilon }(0) = 0. {}\end{array}$$
(38)

As ε → 0, \(a_{M}^{\epsilon }(0) = [(\lambda \varDelta v_{M}^{\epsilon }(0)-\kappa )^{+}]^{\gamma -1} \rightarrow [(\lambda \varDelta \bar{v}(0)-\kappa )^{+}]^{\gamma -1} =\bar{ a}(0),\) and we find \(\bar{v}(\delta )\lambda \bar{a}(0) - C(\bar{a}(0)) -\left (r +\lambda \bar{ a}(0)\right )\bar{v}(0) = 0\), which is equivalent to (22).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ludkovski, M., Yang, X. (2015). Dynamic Cournot Models for Production of Exhaustible Commodities Under Stochastic Demand. In: Aïd, R., Ludkovski, M., Sircar, R. (eds) Commodities, Energy and Environmental Finance. Fields Institute Communications, vol 74. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2733-3_14

Download citation

Publish with us

Policies and ethics