Skip to main content

Part of the book series: Springer Texts in Statistics ((STS))

  • 208k Accesses

Abstract

Bayesian statistics is based up a philosophy different from that of other methods of statistical inference. In Bayesian statistics all unknowns, and in particular unknown parameters, are considered to be random variables and their probability distributions specify our beliefs about their likely values. Estimation, model selection, and uncertainty analysis are implemented by using Bayes’s theorem to update our beliefs as new data are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Edwards (1982) .

  2. 2.

    OpenBUGS will run on a Mac under WINE.

  3. 3.

    The effective sample size can be larger than the actual sample size if there is negative correlation, but negative correlation is unlikely. It is more likely that some of the effective sample sizes exceed the actual sample sizes due to random variation, i.e., estimation error.

  4. 4.

    A residual is standardized by dividing it by its conditional standard deviation.

  5. 5.

    JAGS had trouble when the full data set was used, probably because there are nearly 5000 latent variables. This problem is likely hardware dependent.

References

  • Albert, J. (2007) Bayesian Computation with R, Springer, New York.

    Book  MATH  Google Scholar 

  • Albert, J. H. and Chib, S. (1993) Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts, Journal of Business & Economic Statistics, 11, 1–15.

    Google Scholar 

  • Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis 2nd ed., Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Bernardo, J. M., and Smith, A. F. M. (1994) Bayesian Theory, Wiley, Chichester.

    Book  MATH  Google Scholar 

  • Box, G. E. P., and Tiao, G. C. (1973) Bayesian Inference in Statistical Analysis, Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  • Brooks, S. P. and Gelman, A. (1998) General Methods for Monitoring Convergence of Iterative Simulations. Journal of Computational and Graphical Statistics, 7, 434–455.

    MathSciNet  Google Scholar 

  • Carlin, B. P., and Louis, T. A. (2000) Empirical Bayes: Past, present and future. Journal of the American Statistical Association, 95, 1286–1289.

    Article  MATH  MathSciNet  Google Scholar 

  • Carlin, B., and Louis, T. A. (2008) Bayesian Methods for Data Analysis, 3rd ed., Chapman & Hall, New York.

    MATH  Google Scholar 

  • Chib, S., and Ergashev, B. (2009) Analysis of multifactor affine yield curve models. Journal of the American Statistical Association, 104, 1324–1337.

    Article  MATH  MathSciNet  Google Scholar 

  • Chib, S., and Greenberg, E. (1994) Bayes inference in regression models with ARMA(p, q) errors. Journal of Econometrics, 64, 183–206.

    Article  MATH  MathSciNet  Google Scholar 

  • Chib, S., and Greenberg, E. (1995) Understanding the Metropolis–Hastings algorithm. American Statistician, 49, 327–335.

    Google Scholar 

  • Congdon, P. (2001) Bayesian Statistical Modelling, Wiley, Chichester.

    MATH  Google Scholar 

  • Congdon, P. (2003) Applied Bayesian Modelling, Wiley, Chichester.

    Book  MATH  Google Scholar 

  • Daniels, M. J., and Kass, R. E. (1999) Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association, 94, 1254–1263.

    Article  MATH  MathSciNet  Google Scholar 

  • Edwards, W. (1982) Conservatism in human information processing. In Judgement Under Uncertainty: Heuristics and Biases, D. Kahneman, P. Slovic, and A. Tversky, ed., Cambridge University Press, New York.

    Google Scholar 

  • Gelman, A., and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequence (with discussion). Statistical Science, 7, 457–511.

    Article  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013) Bayesian Data Analysis, 3rd ed., Chapman & Hall, London.

    Google Scholar 

  • Greyserman, A., Jones, D. H., and Strawderman, W. E. (2006) Portfolio selection using hierarchical Bayesian analysis and MCMC methods, Journal of Banking and Finance, 30, 669–678.

    Article  Google Scholar 

  • Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. (1998) Markov chain Monte Carlo in practice: A roundtable discussion. American Statistician, 52, 93–100.

    MathSciNet  Google Scholar 

  • Kim, S., Shephard, N., and Chib, S. (1998) Stochastic volatility: likelihood inference and comparison with ARCH models.Review of Economic Studies, 65, 361–393.

    Google Scholar 

  • Ledoit, O., and Wolf, M. (2003) Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10, 603–621.

    Article  Google Scholar 

  • Lehmann, E. L. (1983) Theory of Point Estimation, Wiley, New York.

    Book  MATH  Google Scholar 

  • Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D. (2013) The BUGS Book, Chapman & Hall.

    Google Scholar 

  • Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000) OpenBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing, 10, 325–337.

    Article  Google Scholar 

  • Rachev, S. T., Hsu, J. S. J., Bagasheva, B. S., and Fabozzi, F. J. (2008) Bayesian Methods in Finance, Wiley, Hoboken, NJ.

    Google Scholar 

  • Robert, C. P. (2007) The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation, 2nd ed., Springer, New York.

    Google Scholar 

  • Robert, C. P., and Casella, G. (2005) Monte Carlo Statistical Methods, 2nd ed., Springer, New York.

    Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002) Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, Methodological, 64, 583–616.

    Article  MATH  Google Scholar 

  • Stein, C. (1956) Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the Third Berkeley Symposium on Mathematical and Statistical Probability, J. Neyman, ed., University of California, Berkeley, pp. 197–206, Volume 1.

    Google Scholar 

  • van der Vaart, A. W. (1998) Asymptotic Statistics, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ruppert, D., Matteson, D.S. (2015). Bayesian Data Analysis and MCMC. In: Statistics and Data Analysis for Financial Engineering. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2614-5_20

Download citation

Publish with us

Policies and ethics