Skip to main content

Artificial Hearts and Cardiac Assist Devices: The Spectrum of the New Era

  • Chapter
Technological Advances in Surgery, Trauma and Critical Care

Abstract

Heart failure is a leading cause of death in developed nations, despite improvements in medical management strategies and quality of care. As an alternative to heart transplantation, the recent technical advancements and success of mechanical circulatory support devices have made them a viable therapeutic option. The transition of left ventricular assist devices from large pulsatile pumps to extremely compact, more reliable continuous-flow devices has been a major achievement. Initially employed as a bridge to transplantation, mechanical circulatory support was solely used to keep patients on the transplant waiting list alive until another therapy could be offered or a donor heart became available. These days, however, an increasing number of patients with end-stage heart failure are being placed on long-term ventricular support as “destination therapy,” with much improved survival rates. Despite the significant technological and therapeutic advances that have been achieved, issues with mechanical circulatory support continue to arise, and they remain the focus of increasingly sophisticated research in device development. Investigators are sharing insights into the physiological characteristics of mechanical circulation, and newer device technologies are continually emerging. This chapter aims to provide a broad perspective on the evolving state of the art regarding ventricular assist device and artificial heart technology and on the effects these newer methods are having on current clinical patterns, post-implant outcomes, and device-related technical complications in patients with various modern implantable total artificial hearts and continuous-flow left ventricular assist devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Executive summary: heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127(1):143–52.

    Article  PubMed  Google Scholar 

  2. McMurray JJ, Petrie MC, Murdoch DR, Davie AP. Clinical epidemiology of heart failure: public and private health burden. Eur Heart J. 1998;19 Suppl P:P9–16.

    Google Scholar 

  3. Braunwald E. Research advances in heart failure: a compendium. Circ Res. 2013;113(6):633–45.

    Article  CAS  PubMed  Google Scholar 

  4. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Garbade J, Bittner HB, Barten MJ, Mohr FW. Current trends in implantable left ventricular assist devices. Cardiol Res Pract. 2011;2011:290561.

    PubMed Central  PubMed  Google Scholar 

  6. Wever-Pinzon O, Drakos SG, Kfoury AG, Nativi JN, Gilbert EM, Everitt M, et al. Morbidity and mortality in heart transplant candidates supported with mechanical circulatory support: is reappraisal of the current United network for organ sharing thoracic organ allocation policy justified? Circulation. 2013;127(4):452–62.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Moazami N, Hoercher KJ, Fukamachi K, Kobayashi M, Smedira NG, Massiello A, et al. Mechanical circulatory support for heart failure: past, present and a look at the future. Expert Rev Med Devices. 2013;10(1):55–71. Review.

    Article  CAS  PubMed  Google Scholar 

  8. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson L, Miller M, et al. Long-term mechanical circulatory support (destination therapy): on track to compete with heart transplantation? J Thorac Cardiovasc Surg. 2012;144(3):584–603. discussion 597–8.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sheikh FH, Russell SD. HeartMate(R) II continuous-flow left ventricular assist system. Expert Rev Med Devices. 2011;8(1):11–21. Review.

    Article  PubMed  Google Scholar 

  10. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    Article  CAS  PubMed  Google Scholar 

  11. Rogers JG, Aaronson KD, Boyle AJ, Russell SD, Milano CA, Pagani FD, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55(17):1826–34.

    Article  PubMed  Google Scholar 

  12. Kounis NG, Soufras GD, Davlouros P, Tsigkas G, Hahalis G. Thrombus formation patterns in HeartMate II continuous-flow left ventricular assist devices: a multifactorial phenomenon involving Kounis syndrome? ASAIO J. 2014;60(4):369–71.

    Google Scholar 

  13. Starling RC, Moazami N, Silvestry SC, Ewald G, Rogers JG, Milano CA, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2014;370(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  14. Salerno CT, Sundareswaran KS, Schleeter TP, Moanie SL, Farrar DJ, Walsh MN. Early elevations in pump power with the HeartMate II left ventricular assist device do not predict late adverse events. J Heart Lung Transplant. 2014;33(8):809–15.

    Article  PubMed  Google Scholar 

  15. Strueber M, Meyer AL, Malehsa D, Haverich A. Successful use of the HeartWare HVAD rotary blood pump for biventricular support. J Thorac Cardiovasc Surg. 2010;140(4):936–7. Case Report.

    Article  PubMed  Google Scholar 

  16. Krabatsch T, Potapov E, Stepanenko A, Schweiger M, Kukucka M, Huebler M, et al. Biventricular circulatory support with two miniaturized implantable assist devices. Circulation. 2011;124(11 Suppl):S179–86.

    Article  PubMed  Google Scholar 

  17. Slaughter MS, Pagani FD, McGee EC, Birks EJ, Cotts WG, Gregoric I, et al. HeartWare ventricular assist system for bridge to transplant: combined results of the bridge to transplant and continued access protocol trial. J Heart Lung Transplant. 2013;32(7):675–83.

    Article  PubMed  Google Scholar 

  18. Wieselthaler GM, O-Driscoll G, Jansz P, Khaghani A, Strueber M, HVAD Clinical Investigators. Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J Heart Lung Transplant. 2010;29(11):1218–25.

    Article  PubMed  Google Scholar 

  19. Najjar SS, Slaughter MS, Pagani FD, Starling RC, McGee EC, Eckman P, et al. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant. 2014;33(1):23–34.

    Article  PubMed  Google Scholar 

  20. Frazier OH, Myers TJ, Gregoric I. Biventricular assistance with the Jarvik FlowMaker: a case report. J Thorac Cardiovasc Surg. 2004;128(4):625–6.

    Article  CAS  PubMed  Google Scholar 

  21. Jarvik R. Jarvik 2000 pump technology and miniaturization. Heart Fail Clin. 2014;10(1 Suppl):S27–38.

    Article  PubMed  Google Scholar 

  22. John R. Current axial-flow devices—the HeartMate II and Jarvik 2000 left ventricular assist devices. Semin Thorac Cardiovasc Surg. 2008;20(3):264–72.

    Article  PubMed  Google Scholar 

  23. Sorensen EN, Pierson 3rd RN, Feller ED, Griffith BP. University of Maryland surgical experience with the Jarvik 2000 axial flow ventricular assist device. Ann Thorac Surg. 2012;93(1):133–40.

    Article  PubMed  Google Scholar 

  24. Myers TJ, Robertson K, Pool T, Shah N, Gregoric I, Frazier OH. Continuous flow pumps and total artificial hearts: management issues. Ann Thorac Surg. 2003;75(6 Suppl):S79–85.

    Article  PubMed  Google Scholar 

  25. Frazier OH, Myers TJ, Westaby S, Gregoric ID. Use of the Jarvik 2000 left ventricular assist system as a bridge to heart transplantation or as destination therapy for patients with chronic heart failure. Ann Surg. 2003;237(5):631–6. discussion 636–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Moazami N, Fukamachi K, Kobayashi M, Smedira NG, Hoercher KJ, Massiello A, et al. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J Heart Lung Transplant. 2013;32(1):1–11.

    Article  PubMed  Google Scholar 

  27. Fukamachi K. Current status of artificial heart (assist/replacement) development in the United States. Artif Organs. 2013;37(8):675–6.

    Article  PubMed  Google Scholar 

  28. Schmitto JD, Burkhoff D, Avsar M, Fey O, Ziehme P, Buechler G, et al. Two axial-flow Synergy Micro-Pumps as a biventricular assist device in an ovine animal model. J Heart Lung Transplant. 2012;31(11):1223–9.

    Article  PubMed  Google Scholar 

  29. Klotz S, Meyns B, Simon A, Wittwer T, Rahmanian P, Schlensak C, et al. Partial mechanical long-term support with the CircuLite Synergy pump as bridge-to-transplant in congestive heart failure. Thorac Cardiovasc Surg. 2010;58 Suppl 2:S173–8.

    Google Scholar 

  30. Fukamachi K, Shiose A, Massiello AL, Horvath DJ, Golding LA, Lee S, et al. Implantable continuous-flow right ventricular assist device: lessons learned in the development of a Cleveland Clinic device. Ann Thorac Surg. 2012;93(5):1746–52.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Timms D, Gude E, Gaddum N, Lim E, Greatrex N, Wong K, et al. Assessment of right pump outflow banding and speed changes on pulmonary hemodynamics during biventricular support with two rotary left ventricular assist devices. Artif Organs. 2011;35(8):807–13.

    Article  PubMed  Google Scholar 

  32. Loforte A, Stepanenko A, Potapov EV, Musumeci F, Dranishnikov N, Schweiger M, et al. Temporary right ventricular mechanical support in high-risk left ventricular assist device recipients versus permanent biventricular or total artificial heart support. Artif Organs. 2013;37(6):523–30.

    Article  PubMed  Google Scholar 

  33. Kaczorowski DJ, Woo YJ. Who needs an RVAD in addition to an LVAD? Cardiol Clin. 2011;29(4):599–605.

    Article  PubMed  Google Scholar 

  34. Saito S, Sakaguchi T, Miyagawa S, Yoshikawa Y, Yamauchi T, Ueno T, et al. Biventricular support using implantable continuous-flow ventricular assist devices. J Heart Lung Transplant. 2011;30(4):475–8.

    Article  PubMed  Google Scholar 

  35. Hetzer R, Krabatsch T, Stepanenko A, Hennig E, Potapov EV. Long-term biventricular support with the heartware implantable continuous flow pump. J Heart Lung Transplant. 2010;29(7):822–4.

    Article  PubMed  Google Scholar 

  36. Loforte A, Monica PL, Montalto A, Musumeci F. HeartWare third-generation implantable continuous flow pump as biventricular support: mid-term follow-up. Interact Cardiovasc Thorac Surg. 2011;12(3):458–60.

    Article  PubMed  Google Scholar 

  37. Potapov E, Schweiger M, Vierecke J, Dandel M, Stepanenko A, Kukucka M, et al. Discontinuation of HeartWare RVAD support without device removal in chronic BIVAD patients. ASAIO J. 2012;58(1):15–8.

    Article  PubMed  Google Scholar 

  38. Krabatsch T, Stepanenko A, Schweiger M, Kukucka M, Ewert P, Hetzer R, et al. Alternative technique for implantation of biventricular support with HeartWare implantable continuous flow pump. ASAIO J. 2011;57(4):333–5.

    Article  PubMed  Google Scholar 

  39. Deuse T, Schirmer J, Kubik M, Reichenspurner H. Isolated permanent right ventricular assistance using the HVAD continuous-flow pump. Ann Thorac Surg. 2013;95(4):1434–6.

    Article  PubMed  Google Scholar 

  40. Chen JM, Levin HR, Rose EA, Addonizio LJ, Landry DW, Sistino JJ, et al. Experience with right ventricular assist devices for perioperative right-sided circulatory failure. Ann Thorac Surg. 1996;61(1):305–10. discussion 311–3.

    Article  CAS  PubMed  Google Scholar 

  41. Lazar JF, Swartz MF, Schiralli MP, Schneider M, Pisula B, Hallinan W, et al. Survival after left ventricular assist device with and without temporary right ventricular support. Ann Thorac Surg. 2013;96(6):2155–9.

    Article  PubMed  Google Scholar 

  42. Meineri M, Van Rensburg AE, Vegas A. Right ventricular failure after LVAD implantation: prevention and treatment. Best Pract Res Clin Anaesthesiol. 2012;26(2):217–29.

    Article  PubMed  Google Scholar 

  43. Kormos RL. The right heart failure dilemma in the era of left ventricular assist devices. J Heart Lung Transplant. 2014;33(2):134–5.

    Article  PubMed  Google Scholar 

  44. Aissaoui N, Morshuis M, Schoenbrodt M, Hakim Meibodi K, Kizner L, Borgermann J, et al. Temporary right ventricular mechanical circulatory support for the management of right ventricular failure in critically ill patients. J Thorac Cardiovasc Surg. 2013;146(1):186–91.

    Article  PubMed  Google Scholar 

  45. Berger E. Donor brings inventor of artificial heart closer to Houston. [Houston Chronicle (Houston, TX) Web site] January 14, 2013. http://www.chron.com/news/health/article/Donor-brings-of-artificial-heart-closer-to-Houston-4189733.php#photo-4023246. Accessed 29 June 2014.

  46. Copeland JG, Smith RG, Arabia FA, Nolan PE, Sethi GK, Tsau PH, et al. Cardiac replacement with a total artificial heart as a bridge to transplantation. N Engl J Med. 2004;351(9):859–67.

    Article  CAS  PubMed  Google Scholar 

  47. Italian man surpasses 1,000 days of support with SynCardia’s total artificial heart. [Press release, Syncardia Systems, Inc., Web site] October 12, 2010. http://www.syncardia.com/2010-press-release/italian-man-surpasses-1000-days-of-support-with-syncardias-total-artificial-heart.html. Accessed 29 June 2014.

  48. Jansen P, van Oeveren W, Capel A, Carpentier A. In vitro haemocompatibility of a novel bioprosthetic total artificial heart. Eur J Cardiothorac Surg. 2012;41(6):e166–72.

    Article  PubMed  Google Scholar 

  49. carmatsa.com [Internet, Web site of CARMAT, Velizy Villacoublay, France]. Available (in English): http://www.carmatsa.com/index.php?&lang=en. Accessed 29 June 2014.

  50. Irish J. Heart maker Carmat to wait before next transplant: founder. [Reuters Web site] March 16, 2014. http://www.reuters.com/article/2014/03/16/us-carmat-heart-trials-idUSBREA2F0K920140316. Accessed 29 June 2014.

  51. Cohn WE, Winkler JA, Parnis S, Costas GG, Beathard S, Conger J, et al. Ninety-day survival of a calf implanted with a continuous-flow total artificial heart. ASAIO J. 2014;60(1):15–8.

    Article  PubMed  Google Scholar 

  52. Cohn WE, Handy KM, Parnis SM, Conger JL, Winkler JA, Frazier OH. Eight-year experience with a continuous-flow total artificial heart in calves. ASAIO J. 2014;60(1):25–30.

    Article  PubMed  Google Scholar 

  53. Timms D, Fraser J, Hayne M, Dunning J, McNeil K, Pearcy M. The BiVACOR rotary biventricular assist device: concept and in vitro investigation. Artif Organs. 2008;32(10):816–9.

    Article  PubMed  Google Scholar 

  54. Kobayashi M, Horvath DJ, Mielke N, Shiose A, Kuban B, Goodin M, et al. Progress on the design and development of the continuous-flow total artificial heart. Artif Organs. 2012;36(8):705–13.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Fukamachi K, Horvath DJ, Massiello AL, Fumoto H, Horai T, Rao S, et al. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study. J Heart Lung Transplant. 2010;29(1):13–20.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Karimov JH, Fukamachi K, Moazami N, Kobayashi M, Sale S, Mielke N, et al. In vivo evaluation of the Cleveland clinic continuous-flow total artificial heart in calves. J Heart Lung Transplant. 2014;33(4 Suppl):S165–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Fukamachi M.D., Ph.D. .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

AC:

Alternating current

BiVAD:

Biventricular assist device

BTT:

Bridge to transplant

CF:

Continuous flow

DC:

Direct current

DT:

Destination therapy

HF:

Heart failure

LVAD:

Left ventricular assist device

MCS:

Mechanical circulatory support

RV:

Right ventricle

RVAD:

Right ventricular assist device

TAH:

Total artificial heart

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karimov, J.H., Moazami, N., Fukamachi, K. (2015). Artificial Hearts and Cardiac Assist Devices: The Spectrum of the New Era. In: Latifi, R., Rhee, P., Gruessner, R. (eds) Technological Advances in Surgery, Trauma and Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2671-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2671-8_26

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2670-1

  • Online ISBN: 978-1-4939-2671-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics