Skip to main content

A general view of rate-independent systems

  • Chapter
  • 1550 Accesses

Part of the book series: Applied Mathematical Sciences ((AMS,volume 193))

Abstract

This chapter provides a basic introduction to the concepts and notions developed in this book. We begin from the perspective of ordinary differential equations arising in mechanics

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    See., e.g., [455, Sect. 15.1.1] for this terminology.

  2. 2.

    Special situations can be handled as in [367], where the case α = 2 and \([-\lambda, 0]\) instead of \((-\infty, 0]\) is considered.

  3. 3.

    In fact, for d = 2, using in a nontrivial way a sophisticated regularity argument by Gröger [239], the analysis has been performed by Knees [303]; more precisely, even the vectorial situation has been addressed in [303] using [266]. However, for d = 3, this fails if α ≥ 2.

  4. 4.

    Historically, internal variables have also been called “internal coordinates” or “internal degrees of freedom”; cf. [72, Ch. 6].

  5. 5.

    First, the prefix “pseudo” (as used in [382]) refers to the fact that the actual dissipation rate \(\mathfrak{R}\) is different from the potential \(\mathcal{R}\), in contrast to the “static” energy \(\langle \frac{1} {2}Kq -\ell (t),q\rangle\), which serves equally for the potential of conservative forces and for the energy stored. Yet \(\mathcal{R}\) is simultaneously the dissipation rate and the dissipation potential if and only if it is 1-homogeneous (cf. Proposition 3.2.4 for the “only if” part); thus we can legally call \(\mathcal{R}\) a potential. Second, “pseudo” sometimes refers to the nondifferentiability of \(\mathcal{R}\) at 0 (cf. [455]), so that in this terminology, \(\mathcal{R}\) would remain a “pseudopotential” even in the 1-homogeneous case on which this book focuses.

  6. 6.

    Usually, the term “flow” refers to the solution semigroup generated by the differential inclusion or equation. If this equation has the above gradient structure, then this semigroup is called a (generalized) gradient flow. We adopt a convention to address freely also the differential equation itself as a (generalized) gradient flow.

  7. 7.

    In the distributed-parameter variant and in the notation of Sections 4.2.3 and 4.3.4.1, we can think of the internal variable z ≥ 0 on the contact surface \(\varGamma \mathrm{C}\) as governed by a rate-independent flow rule \({\buildrel \hspace{0.85005pt}.\over z} =\sigma _{\mathrm{n}}\vert [[{\buildrel \hspace{0.85005pt}.\over u}]]\mathrm{t}\vert /k\) (a so-called Archard’s law [24], i.e., volume of the removed debris due to wear is proportional to the work done by frictional forces) with \([[u]]\mathrm{t}\) standing for the tangential displacement and \(\sigma _{\mathrm{n}} \geq 0\) the normal stress, and k > 0 a material constant expressing resistance of the surface to wear (usually large). The interpretation of z is the width of a layer where the material was already brushed away, and as such, it enters the contact boundary condition and thus \(\mathcal{E}\). See, e.g., [20, 572].

References

  1. H.-D. Alber. Materials with Memory. Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  2. F. Alouges, A. DeSimone, and A. Levebvre. Optimal strokes for low Reynolds optnumber swimmers: an example. J. Nonlinear Sci., 18:277–302, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. T. Andrews, A. Klarbring, M. Shillor, and S. Wright. A dynamical thermoviscoelastic contact problem with friction and wear. Int. J. Engng. Sci., 35:1291–1309, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. F. Archard. Contact and rubbing of flat surfaces. J. Appl. Phys., 24:981–988, 1953.

    Article  Google Scholar 

  5. J. M. Ball. Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. J. Nonlinear Sci., 7:475–502, 1997. Erratum J. Nonlinear Sci. 8 (1998) page 233.

