Skip to main content

State of Practice

  • Chapter

Part of the book series: Waste Management Principles and Practice ((WMPP))

Abstract

The potential benefits of sustainable landfill practices have been illustrated historically through a series of laboratory, pilot-scale and operating facility experiments and demonstration. A series of case studies throughout the world are presented which illustrate the variety of goals, design approaches, constraints, and opportunities that may exist for a sustainable landfilling project. The chapter begins with a discussion of the transition of the sustainable landfilling concept from smaller-scale efforts (laboratory studies and pilot-scale testing) to full-scale implementation. Experiences from a number of North American full-scale operations are highlighted, followed by a discussion of sustainable landfill technology research and implementation from Asia, Australia, and Europe.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abichou T, Barlaz MA, Green R, Hater G (2013a) The outer loop bioreactor: a case study of settlement monitoring and solids decomposition. Waste Manag 33(10):2035–2047

    Article  CAS  Google Scholar 

  • Abichou T, Barlaz MA, Green R, Hater G (2013b) Liquids balance monitoring inside conventional, retrofit, and Bio-reactor landfill cells. Waste Manag 33(10):2006–2014

    Article  CAS  Google Scholar 

  • EMCON Associates (1975) Sonoma County solid waste stabilization study. Prepared for Environmental Protection Agency Report No. EPA/530/SW-65D.1 Grant No G06-EC-00351

    Google Scholar 

  • Augenstein DC, Wise DL, Wentworth RL (1976) Fuel Gas recovery from controlled landfilling of municipal wastes. Resource Recovery and Conservation 2:103–117

    Article  CAS  Google Scholar 

  • Bareither CA, Benson CH, Barlaz MA, Edil TB, Tolaymat TM (2010) Performance of North American bioreactor landfills. I: Leachate hydrology and waste settlement. J Environ Eng 136:824–838

    Article  CAS  Google Scholar 

  • Barlaz MA, Milke MW, Ham RK (1987) Gas production parameters in sanitary landfill simulators. Waste Manag Res 5:27–39

    Article  CAS  Google Scholar 

  • Barlaz MA, Bareither CA, Hossain A, Saquing J, Mezzari I, Benson CH, Tolaymat TM, Yazdani R (2010) Performance of North American bioreactor landfills. II: Chemical and biological characteristics. J Environ Eng 136:839–853

    Article  CAS  Google Scholar 

  • Benson CH, Barlaz MA, Lane DT, Rowe JM (2007) Practice review of five bioreactor/recirculation landfills. Waste Manag 27:13–29

    Article  CAS  Google Scholar 

  • Bilgili MS, Demir A, Ozkaya B (2007a) Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes. J Hazard Mater 143(1–2):177–183

    Article  CAS  Google Scholar 

  • Bilgili MS, Demire A, İnce M, Ozkaya B (2007b) Metal concentrations of simulated aerobic and anaerobic pilot scale landfill reactors. J Hazard Mater 145:186–194

    Article  Google Scholar 

  • Bilgili MS, Demire A, Akkaya E, Ozkaya B (2008) COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors. J Hazard Mater 158:157–163

    Article  CAS  Google Scholar 

  • Burns and McDonnell Engineering Company Inc. (2014) Leachate management summary, prepared for Crow Wing County Sanitary Landfill, Brainerd. Project No. 77272

    Google Scholar 

  • Caine M, Campbell D, Van Santen A (1999) The landfill gas timeline: the Brogborough test cells. Waste Manag Res 17:430–442

    Article  CAS  Google Scholar 

  • Cho Y (2010) Investigation of geotechnical and hydraulic aspects of landfill design and operation. Ph.D. Dissertation, University of Florida, Gainesville

    Google Scholar 

  • Clarke WP (2000) Cost-benefit analysis of introducing technology to rapidly degrade municipal solid waste. Waste Manag Res 18:510–524

    Article  Google Scholar 

  • Doran, F. (2007). Better life through chemistry- Leachate treatment at the Crow Wing County Landfill. In association with RW Beck, Wastecon

    Google Scholar 

  • Eliasen R (1945) Decomposition in land-fills. Am J Public Health 32:1029–1037

    Article  Google Scholar 

  • EPA Victoria. (2010) EPA Publication 788.1, Best practice environmental management- siting, design, operation and rehabilitation of landfills

