Skip to main content

Robotic Applications in Advancing General Surgery

  • Chapter

Abstract

The use of robotics has been developing for several decades, but its adoption for General Surgery only started to emerge in the 1990s. While several robotic devices have been developed, the da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA) remains today by far the most commonly used robotic device for General Surgery. This master-slave system separates the surgeon from the patient and consists of a surgical console, surgical and vision carts. It is designed to mimic the upper extremities of the surgeons and results in very intuitive control of articulated surgical instruments while providing a true 3-dimensional image with magnification. Additional software features include motion scaling and tremor filtration. As a result, robotic surgery appears technologically superior when compared to conventional laparoscopy by overcoming some of the technical challenges that are imposed to the surgeon. While robotics has been applied to a wide range of surgical procedures, its role in General Surgery remains a subject of debate as increased costs need to be justified by superior clinical outcomes. Until now, no clear clinical evidence has been created that establishes the use of robotics as the gold standard for procedures of General Surgery. While surgical robotics is still in its infancy with multiple novel systems currently under development and clinical trials in progress, the opportunities for this technology appear endless and robotics will have a lasting impact to the field of General Surgery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fisher SS, McGreevy M, Humphries J, et al. Virtual environment display system. In: Crow F, Pizer S, editors. Proceedings of the workshop on interactive 3-dimensional graphics. New York: AMC; 1986. p. 1–12.

    Google Scholar 

  2. Satava RM. Robotic surgery: from past to future – a personal journey. Surg Clin North Am. 2003;83(6):1491–500. 6.

    Article  PubMed  Google Scholar 

  3. Ewing DR, Pigazzi A, Wang Y, Ballantyne GH. Robots in the operating room – the history. Semin Laparosc Surg. 2004;11(2):63–71.

    PubMed  Google Scholar 

  4. Marescaux J. Code name: “Lindbergh operation”. Ann Chir. 2002;127(1):2–4.

    Article  CAS  PubMed  Google Scholar 

  5. http://www.intuitivesurgical.com/products/.

  6. Abboudi H, Khan MS, Aboumarzouk O, Guru KA, Challacombe B, Dasgupta P, et al. Current status of validation for robotic surgery simulators – a systematic review. BJU Int. 2013;111(2):194–205.

    Article  PubMed  Google Scholar 

  7. Baek SJ, Kim SH. Robotics in general surgery: an evidence-based review. Asian J Endosc Surg. 2014;7(2):117–23.

    Article  PubMed  Google Scholar 

  8. Augustin F, Bodner J, Wykypiel H, Schwinghammer C, Schmid T. Perioperative results of robotic lung lobectomy: summary of literature. Surg Endosc. 2012;26(4):1190–1.

    Article  PubMed  Google Scholar 

  9. Genden EM, O’Malley Jr BW, Weinstein GS, Stucken CL, Selber JC, Rinaldo A, et al. Transoral robotic surgery: role in the management of upper aerodigestive tract tumors. Head Neck. 2012;34(6):886–93.

    Article  PubMed  Google Scholar 

  10. Collinson FJ, Jayne DG, Pigazzi A, Tsang C, Barrie JM, Edlin R, et al. An international, multicentre, prospective, randomised, controlled, unblinded, parallel-group trial of robotic-assisted versus standard laparoscopic surgery for the curative treatment of rectal cancer. Int J Colorectal Dis. 2012;27(2):233–41.

    Article  PubMed  Google Scholar 

  11. Binder J, Kramer W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int. 2001;87(4):408–10.

    Article  CAS  PubMed  Google Scholar 

  12. (DGU) DGfU. Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms Version 1.03 – März 2011.

    Google Scholar 

  13. Nakadi IE, Melot C, Closset J, DeMoor V, Betroune K, Feron P, et al. Evaluation of da Vinci Nissen fundoplication clinical results and cost minimization. World J Surg. 2006;30(6):1050–4.