    Google Scholar 

  6. M. A. Biot. Mechanics of Incremental Deformations. John Wiley & Sons, New York, 1965.

    Google Scholar 

  7. A. Braides. Γ-Convergence for Beginners. Oxford University Press, 2002.

    Google Scholar 

  8. M. Brokate and J. Sprekels. Hysteresis and Phase Transitions. Springer-Verlag, New York, 1996.

    Book  MATH  Google Scholar 

  9. P. Colli. On some doubly nonlinear evolution equations in Banach spaces. Japan J. Indust. Appl. Math., 9:181–203, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Colli and A. Visintin. On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations, 15:737–756, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Dacorogna. Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, 1989.

    Book  MATH  Google Scholar 

  12. G. Dal Maso and A. DeSimone. Quasistatic evolution for cam-clay plasticity: examples of spatially homogeneous solutions. Math. Models Meth. Appl. Sci., 19:1643–1711, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Dal Maso, A. DeSimone, and F. Solombrino. Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution. Calc. Var. Part. Diff. Eqns., 44:495–541, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Dal Maso, G. A. Francfort, and R. Toader. Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal., 176:165–225, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Dal Maso and G. Lazzaroni. Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poinc. Anal. Non Lin., 27:257–290, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Dal Maso and R. Toader. A model for quasi–static growth of brittle fractures: existence and approximation results. Arch. Rational Mech. Anal., 162:101–135, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Efendiev and A. Mielke. On the rate–independent limit of systems with dry friction and small viscosity. J. Convex Anal., 13:151–167, 2006.

    MATH  MathSciNet  Google Scholar 

  18. G. A. Francfort and J.-J. Marigo. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids, 46:1319–1342, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. G. A. Francfort and U. Stefanelli. Quasi-static evolution for the Armstrong-Frederick hardening-plasticity model. Appl. Math. Research, 2:297–344, 2013.

    MathSciNet  Google Scholar 

  20. K. Gröger. Evolution equations in the theory of plasticity. In Theory of nonlinear operators (Proc. 5th Int. Summer School, Central Inst. Math. Mech. Acad. Sci. GDR, Berlin, 1977), volume 6 of Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1978, pages 97–107. Akademie-Verlag, Berlin, 1978.

    Google Scholar 

  21. K. Gröger. A W 1, p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Anal., 283:679–687, 1989.

    Article  MATH  Google Scholar 

  22. K. Hackl and F. D. Fischer. On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potential. Proc. Royal Soc. A, 464:117–132, 2007.

    Article  MathSciNet  Google Scholar 

  23. W. Han and B. D. Reddy. Plasticity (Mathematical Theory and Numerical Analysis). Springer-Verlag, New York, 1999.

    MATH  Google Scholar 

  24. R. Herzog, C. Meyer, and G. Wachsmuth. Regularity of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions. J. Math. Anal. Appl., 382:802–813, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Hill. A variational principle of maximum plastic work in classical plasticity. Q.J. Mech. Appl. Math., 1:18–28, 1948.

    Google Scholar 

  26. A. Y. Ishlinskiĭ. Some applications of statistical methods to describing deformations of bodies. Izv. A.N. S.S.S.R. Techn. Ser., 9:580–590, 1944. (Russian).

    Google Scholar 

  27. R. D. James. Hysteresis in phase transformations. In ICIAM 95 (Hamburg, 1995), volume 87 of Math. Res., pages 135–154. Akademie Verlag, Berlin, 1996.

    Google Scholar 

  28. D. Knees, R. Rossi, and C. Zanini. A vanishing viscosity approach to a rate-independent damage model. Math. Models Meth. Appl. Sci., 23:565–616, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. A. Krasnosel’skiĭ and A. V. Pokrovskiĭ. Systems with Hysteresis. Springer-Verlag, Berlin, 1989.

    Book  MATH  Google Scholar 

  30. P. Krejčí. Evolution variational inequalities and multidimensional hysteresis operators. In P. Drábek, P. Krejčí, and P. Takáč, editors, Nonlinear differential equations, pages 47–110. Chapman & Hall/CRC, Boca Raton, FL, 1999.

    Google Scholar 

  31. P. Krejčí and A. Vladimirov. Lipschitz continuity of polyhedral Skorokhod maps. Zeitschrift Anal. Anwend., 20:817–844, 2001.

    Article  MATH  Google Scholar 

  32. P. Krejčí and A. Vladimirov. Polyhedral sweeping processes with oblique reflection in the space of regulated functions. Set-Valued Anal., 11:91–110, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  33. M. Kunze and M. D. P. Monteiro Marques. On parabolic quasi-variational inequalities and state-dependent sweeping processes. Topol. Methods Nonlinear Anal., 12:179–191, 1998.

    MATH  MathSciNet  Google Scholar 

  34. D. Leguillon. Strength or toughness? A criterion for crack onset at a notch. European J. of Mechanics A/Solids, 21:61–72, 2002.

    Article  MATH  Google Scholar 

  35. J. Lubliner. A maximum dissipation principle in generalized plasticity. Acta Mech., 52:225–237, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  36. F. Luterotti, G. Schmiperna, and U. Stefanelli. Global solution to a phase field model with irreversible and constrained phase evolution. Quart. Appl. Math., 60:301–316, 2002.

    MATH  MathSciNet  Google Scholar 

  37. V. Mantič. Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. application of a coupled stress and energy criterion. Int. J. Solids Structures, 46:1287–1304, 2009.

    Google Scholar 

  38. G. A. Maugin. The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge, 1992.

    Book  MATH  Google Scholar 

  39. A. Mielke. Finite elastoplasticity, Lie groups and geodesics on SL(d). In P. Newton, A. Weinstein, and P. J. Holmes, editors, Geometry, Mechanics, and Dynamics, pages 61–90. Springer–Verlag, New York, 2002.

    Google Scholar 

  40. A. Mielke. Energetic formulation of multiplicative elasto–plasticity using dissipation distances. Continuum Mech. Thermodyn., 15:351–382, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Mielke. Evolution in rate-independent systems (Ch. 6). In C.M. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Evolutionary Equations, vol. 2, pages 461–559. Elsevier B.V., Amsterdam, 2005.

    Google Scholar 

  42. A. Mielke. Differential, energetic, and metric formulations for rate-independent processes. In L. Ambrosio and G. Savaré, editors, Nonlinear PDE’s and Applications, pages 87–170. Springer, 2011. (C.I.M.E. Summer School, Cetraro, Italy 2008, Lect. Notes Math. Vol. 2028).

    Google Scholar 

  43. A. Mielke. Emergence of rate-independent dissipation from viscous systems with wiggly energies. Continuum Mech. Thermodyn., 24:591–606, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  44. A. Mielke. Generalized Prandtl-Ishlinskii operators arising from homogenization and dimension reduction. Physica B, 407:1330–1335, 2012.

    Article  MathSciNet  Google Scholar 

  45. A. Mielke. On evolutionary Γ-convergence for gradient systems. WIAS Preprint 1915, 2014. To appear in Proc. Summer School in Twente University June 2012.

    Google Scholar 

  46. A. Mielke, R. Rossi, and G. Savaré. BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var., 18:36–80, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  47. A. Mielke and F. Theil. A mathematical model for rate-independent phase transformations with hysteresis. In H.-D. Alber, R.M. Balean, and R. Farwig, editors, Proc. Workshop on “Models of Continuum Mechanics in Analysis and Engineering”, pages 117–129, Aachen, 1999. Shaker-Verlag.

    Google Scholar 

  48. A. Mielke, F. Theil, and V. I. Levitas. A variational formulation of rate–independent phase transformations using an extremum principle. Arch. Rational Mech. Anal., 162:137–177, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  49. A. Mielke and L. Truskinovsky. From discrete visco-elasticity to continuum rate-independent plasticity: rigorous results. Arch. Rational Mech. Anal., 203:577–619, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  50. A. Mielke and S. Zelik. On the vanishing viscosity limit in parabolic systems with rate-independent dissipation terms. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5), XIII:67–135, 2014.

    Google Scholar 

  51. M. D. P. Monteiro Marques. Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction. Birkhäuser Verlag, Basel, 1993.

    Google Scholar 

  52. J.-J. Moreau. Application of convex analysis to the treatment of elastoplastic systems. In P. Germain and B. Nayroles, editors, Appl. of Meth. of Funct. Anal. to Problems in Mech., pages 56–89. Springer-Verlag, 1976. Lecture Notes in Mathematics, 503.

    Google Scholar 

  53. J.-J. Moreau. Evolution problem associated with a moving convex set in a Hilbert space. J. Differential Equations, 26:347–374, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  54. Q. S. Nguyen. Stability and Nonlinear Solid Mechanics. J. Wiley, Chichester, 2000.

    Google Scholar 

  55. L. Onsager. Reciprocal relations in irreversible processes, I+II. Physical Review, 37:405–426, 1931. (part II, 38:2265–2279).

    Google Scholar 

  56. V. L. Popov and J. A. T. Gray. Prandtl-Tomlinson model: History and applications in friction, plasticity, and nanotechnologies. Zeitschrift angew. Math. Mech., 92:692–708, 2012.

    Article  MathSciNet  Google Scholar 

  57. L. Prandtl. Gedankenmodel zur kinetischen Theorie der festen Körper. Zeitschrift angew. Math. Mech., 8:85–106, 1928.

    Article  MATH  Google Scholar 

  58. G. Puglisi and L. Truskinovsky. Rate independent hysteresis in a bi-stable chain. J. Mech. Phys. Solids, 50:165–187, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  59. G. Puglisi and L. Truskinovsky. Thermodynamics of rate-independent plasticity. J. Mech. Phys. Solids, 53:655–679, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  60. K. R. Rajagopal and A. R. Srinivasa. On thermomechanical restrictions of continua. Proc. R. Soc. Lond. A, 460:631–651, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  61. R. Rossi and G. Savaré. A characterization of energetic and BV solutions to one-dimensional rate-independent systems. Discr. Cont. Dynam. Systems Ser. S, 6:167–191, 2013.

    MATH  Google Scholar 

  62. T. Roubíček. Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2nd edition, 2013.

    Book  Google Scholar 

  63. T. Roubíček. Calculus of variations. In M. Grinfeld, editor, Mathematical Tools for Physicists, chapter 17, pages 551–587. J. Wiley, Weinheim, 2014.

    Google Scholar 

  64. T. Roubíček. A note about the rate-and-state-dependent friction model in a thermodynamic framework of the Biot-type equation. Geophys. J. Int., 199:286–295, 2014.

    Article  Google Scholar 

  65. F. Schmid and A. Mielke. Existence results for a contact problem with varying friction coefficient and nonlinear forces. Zeitschrift angew. Math. Mech., 87:616–631, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  66. N. Strömberg, L. Johansson, and A. Klarbring. Derivation and analysis of a generalized standard model for contact, friction and wear. Int. J. Solids Structures, 33:1817–1836, 1996.

    Article  MATH  Google Scholar 

  67. J. Svoboda, I. Turek, and F. D. Fischer. Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos. Magazine, 85:3699–3707, 2005.

    Article  Google Scholar 

  68. G. A. Tomlinson. A molecular theory of friction. Philos. Mag., 7:905–939, 1929.

    Article  Google Scholar 

  69. A. Visintin. Differential Models of Hysteresis. Springer-Verlag, Berlin, 1994.

    Book  MATH  Google Scholar 

  70. H. Ziegler. An attempt to generalize Onsager’s principle, and its significance for rheological problems. Zeitschrift angew. Math. Physik, 9:748–763, 1958.

    Article  Google Scholar 

  71. H. Ziegler. Some extremum principles in irreversible thermodynamics with application to continuum mechanics. In Progress in Solid Mechanics, Vol. IV, pages 91–193. North-Holland, Amsterdam, 1963.

    Google Scholar 

  72. H. Ziegler and Ch. Wehrli. On a principle of maximal rate of entropy production. J. Non-Equilib. Thermodyn., 12:229–243, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mielke, A., Roubíček, T. (2015). A general view of rate-independent systems. In: Rate-Independent Systems. Applied Mathematical Sciences, vol 193. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2706-7_1

Download citation

Publish with us

Policies and ethics