    Google Scholar 

  • Faour AA, Reinhart DR, You H (2007) First-order kinetic gas generation model parameters for wet landfills. Waste Manag 27:946–953

    Article  CAS  Google Scholar 

  • Farquar GF, Rovers FA (1973) Gas production during refuse decomposition. Water Air Soil Pollut 2:483–495

    Article  Google Scholar 

  • Gawande NA, Reinhart DR, Thomas PA, McCreanor PT, Townsend TG (2003) Municipal solid waste in situ moisture content measurement using an electrical resistance sensor. Waste Manag 23:667–674

    Article  CAS  Google Scholar 

  • Hater G, Green R (2003) Landfills as bioreactors: research at the outer loop landfill, Louisville, Kentucky. Waste Management Inc., EPA/600/R-03/097

    Google Scholar 

  • Hudson AP, White JK, Beaven RP, Powrie W (2004) Modelling the compression behaviour of landfilled domestic waste. Waste Manag 24(3):259–269

    Article  CAS  Google Scholar 

  • Jain P, Kim H, Townsend T (2005a) Heavy metal content in soil reclaimed from a municipal solid waste landfill. Waste Manag 25:25–35

    Article  CAS  Google Scholar 

  • Jain P, Powell J, Townsend T, Reinhart D (2005b) Air permeability of waste in a municipal solid waste landfill. J Environ Eng 131:1565–1573

    Article  CAS  Google Scholar 

  • Jain P, Farfour WM, Jonnalagadda S, Townsend T, Reinhart DR (2005c) Performance evaluation of vertical wells for landfill leachate recirculation. In: Proceedings of Geo Frontier 2005, ASCE conference, Austin

    Google Scholar 

  • Jain P, Powell J, Townsend T, Reinhart D (2006) Estimating the hydraulic conductivity of landfilled municipal solid waste using the borehole permeameter test. J Environ Eng 132:645–652

    Article  CAS  Google Scholar 

  • Jain P, Ko JH, Kumar D, Powell J, Kim H, Maldonado L, Townsend T, Reinhart DR (2014) Case study of landfill leachate recirculation using small-diameter vertical wells. Waste Manag 34(11):2312–2320

    Article  Google Scholar 

  • Jonnalagadda S, Kumar D, Jain P, Gawande N, Townsend TG, Reinhart D (2010) Comparison of resistivity and time domain reflectometry sensors for assessing moisture content in bioreactor landfills. Geotech Test J 33(3):183–191

    Google Scholar 

  • Kadambala R, Townsend TG, Jain P, Singh K (2011) Temporal and spatial pore water pressure distribution surrounding a vertical landfill leachate recirculation well. Int J Environ Res Public Health 8:1692–1706

    Article  Google Scholar 

  • Kim H (2005) Comparative studies of aerobic and anaerobic landfills using simulated landfill lysimeters. Doctoral thesis, University of Florida, Gainesville

    Google Scholar 

  • Kim H, Townsend T (2012) Wet landfill decomposition rate determination using methane yield results for excavated waste samples. Waste Manag 32:1427–1433

    Article  CAS  Google Scholar 

  • Kim H, Jang Y-C, Townsend T (2011) The behavior and long-term fate of metals in simulated landfill bioreactors under aerobic and anaerobic conditions. J Hazard Mater 194:369–377

    Article  CAS  Google Scholar 

  • Knox K (1998) Practical benefits for the waste industry from the UK’s landfill test cell programme. Waste Management, p 18–19

    Google Scholar 

  • Knox K (1999) A review of the Brogborough and Landfill 2000 test cell monitoring data. Environment Agency R&D Technical Report P231

    Google Scholar 

  • Ko JH, Powell J, Jain P, Kim H, Townsend T, Reinhart D (2013) Case study of controlled air addition into landfilled municipal solid waste: design, operation, and control. J Haz Toxic Radioactive Waste 14(4):351–359

    Article  Google Scholar 

  • Kumar S (2009) Study of pore water pressure impact and fluid conductance of a landfill horizontal liquids injection system. Master of Engineering Thesis, University of Florida, Gainesville

    Google Scholar 

  • Kumar D, Jonnalagadda S, Jain P, Gawande NA, Townsend TG, Reinhart DR (2009) Field evaluation of resistivity sensors for in situ moisture measurement in a bioreactor landfill. Waste Manag 29:1547–1557

    Article  CAS  Google Scholar 

  • Kumar S, Chiemchaisri C, Mudhoo A (2011) Bioreactor landfill technology in municipal solid waste treatment: an overview. Crit Rev Biotechnol 31(1):77–97

    Article  CAS  Google Scholar 

  • Larson J (2007) Investigations at a bioreactor landfill to aid in the operation and design of horizontal injection liquids addition systems. Master of Engineering Thesis, University of Florida, Gainesville

    Google Scholar 

  • Larson J, Kumar S, Gale SA, Jain P, Townsend T (2012) A field study to estimate the vertical gas diffusivity and permeability of compacted MSW using a barometric pumping analytical model. Waste Manag Res 30:276–284

    Article  Google Scholar 

  • Lee N, Kusuda T, Shimaoka T, Matsufuji Y, Hanashima M (1994) Pollutant transformation in landfill layers. Waste Manag Res 12:33–48

    Article  CAS  Google Scholar 

  • Liu J, Luo J, Zhou J, Liu Q, Qian G, Xu ZP (2012) Inhibitory effect of high-strength ammonia nitrogen on bio-treatment of landfill leachate using EGSB reactor under mesophilic and atmospheric conditions. Bioresour Technol 113:239–243

    Article  CAS  Google Scholar 

  • Matsufuji Y (2004) A road to semi-aerobic landfill—experience of semi-aerobic landfills in Japan and Malaysia. The Third Intercontinental Landfill Research Symposium Nov 29–Dec 2, 2004, Hokkaido

    Google Scholar 

  • Mehta R, Barlaz MA, Yazdani R, Augenstein D, Bryars M, Sinderson L (2002) Refuse decomposition in the presence and absence of leachate recirculation. J Environ Eng 128:228–236

    Article  CAS  Google Scholar 

  • Morris JW, Vasuki NC, Baker JA, Pendleton CH (2003) Findings from long-term monitoring studies at MSW landfill facilities with leachate recirculation. Waste Manag 23:653–666

    Article  CAS  Google Scholar 

  • Pohland FG (1977) Controlled landfill stabilization by leachate recycle. EPA project number E-20-614. Grant number R803953020

    Google Scholar 

  • Pohland FG, Gould JP, Esteves WR, Spiller BJ (1987) Fate of heavy metals during landfill stabilization of solid waste materials with leachate recycle. U.S. EPA Project No. R-806498, Cincinnati

    Google Scholar 

  • Powell J (2005) Trace gas quality, temperature control, and extent of influence from air addition at a bioreactor landfill. Masters Thesis, University of Florida, Gainesville

    Google Scholar 

  • Powell J, Jain P, Kim H, Townsend T, Reinhart D (2006) Changes in landfill gas quality as a result of controlled air injection. Environ Sci Technol 40:1029–1034

    Article  CAS  Google Scholar 

  • Qu X, He PJ, Shao LM, Lee DJ (2008) Heavy metals mobility in fully-scale bioreactor landfill: initial stage. Chemosphere 70(5):769–777, Epub 2007 Aug 27

    Article  CAS  Google Scholar 

  • Reinhart DR, Pohland FG, Gould JP, Cross WH (1991) The fate of selected organic pollutants codisposed with municipal refuse. Res J Water Pollut C 63(5):780–788

    CAS  Google Scholar 

  • Reynolds P (2011) Landfill 2000—a field trial of accelerated waste stabilization. http://www.patrickreynolds.co.uk/landfill/. Accessed 4 March 2014

  • Ritzkowski M, Stegmann R (2012) Landfill aeration worldwide: concepts, indications and findings. Waste Manag 32:1411–1419

    Article  CAS  Google Scholar 

  • Singh K, Kadambala R, Jain P, Xu Q, Townsend T (2014) Anisotropy estimation of compacted municipal solid waste using pressurized vertical well liquids injection. Waste Manag Res 32(6):482–491

    Article  Google Scholar 

  • Stessel RI, Murphy RJ (1992) A lysimeter study of the aerobic landfill concept. Waste Manag Res 10:485–503

    Article  CAS  Google Scholar 

  • Timmons J, Cho YM, Townsend T, Berge N, Reinhart D (2012) Total earth pressure cells for measuring loads in a municipal solid waste landfill. Geotech Geol Eng 30:95–105

    Article  Google Scholar 

  • Tolaymat TM, Green RB, Hater GR, Barlaz MA, Black P, Bronson D, Powell J (2010) Evaluation of landfill gas decay constant for municipal solid waste landfills operated as bioreactors. J Air Waste Manag Assoc 60(1):91–97

    Article  CAS  Google Scholar 

  • Townsend T (1992) Assessment and conceptual design of an on-site leachate treatment system using leachate recycle, membrane separation and land application. Master of Engineering Thesis, University of Florida, Gainesville

    Google Scholar 

  • Townsend TG (1995) Leachate recycle at solid waste landfills using horizontal injection. Ph.D. Dissertation, University of Florida, Gainesville

    Google Scholar 

  • Townsend TG, Miller W (1997) Landfill Gas extraction form leachate collection systems. J Solid Waste Technol Manag 24(3):131–136

    Google Scholar 

  • Townsend TG, Miller WL (1998) Leachate recycle using horizontal injection. Adv Environ Res 2(2):129–138

    Google Scholar 

  • Townsend T, Miller W, Bishop R, Carter J (1994) Combining systems for leachate recirculation and landfill gas collection. Solid Waste Technol 8(4):18–24

    Google Scholar 

  • Townsend TG, Miller WL, Earle JFK (1995) Leachate-recycle infiltration ponds. J Environ Eng 121(6):465–471

    Article  CAS  Google Scholar 

  • Townsend TG, Miller WL, Lee H-J, Earle JFK (1996) Acceleration of landfill stabilization using leachate recycle. J Environ Eng 122(4):263–268

    Article  CAS  Google Scholar 

  • US EPA (2006) Landfill bioreactor performance: second interim report outer loop recycling & disposal facility Louisville, Kentucky. EPA/600/R-07/060. U.S. Environmental Protection Agency, Cincinnati

    Google Scholar 

  • US EPA (2007) Bioreactor performance summary paper. EPA530-R-07-007. US EPA Office of Solid Waste, Municipal and Industrial Solid Waste Management Division, Washington, DC

    Google Scholar 

  • Watson RP (1987) A case study of leachate generation and recycling at two sanitary landfills. In: Proceedings from the technical sessions of the GRCDA 25th annual international seminar, equipment, services, and systems show 1987. Saint Paul, MN

    Google Scholar 

  • Yazdani R, Kieffer J, Akau H (2002) Full scale landfill bioreactor project at the Yolo County central landfill: final report. Yolo County, Planning and Public Works Department. EPA Project XL progress report

    Google Scholar 

  • Yazdani R, Kieffer J, Sananikone K, Augenstein D (2006) Full scale bioreactor landfill for carbon sequestration and greenhouse emission control: final technical progress report. Yolo County, Planning and Public Works Department. D.O.E. Award Number DE-FC26-01NT41152

    Google Scholar 

  • Yazdani R, Mostafid ME, Han B, Imhoff PT, Chiu P, Augenstein D, Kayhanian M, Tchobanoglous G (2010) Quantifying factors limiting aerobic degradation during aerobic bioreactor landfilling. Environ Sci Technol 44:6215–6220

    Article  CAS  Google Scholar 

  • Yuen STS (2001) Bioreactor landfills: do they work? 2nd ANZ Conference on Environmental Geotechnics, Newcastle, Australia

    Google Scholar 

  • Yuen STS, Styles JR, Wang QJ, McMahon TA (1997) The design, construction and instrumentation of a full-scale bioreactor landfill. GeoEnvironment 97, 1st Australia-New Zealand Conference on Environmental Geotechnics, p 345–352, Melbourne, November 1997

    Google Scholar 

  • Yuen STS, Wang QJ, Style JR, McMahon TA (2001) Water balance comparison between a dry and a wet landfill—a full-scale experiment. J Hydrol 251:29–48

    Article  Google Scholar 

  • Zhang H, He P, Shao L (2008) Methane emission from MSW landfill with sandy soil covers under leachate recirculation and subsurface irrigation. Atmos Environ 42(22):5579–5588

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Townsend, T.G., Powell, J., Jain, P., Xu, Q., Tolaymat, T., Reinhart, D. (2015). State of Practice. In: Sustainable Practices for Landfill Design and Operation. Waste Management Principles and Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2662-6_4

Download citation

Publish with us

Policies and ethics