    Article  PubMed  Google Scholar 

  14. Markar SR, Karthikesalingam AP, Hagen ME, Talamini M, Horgan S, Wagner OJ. Robotic vs. laparoscopic Nissen fundoplication for gastro-oesophageal reflux disease: systematic review and meta-analysis. Int J Med Robot. 2010;6(2):125–31.

    CAS  PubMed  Google Scholar 

  15. Galvani C, Gorodner MV, Moser F, Baptista M, Donahue P, Horgan S. Laparoscopic Heller myotomy for achalasia facilitated by robotic assistance. Surg Endosc. 2006;20(7):1105–12.

    Article  CAS  PubMed  Google Scholar 

  16. Horgan S, Galvani C, Gorodner MV, Omelanczuck P, Elli F, Moser F, et al. Robotic-assisted Heller myotomy versus laparoscopic Heller myotomy for the treatment of esophageal achalasia: multicenter study. J Gastrointest Surg. 2005;9(8):1020–9. discussion 9–30.

    Article  PubMed  Google Scholar 

  17. Shaligram A, Unnirevi J, Simorov A, Kothari VM, Oleynikov D. How does the robot affect outcomes? A retrospective review of open, laparoscopic, and robotic Heller myotomy for achalasia. Surg Endosc. 2012;26(4):1047–50.

    Article  PubMed  Google Scholar 

  18. Gallo T, Kashani S, Patel DA, Elsahwi K, Silasi DA, Azodi M. Robotic-assisted laparoscopic hysterectomy: outcomes in obese and morbidly obese patients. JSLS. 2012;16(3):421–7.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hemli JM, Darla LS, Panetta CR, Jennings J, Subramanian VA, Patel NC. Does body mass index affect outcomes in robotic-assisted coronary artery bypass procedures? Innovations (Phila). 2012;7(5):350–3.

    Article  Google Scholar 

  20. Hubens G, Balliu L, Ruppert M, Gypen B, Van Tu T, Vaneerdeweg W. Roux-en-Y gastric bypass procedure performed with the da Vinci robot system: is it worth it? Surg Endosc. 2008;22(7):1690–6.

    Article  CAS  PubMed  Google Scholar 

  21. Hagen ME, Pugin F, Chassot G, Huber O, Buchs N, Iranmanesh P, et al. Reducing cost of surgery by avoiding complications: the model of robotic Roux-en-Y gastric bypass. Obes Surg. 2012;22(1):52–61.

    Article  PubMed  Google Scholar 

  22. Ayloo SM, Addeo P, Buchs NC, Shah G, Giulianotti PC. Robot-assisted versus laparoscopic Roux-en-Y gastric bypass: is there a difference in outcomes? World J Surg. 2011;35(3):637–42.

    Article  PubMed  Google Scholar 

  23. Park CW, Lam EC, Walsh TM, Karimoto M, Ma AT, Koo M, et al. Robotic-assisted Roux-en-Y gastric bypass performed in a community hospital setting: the future of bariatric surgery? Surg Endosc. 2011;25(10):3312–21.

    Article  PubMed  Google Scholar 

  24. Fourman MM, Saber AA. Robotic bariatric surgery: a systematic review. Surg Obes Relat Dis. 2012;8(4):483–8.

    Article  PubMed  Google Scholar 

  25. Markar SR, Karthikesalingam AP, Venkat-Ramen V, Kinross J, Ziprin P. Robotic vs. laparoscopic Roux-en-Y gastric bypass in morbidly obese patients: systematic review and pooled analysis. Int J Med Robot. 2011;7(4):393–400.

    Article  CAS  PubMed  Google Scholar 

  26. Ayloo S, Buchs NC, Addeo P, Bianco FM, Giulianotti PC. Robot-assisted sleeve gastrectomy for super-morbidly obese patients. J Laparoendosc Adv Surg Tech A. 2011;21(4):295–9.

    Article  PubMed  Google Scholar 

  27. Diamantis T, Alexandrou A, Nikiteas N, Giannopoulos A, Papalambros E. Initial experience with robotic sleeve gastrectomy for morbid obesity. Obes Surg. 2011;21(8):1172–9.

    Article  PubMed  Google Scholar 

  28. Romero RJ, Kosanovic R, Rabaza JR, Seetharamaiah R, Donkor C, Gallas M, et al. Robotic sleeve gastrectomy: experience of 134 cases and comparison with a systematic review of the laparoscopic approach. Obes Surg. 2013;23(11):1743–52.

    Article  PubMed  Google Scholar 

  29. Cadiere GB, Himpens J, Vertruyen M, Favretti F. The world's first obesity surgery performed by a surgeon at a distance. Obes Surg. 1999;9(2):206–9.

    Article  CAS  PubMed  Google Scholar 

  30. Muhlmann G, Klaus A, Kirchmayr W, Wykypiel H, Unger A, Holler E, et al. DaVinci robotic-assisted laparoscopic bariatric surgery: is it justified in a routine setting? Obes Surg. 2003;13(6):848–54.

    Article  PubMed  Google Scholar 

  31. Edelson PK, Dumon KR, Sonnad SS, Shafi BM, Williams NN. Robotic vs. conventional laparoscopic gastric banding: a comparison of 407 cases. Surg Endosc. 2011;25(5):1402–8.

    Article  PubMed  Google Scholar 

  32. Sudan R, Puri V, Sudan D. Robotically assisted biliary pancreatic diversion with a duodenal switch: a new technique. Surg Endosc. 2007;21(5):729–33.

    Article  CAS  PubMed  Google Scholar 

  33. Anderson C, Ellenhorn J, Hellan M, Pigazzi A. Pilot series of robot-assisted laparoscopic subtotal gastrectomy with extended lymphadenectomy for gastric cancer. Surg Endosc. 2007;21(9):1662–6.

    Article  PubMed  Google Scholar 

  34. Baek SJ, Lee DW, Park SS, Kim SH. Current status of robot-assisted gastric surgery. World J Gastrointest Oncol. 2011;3(10):137–43.

    Article  PubMed Central  PubMed  Google Scholar 

  35. D’Annibale A, Pende V, Pernazza G, Monsellato I, Mazzocchi P, Lucandri G, et al. Full robotic gastrectomy with extended (D2) lymphadenectomy for gastric cancer: surgical technique and preliminary results. J Surg Res. 2011;166(2):e113–20.

    Article  PubMed  Google Scholar 

  36. Songun I, Putter H, Kranenbarg EM, Sasako M, van de Velde CJ. Surgical treatment of gastric cancer: 15-year follow-up results of the randomised nationwide Dutch D1D2 trial. Lancet Oncol. 2010;11(5):439–49.

    Article  PubMed  Google Scholar 

  37. Agha A, Benseler V, Hornung M, Gerken M, Iesalnieks I, Furst A, et al. Long-term oncologic outcome after laparoscopic surgery for rectal cancer. Surg Endosc. 2014;28(4):1119–25.

    Article  PubMed  Google Scholar 

  38. Dulucq JL, Wintringer P, Stabilini C, Mahajna A. Laparoscopic rectal resection with anal sphincter preservation for rectal cancer: long-term outcome. Surg Endosc. 2005;19(11):1468–74.

    Article  PubMed  Google Scholar 

  39. Guillou PJ, Quirke P, Thorpe H, Walker J, Jayne DG, Smith AM, et al. Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet. 2005;365(9472):1718–26.

    Article  PubMed  Google Scholar 

  40. Row D, Weiser MR. An update on laparoscopic resection for rectal cancer. Cancer Control. 2010;17(1):16–24.

    PubMed  Google Scholar 

  41. Pox C, Aretz S, Bischoff SC, Graeven U, Hass M, Heussner P, et al. S3-guideline colorectal cancer version 1.0. Z Gastroenterol. 2013;51(8):753–854.

    Article  CAS  PubMed  Google Scholar 

  42. Buchs NC, Pugin F, Volonte F, Hagen ME, Morel P, Ris F. Robotic transanal endoscopic microsurgery: technical details for the lateral approach. Dis Colon Rectum. 2013;56(10):1194–8.

    Article  PubMed  Google Scholar 

  43. Hompes R, Rauh SM, Hagen ME, Mortensen NJ. Preclinical cadaveric study of transanal endoscopic da Vinci(R) surgery. Br J Surg. 2012;99(8):1144–8.

    Article  CAS  PubMed  Google Scholar 

  44. Giulianotti PC, Addeo P, Buchs NC, Ayloo SM, Bianco FM. Robotic extended pancreatectomy with vascular resection for locally advanced pancreatic tumors. Pancreas. 2011;40(8):1264–70.

    Article  PubMed  Google Scholar 

  45. Giulianotti PC, Addeo P, Buchs NC, Bianco FM, Ayloo SM. Early experience with robotic total pancreatectomy. Pancreas. 2011;40(2):311–3.

    Article  PubMed  Google Scholar 

  46. Giulianotti PC, Coratti A, Sbrana F, Addeo P, Bianco FM, Buchs NC, et al. Robotic liver surgery: results for 70 resections. Surgery. 2011;149(1):29–39.

    Article  PubMed  Google Scholar 

  47. Buchs NC, Oldani G, Orci LA, Majno PE, Mentha G, Morel P, et al. Current status of robotic liver resection: a systematic review. Expert Rev Anticancer Ther. 2014;14(2):237–46.

    Article  CAS  PubMed  Google Scholar 

  48. Hagen ME, Wagner OJ, Inan I, Morel P, Fasel J, Jacobsen G, et al. Robotic single-incision transabdominal and transvaginal surgery: initial experience with intersecting robotic arms. Int J Med Robot. 2010;6(3):251–5.

    Article  PubMed  Google Scholar 

  49. Kroh M, El-Hayek K, Rosenblatt S, Chand B, Escobar P, Kaouk J, et al. First human surgery with a novel single-port robotic system: cholecystectomy using the da Vinci Single-Site platform. Surg Endosc. 2011;25(11):3566–73.

    Article  PubMed  Google Scholar 

  50. Morel P, Hagen ME, Bucher P, Buchs NC, Pugin F. Robotic single-port cholecystectomy using a new platform: initial clinical experience. J Gastrointest Surg. 2011;15(12):2182–6.

    Article  PubMed  Google Scholar 

  51. Spinoglio G, Lenti LM, Maglione V, Lucido FS, Priora F, Bianchi PP, et al. Single-site robotic cholecystectomy (SSRC) versus single-incision laparoscopic cholecystectomy (SILC): comparison of learning curves. First European experience. Surg Endosc. 2012;26(6):1648–55.

    Article  PubMed  Google Scholar 

  52. Morelli L, Guadagni S, Caprili G, Candio GD, Boggi U, Mosca F. Robotic right colectomy using the Da Vinci Single-Site(R) platform: case report. Int J Med Robot. 2013;9(3):258–61.

    Article  PubMed  Google Scholar 

  53. Hellan M, Spinoglio G, Pigazzi A, Lagares-Garcia JA. The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc. 2014;28(5):1695–702.

    Article  PubMed  Google Scholar 

  54. Buchs NC, Hagen ME, Pugin F, Volonte F, Bucher P, Schiffer E, et al. Intra-operative fluorescent cholangiography using indocyanin green during robotic single site cholecystectomy. Int J Med Robot. 2012;8(4):436–40.

    Article  PubMed  Google Scholar 

  55. Holloway RW, Bravo RA, Rakowski JA, James JA, Jeppson CN, Ingersoll SB, et al. Detection of sentinel lymph nodes in patients with endometrial cancer undergoing robotic-assisted staging: a comparison of colorimetric and fluorescence imaging. Gynecol Oncol. 2012;126(1):25–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika E. Hagen M.D., M.B.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hagen, M.E., Tauxe, W.M., Morel, P. (2015). Robotic Applications in Advancing General Surgery. In: Latifi, R., Rhee, P., Gruessner, R. (eds) Technological Advances in Surgery, Trauma and Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2671-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2671-8_31

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2670-1

  • Online ISBN: 978-1-4939-2671-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics