Skip to main content

Abstract

Range of motion testing is a necessary component of the shoulder examination. The concepts and techniques described in this chapter are meant to provide a foundation upon which clinicians can conduct individualized examinations according to the patient’s suspected pathology. Specific findings can then narrow the differential diagnosis and direct the clinician towards the performance of various provocative testing maneuvers. In addition, an understanding of each topic is necessary to aid in the interpretation of various clinical studies in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silver D. Measurement of range of motion in joints. J Bone Joint Surg Am. 1923;5:569.

    Google Scholar 

  2. Cave EF, Roberts S. A method for measuring and recording joint function. J Bone Joint Surg Am. 1936;18(2):455–65.

    Google Scholar 

  3. American Medical Association. A guide to the evaluation of permanent impairment of the extremities and back. J Am Med Assn. 1958;166(15):1–109.

    Google Scholar 

  4. American Academy of Orthopaedic Surgeons. Joint motion: method of measuring and recording. Chicago: American Academy of Orthopaedic Surgeons; 1965.

    Google Scholar 

  5. Mallon WJ, Herring CL, Sallay PI, Moorman CT, Crim JR. Use of vertebral levels to measure presumed internal rotation at the shoulder: a radiographic analysis. J Shoulder Elbow Surg. 1996;5(4):299–306.

    CAS  PubMed  Google Scholar 

  6. Jerosch J, Steinbeck J, Schröder M, Westhues M, Reer R. Intraoperative EMG response of the musculature after stimulation of the glenohumeral joint capsule. Acta Orthop Belg. 1997;63(1):8–14.

    CAS  PubMed  Google Scholar 

  7. Debski RE, Wong EK, Woo SLY, Sakane M, Fu FH, Warner JJP. In situ force distribution in the glenohumeral joint capsule during anterior-posterior loading. J Orthop Res. 1999;17(5):769–76.

    CAS  PubMed  Google Scholar 

  8. Inman VT, Saunders JB, Abbott LC. Observations on the function of the shoulder joint. J Bone Joint Surg. 1944;26(1):1–30.

    Google Scholar 

  9. Lin HT, Hsu AT, Chang GL, Chien JC, An KN, Su FC. Determining the resting position of the glenohumeral joint in subjects who are healthy. Phys Ther. 2007;87(12):1669–82.

    PubMed  Google Scholar 

  10. Kaltenborn FM. Manual mobilization of the joints. Oslo: Olaf Nortis Bokhandel; 2002.

    Google Scholar 

  11. Magee D. Orthopedic physical examination, vol. 1. Philadelphia: Saunders; 2002.

    Google Scholar 

  12. Magee DJ. Orthopaedic physical assessment. 3rd ed. Philadelphia: WB Saunders; 1997.

    Google Scholar 

  13. An KN, Browne AO, Korinek S, Tanaka S, Morrey BF. Three-dimensional kinematics of glenohumeral elevation. J Orthop Res. 1991;9(1):143–9.

    CAS  PubMed  Google Scholar 

  14. Hsu AT, Chang JG, Chang CH. Determining the resting position of the glenohumeral joint: a cadaver study. J Orthop Sports Phys Ther. 2002;32(12):605–12.

    PubMed  Google Scholar 

  15. Mallon WJ. On the hypotheses that determine the definitions of glenohumeral joint motion: with resolution of Codman’s pivotal paradox. J Shoulder Elbow Surg. 2012;21(12):e4–19.

    PubMed  Google Scholar 

  16. Politti JC, Goroso G, Valentinuzzi ME, Bravo O. Codman’s paradox of the arm rotations is not a paradox: mathematical validation. Med Eng Phys. 1998;20(4):257–60.

    CAS  PubMed  Google Scholar 

  17. Hollis R, Lahav A, West Jr HS. Manipulation of the shoulder using Codman’s paradox. Orthopedics. 2006;29(11):971–3.

    PubMed  Google Scholar 

  18. Mullen F, Slade S, Briggs C. Bony and capsular determinants of glenohumeral ‘locking’ and ‘quadrant’ positions. Aust J Physiother. 1989;35(4):202–8.

    CAS  PubMed  Google Scholar 

  19. Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: spectrum of pathology. Part III: the SICK scapula, scapular dyskinesis, the kinetic chain, and rehabilitation. Arthroscopy. 2003;19(6):641–61.

    PubMed  Google Scholar 

  20. Giphart JE, Brunkhorst JP, Horn NH, Shelburne KB, Torry MR, Millett PJ. Effect of plane of arm elevation on glenohumeral kinematics: a normative biplane fluoroscopy study. J Bone Joint Surg Am. 2013;95(3):238–45.

    PubMed  Google Scholar 

  21. Giphart JE, van der Meijden OA, Millett PJ. The effects of arm elevation on the 3-dimensional acromiohumeral distance: a biplane fluoroscopy study with normative data. J Shoulder Elbow Surg. 2012;21(11):1593–600.

    PubMed  Google Scholar 

  22. Kibler WB, McMullen J. Scapular dyskinesis and its relation to shoulder pain. J Am Acad Orthop Surg. 2003;11(2):142–51.

    PubMed  Google Scholar 

  23. Lukasiewicz AC, McClure P, Michener L, Pratt N, Sennett B. Comparison of 3-dimensional scapular position and orientation between subjects with and without shoulder impingement. J Orthop Sports Phys Ther. 1999;29(10):574–83.

    CAS  PubMed  Google Scholar 

  24. Warner JJ, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R. Patterns of flexibility, laxity, and strength in normal shoulders and shoulders with instability and impingement. Am J Sports Med. 1990;18(4):366–75.

    CAS  PubMed  Google Scholar 

  25. Sobush DC, Simoneau GG, Dietz KE, Levene JA, Grossman RE, Smith WB. The Lennie test for measuring scapular position in healthy young adult females: a reliability and validity study. J Orthop Sports Phys Ther. 1996;23(1):39–50.

    CAS  PubMed  Google Scholar 

  26. Fung M, Kato S, Barrance PJ, Elias JJ, McFarland EG, Nobuhara K, Chao EY. Scapular and clavicular kinematics during humeral elevation: a study with cadavers. J Shoulder Elbow Surg. 2001;10(3):278–85.

    CAS  PubMed  Google Scholar 

  27. Matsumura N, Nakamichi N, Ikegami H, Nagura T, Imanishi N, Aiso S, Toyama Y. The function of the clavicle on scapular motion: a cadaveric study. J Shoulder Elbow Surg. 2013;22(3):333–9.

    PubMed  Google Scholar 

  28. Rubright J, Kelleher P, Beardsley C, Paller D, Shackford S, Beynnon B, Shafritz A. Long-term clinical outcomes, motion, strength, and function after total claviculectomy. J Shoulder Elbow Surg. 2014;23(2):236–44.

    PubMed  Google Scholar 

  29. Ludewig PM, Phadke V, Braman JP, Hassett DR, Cieminski CJ, LaPrade RF. Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am. 2009;91(2):378–89.

    PubMed Central  PubMed  Google Scholar 

  30. Sahara W, Sugamoto K, Murai M, Yoshikaw H. Three-dimensional clavicular and acromioclavicular rotations during arm abduction using vertically open MRI. J Orthop Res. 2007;25(9):1243–9.

    PubMed  Google Scholar 

  31. Clarke GR, Willis LA, Fish WW, Nichols PJ. Preliminary studies in measuring range of motion in normal and painful stiff shoulders. Rheumatol Rehabil. 1975;14(1):39–46.

    CAS  PubMed  Google Scholar 

  32. Gagey OJ, Gagey N. The hyperabduction test. J Bone Joint Surg Br. 2001;83(1):69–74.

    CAS  PubMed  Google Scholar 

  33. Sauers EL, Borsa PA, Herling DE, Stanley RD. Instrumented measurement of glenohumeral joint laxity and its relationship to passive range of motion and generalized joint laxity. Am J Sports Med. 2001;29(2):143–50.

    CAS  PubMed  Google Scholar 

  34. Lintner SA, Levy A, Kenter K, Speer KP. Glenohumeral translation in the asymptomatic athlete’s shoulder and its relationship to other clinically measurable anthropometric variables. Am J Sports Med. 1996;25(6):716–20.

    Google Scholar 

  35. Hoving JL, Buchbinder R, Green S, Forbes A, Bellamy N, Brand C, Buchanan R, Hall S, Patrick M, Ryan P, Stockman A. How reliably do rheumatologists measure shoulder movement? Ann Rheum Dis. 2002;61(7):612–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. McFarland EG, Fung M, Desjardins JD, Chao EYS. Glenohumeral motion can be distinguished from scapulothoracic motion in rotation. New Orleans: Orthopaedic Research Society. 1998.

    Google Scholar 

  37. Yap J, McFarland EG, Fung M, Kato S, Chao EYS. Glenohumeral motion can be distinguished from scapulothoracic motion in internal and external rotation. Orlando: American College of Sports Medicine Annual Meeting. 1999.

    Google Scholar 

  38. Cyriax JH, Cyriax PJ. Illustrated manual of orthopaedic medicine. London: Butterworth; 1993.

    Google Scholar 

  39. Hayes KW, Petersen CM. Reliability of assessing end-feel and pain and resistance sequence in subjects with painful shoulders and knees. J Orthop Sports Phys Ther. 2001;31(8):432–5.

    CAS  PubMed  Google Scholar 

  40. Maitland GD. Vertebral manipulation. 5th ed. London: Butterworth; 1986.

    Google Scholar 

  41. Watkins MA, Riddle DL, Lamb RL, Personius WJ. Reliability of goniometric measurements and visual estimates of knee range of motion obtained in a clinical setting. Phys Ther. 1991;71(2):90–6.

    CAS  PubMed  Google Scholar 

  42. Williams JG, Callaghan M. Comparison of visual estimation and goniometry in determination of a shoulder joint angle. Physiotherapy. 1990;76(10):655–7.

    Google Scholar 

  43. Azadinia F, Kamyab M, Behtash H, Saleh Ganjavian M, Javaheri MR. The validity and reliability of non-invasive methods for measuring kyphosis. J Spinal Disord Tech. 2014;27(6):E212-8.

    Google Scholar 

  44. Czaprowski D, Pawłowska P, Gębicka A, Sitarski D, Kotwicki T. Intra- and interobserver repeatability of the assessment of anteroposterior curvatures of the spine using Saunders digital inclinometer. Ortop Traumatol Rehabil. 2012;14(2):145–53.

    PubMed  Google Scholar 

  45. Siminoski K, Warshawski RS, Jen H, Lee KC. The accuracy of clinical kyphosis examination for detection of thoracic vertebral fractures: comparison of direct and indirect kyphosis measures. J Musculoskelet Neuronal Interact. 2011;11(3):249–56.

    CAS  PubMed  Google Scholar 

  46. Dover G, Kaminski TW, Meister K, Powers ME, Horodyski M. Assessment of shoulder proprioception in the female softball athlete. Am J Sports Med. 2003;31(3):431–7.

    PubMed  Google Scholar 

  47. Dover G, Powers ME. Reliability of joint position sense and force-reproduction measures during internal and external rotation of the shoulder. J Athl Train. 2003;38(4):304–10.

    PubMed Central  PubMed  Google Scholar 

  48. Awan R, Smith J, Boon AJ. Measuring shoulder internal rotation range of motion: a comparison of 3 techniques. Arch Phys Med Rehabil. 2002;83(9):1229–34.

    PubMed  Google Scholar 

  49. Borsa PA, Timmons MK, Sauers EL. Scapular-positioning patterns during humeral elevation in unimpaired shoulders. J Athl Train. 2003;38(1):12–7.

    PubMed Central  PubMed  Google Scholar 

  50. de Winter AF, Heemskerk MA, Terwee CB, Jans MP, Deville W, van Schaardenburg DJ, Scholten RJ, Bouter LM. Inter-observer reproducibility of measurements of range of motion in patients with shoulder pain using a digital inclinometer. BMC Musculoskelet Disord. 2004;5(1):18.

    PubMed Central  PubMed  Google Scholar 

  51. Kolber MJ, Fuller C, Marshall J, Wright A, Hanney WJ. The reliability and concurrent validity of scapular plane shoulder elevation measurements using a digital inclinometer and goniometer. Physiother Theory Pract. 2012;28(2):161–8.

    PubMed  Google Scholar 

  52. Kolber MJ, Hanney WJ. The reliability and concurrent validity of shoulder mobility measurements using a digital inclinometer and goniometer: a technical report. Int J Sports Phys Ther 2012;7(3):306–13.

    Google Scholar 

  53. Maenhout A, Van Eessel V, Van Dyck L, Vanraes A, Cools A. Quantifying acromiohumeral distance in overhead athletes with glenohumeral internal rotation loss and the influence of a stretching program. Am J Sports Med. 2012;40(9):2105–12.

    PubMed  Google Scholar 

  54. Scibek JS, Carcia CR. Assessment of scapulohumeral rhythm for scapular plane shoulder elevation using a modified digital inclinometer. World J Orthop. 2012;3(6):87–94.

    PubMed Central  PubMed  Google Scholar 

  55. Scibek JS, Carcia CR. Validation and repeatability of a shoulder biomechanics data collection methodology and instrumentation. J Appl Biomech. 2012;29(5):609–15.

    PubMed  Google Scholar 

  56. Tucker WS, Ingram RL. Reliability and validity of measuring scapular upward rotation using an electrical inclinometer. J Electromyogr Kinesiol. 2012;22(3):419–23.

    PubMed  Google Scholar 

  57. Wassinger CA, Sole G, Osborne H. Clinical measurement of scapular upward rotation in response to acute subacromial pain. J Orthop Sports Phys Ther. 2013;43(4):199–203.

    PubMed  Google Scholar 

  58. Johnson MP, McClure PW, Karduna AR. New method to assess scapular upward rotation in subjects with shoulder pathology. J Ortho Sports Phys Ther. 2001;31(2):81–9.

    CAS  Google Scholar 

  59. Shin SH, du Ro H, Lee OS, Oh JK, Kim SH. Within-day reliability of shoulder range of motion measurement with a smart phone. Man Ther. 2012;17(4):298–304.

    PubMed  Google Scholar 

  60. Mitchell K, Gutierrez SB, Sutton S, Morton S, Morgenthaler A. Reliability and validity of goniometric iPhone applications for the assessment of active shoulder external rotation. Physiother Theory Pract. 2014;30(7):521–5.

    PubMed  Google Scholar 

  61. Tousignant-Laflamme Y, Boutin N, Dion AM, Vallée CA. Reliability and criterion validity of two applications of the iPhoneTM to measure cervical range of motion in healthy participants. J Neuroeng Rehabil. 2013;10(1):69.

    PubMed Central  PubMed  Google Scholar 

  62. Cools AM, De Wilde L, Van Tongel A, Ceyssens C, Ryckewaert R, Cambier DC. Measuring shoulder external and internal rotation strength and range of motion: comprehensive intra-rater and inter-rater reliability study of several testing protocols. J Shoulder Elbow Surg. 2014;23(10):1454–61.

    PubMed  Google Scholar 

  63. El-Zayat BF, Efe T, Heidrich A, Anetsmann R, Timmesfeld N, Fuchs-Winkelmann S, Schofer MD. Objective assessment, repeatability, and agreement of shoulder ROM with a 3D gyroscope. BMC Musculoskelet Disord. 2013;14:72.

    PubMed Central  PubMed  Google Scholar 

  64. El-Zayat BF, Efe T, Heidrich A, Wolf U, Timmesfeld N, Heyse TJ, Lakemeier S, Fuchs-Winkelmann S, Schofer MD. Objective assessment of shoulder mobility with a new 3D gyroscope–a validation study. BMC Musculoskelet Disord. 2011;12:168.

    PubMed Central  PubMed  Google Scholar 

  65. Penning LI, Guldemond NA, de Bie RA, Walenkamp GH. Reproducibility of a 3-dimensional gyroscope in measuring shoulder anteflexion and abduction. BMC Musculoskelet Disord. 2012;13:135.

    PubMed Central  PubMed  Google Scholar 

  66. Blonna D, Zarkadas PC, Fitzsimmons JS, Odriscoll SW. Validation of a photography-based goniometry method for measuring joint range of motion. J Shoulder Elbow Surg. 2012;21(1):29–35.

    PubMed  Google Scholar 

  67. Moncrieff MJ, Livingston LA. Reliability of a digital-photographic-goniometric method for coronal-plane lower limb measurements. J Sport Rehabil. 2009;18(2):296–315.

    PubMed  Google Scholar 

  68. Naylor JM, Ko V, Adie S, Gaskin C, Walker R, Harris IA, Mittal R. Validity and reliability of using photography for measuring knee range of motion: a methodological study. BMC Musculoskelet Disord. 2011;12:77.

    PubMed Central  PubMed  Google Scholar 

  69. O’Neill BJ, O’Briain D, Hirpara KM, Shaughnesy M, Yeatman EA, Kaar TK. Digital photography for assessment of shoulder range of motion: a novel clinical and research tool. Int J Shoulder Surg. 2013;7(1):23–7.

    PubMed Central  PubMed  Google Scholar 

  70. Verhaegen F, Ganseman Y, Arnout N, Vandenneucker H, Bellemans J. Are clinical photographs appropriate to determine the maximal range of motion of the knee? Acta Orthop Belg. 2010;76(6):794–8.

    PubMed  Google Scholar 

  71. Sabari JS, Maltzev I, Lubarsky D, Liszkay E, Homel P. Goniometric assessment of shoulder range of motion: comparison of testing in supine and sitting positions. Arch Phys Med Rehabil. 1998;79(6):647–51.

    CAS  PubMed  Google Scholar 

  72. Boon AJ, Smith J. Manual scapular stabilization: its effect on shoulder rotational range of motion. Arch Phys Med Rehabil. 2000;81(7):978–83.

    CAS  PubMed  Google Scholar 

  73. Wilk KE, Reinold MM, Macrina LC, Porterfield R, Devine KM, Suarez K, Andrews JR. Glenohumeral internal rotation measurements differ depending on stabilization techniques. Sports Health. 2009;1(2):131–6.

    PubMed Central  PubMed  Google Scholar 

  74. Hall JM, Azar FM, Miller 3rd RJ, Smith R, Throckmorton TW. Accuracy and reliability testing of two methods to measure internal rotation of the glenohumeral joint. J Shoulder Elbow Surg. 2014;23(9):1296–300.

    PubMed  Google Scholar 

  75. Barnes CJ, Van Steyn SJ, Fischer RA. The effects of age, sex, and shoulder dominance on range of motion of the shoulder. J Shoulder Elbow Surg. 2001;10(3):242–6.

    CAS  PubMed  Google Scholar 

  76. Boone DC, Azen SP. Normal range of motion of joints in male subjects. J Bone Joint Surg Am. 1979;61(5):756–9.

    CAS  PubMed  Google Scholar 

  77. Walker JM, Sue D, Miles-Elkousy N, Ford G, Trevelyan H. Active mobility of the extremities in older subjects. Phys Ther. 1984;64(6):919–23.

    CAS  PubMed  Google Scholar 

  78. Allander E, Bjornsson OJ, Olafsson O, Sigfusson N, Thorsteinsson J. Normal range of joint movements in shoulder, hip, wrist and thumb with special reference to side: a comparison between two populations. Int J Epidemiol. 1974;3(3):253–61.

    CAS  PubMed  Google Scholar 

  79. Murray MP, Gore DR, Gardner GM, Mollinger LA. Shoulder motion and muscle strength of normal men and women in two age groups. Clin Orthop. 1985;192:268–73.

    PubMed  Google Scholar 

  80. Schwartz C, Croisier JL, Rigaux E, Denoël V, Brüls O, Forthomme B. Dominance effect on scapula 3-dimensional posture and kinematics in healthy male and female populations. J Shoulder Elbow Surg. 2013;23(6):873–81.

    PubMed  Google Scholar 

  81. Kanlayanaphotporn R. Changes in sitting posture affect shoulder range of motion. J Bodyw Mov Ther. 2014;18(2):239–43.

    PubMed  Google Scholar 

  82. Kronberg M, Brostrom LA, Soderlund V. Retroversion of the humeral head in the normal shoulder and its relationship to the normal range of motion. Clin Orthop. 1990;253:113–7.

    PubMed  Google Scholar 

  83. Kronberg M, Nemeth G, Brostrom LA. Muscle activity and coordination in the normal shoulder. An electromyographic study. Clin Orthop. 1990;257:76–85.

    PubMed  Google Scholar 

  84. Bullock MP, Foster NE, Wright CC. Shoulder impingement: the effect of sitting posture on shoulder pain and range of motion. Man Ther. 2005;10(1):28–37.

    PubMed  Google Scholar 

  85. Kebaetse M, McClure P, Pratt NA. Thoracic position effect on shoulder range of motion, strength, and three-dimensional scapular kinematics. Arch Phys Med Rehabil. 1999;80(8):945–50.

    CAS  PubMed  Google Scholar 

  86. Gajdosik R, Simpson R, Smith R, DonTigny RL. Pelvic tilt. Intratester reliability of measuring the standing position and range of motion. Phys Ther. 1985;65(2):169–74.

    CAS  PubMed  Google Scholar 

  87. Donatelli R. Physical therapy of the shoulder, vol. 1. St. Louis: Elsevier; 2004.

    Google Scholar 

  88. Pearl L, Jackin S, Lippit S, Sidle J, Matsen F. Humeroscapular positions in a shoulder range-of-motion-examination. J Shoulder Elbow Surg. 1992;1(6):296–305.

    CAS  PubMed  Google Scholar 

  89. Kirkley A, Griffin S, Dainty K. Scoring systems for the functional assessment of the shoulder. Arthroscopy. 2003;19(10):1109–20.

    PubMed  Google Scholar 

  90. Hudak PL, Amadio PC, Bombardier C. Development of an upper extremity outcome measure. The DASH (disabilities of the arm, shoulder and hand)[corrected]. The Upper Extremity Collaborative Group (UECG). Am J Ind Med. 1996;29(6):602–8.

    CAS  PubMed  Google Scholar 

  91. Pappas AM, Zawacki RM, McCarthy CF. Rehabilitation of the pitching shoulder. Am J Sports Med. 1985;13(4):223–35.

    CAS  PubMed  Google Scholar 

  92. Kendall SA, Kendall FP, Wadsworth GE. Muscles: testing and function, vol. 1. Baltimore: Williams and Wilkins; 1971.

    Google Scholar 

  93. Tyler TF, Nicholas SJ, Roy T, GLeim GW. Quantification of posterior capsule tightness and motion loss in patients with shoulder impingement. Am J Sports Med. 2000;28(5):668–73.

    CAS  PubMed  Google Scholar 

  94. Tyler TF, Roy T, Nicholas SJ, Gleim GW. Reliability and validity of a new method of measuring posterior shoulder tightness. J Orthop Sports Phys Ther. 1999;29(4):262–9.

    CAS  PubMed  Google Scholar 

  95. Mourtacos S, Downar J, Sauers EL. Clinical measures of shoulder mobility in the adolescent baseball player. J Athl Train. 2003;38(2):S-72.

    Google Scholar 

  96. Sauers EL, Koh JL, Keuter G. Scapular and glenohumeral motion in professional baseball players: effects of position and arm dominance. Orlando: Arthroscopy Association of North America Annual Meeting; 2004.

    Google Scholar 

  97. Borstad JD, Mathiowetz KM, Minday LE, Prabhu B, Christopherson DE, Ludewig PM. Clinical measurement of posterior shoulder flexibility. Man Ther. 2007;12(4):386–9.

    PubMed  Google Scholar 

  98. Myers JB, Oyama S, Wassinger CA, Ricci RD, Abt JP, Conley KM, Lephart SM. Reliability, precision, accuracy, and validity of posterior shoulder tightness assessment in overhead athletes. Am J Sports Med. 2007;35(11):1922–30.

    PubMed  Google Scholar 

  99. Borstad JD, Ludewig PM. The effect of long versus short pectoralis minor resting length on scapular kinematics in healthy individuals. J Orthop Sports Phys Ther. 2005;35(4):227–38.

    PubMed  Google Scholar 

  100. Borstad JD, Ludewig PM. Comparison of scapular kinematics between elevation and lowering of the arm in the scapular plane. Clin Biomech. 2002;17(9–10):650–9.

    Google Scholar 

  101. Hébert LJ, Moffet H, McFadyen BJ, Dionne CE. Scapular behavior in shoulder impingement syndrome. Arch Phys Med Rehabil. 2002;83(1):60–9.

    PubMed  Google Scholar 

  102. Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80(3):276–91.

    CAS  PubMed  Google Scholar 

  103. Borstad JD. Measurement of pectoralis minor muscle length: validation and clinical application. J Orthop Sports Phys Ther. 2008;38(4):169–74.

    PubMed  Google Scholar 

  104. Williams JG, Laudner KG, McLoda T. The acute effects of two passive stretch maneuvers on pectoralis minor length and scapular kinematics among collegiate swimmers. Int J Sports Phys Ther. 2013;8(1):25–33.

    PubMed Central  PubMed  Google Scholar 

  105. Bhargav D, Murrell GA. Shoulder stiffness: diagnosis. Aust Fam Physician. 2004;33(3):143–7.

    PubMed  Google Scholar 

  106. Bhargav D, Murrell GA. Shoulder stiffness: management. Aust Fam Physician. 2004;33(3):149–52.

    PubMed  Google Scholar 

  107. Chambler AF, Carr AJ. The role of surgery in frozen shoulder. J Bone Joint Surg Br. 2003;85(6):789–95.

    CAS  PubMed  Google Scholar 

  108. Gerber C, Espinosa N, Perren TG. Arthroscopic treatment of shoulder stiffness. Clin Orthop. 2001;390:119–28.

    PubMed  Google Scholar 

  109. Goldberg BA, Scarlat MM, Harryman 2nd DT. Management of the stiff shoulder. J Orthop Sci. 1999;4(6):462–71.

    CAS  PubMed  Google Scholar 

  110. Hertel R. [The frozen shoulder]. Orthopade 2000;29(10):845–51.

    Google Scholar 

  111. Rundquist PJ, Anderson DD, Guanche CA. Shoulder kinematics in subjects with frozen shoulder. Arch Phys Med Rehabil. 2003;84(10):1473–9.

    PubMed  Google Scholar 

  112. Akhtar A, Gajjar S, Redfern T. MUA with steroid injection vs. arthroscopic capsular release for adhesive capsulitis: a prospective randomised study. Surgeon 2013;pii:S1479-666X(13)00060-7.

    Google Scholar 

  113. Bhatia S, Mather 3rd RC, Hsu AR, Ferry AT, Romeo AA, Nicholson GP, Cole BJ, Verma NN. Arthroscopic management of recalcitrant stiffness following rotator cuff repair: a retrospective analysis. Indian J Orthop. 2013;47(2):143–9.

    PubMed Central  PubMed  Google Scholar 

  114. Chen SK, Chien SH, Fu YC, Huang PJ, Chou PH. Idiopathic frozen shoulder treated by arthroscopic brisement. Kaohsiung J Med Sci. 2002;18(6):289–94.

    PubMed  Google Scholar 

  115. Chung SW, Huong CB, Kim SH, Oh JH. Shoulder stiffness after rotator cuff repair: risk factors and influence on outcome. Arthroscopy. 2013;29(2):290–300.

    PubMed  Google Scholar 

  116. Dehghan A, Pishgooei N, Salami MA, Zarch SM, Nafisi-Moghadam R, Rahimpour S, Soleimani H, Owlia MB. Comparison between NSAID and intra-articular corticosteroid injection in frozen shoulder of diabetic patients; a randomized clinical trial. Exp Clin Endocrinol Diabetes. 2013;121(2):75–9.

    CAS  PubMed  Google Scholar 

  117. Doner G, Guven Z, Atalay A, Celiker R. Evaluation of Mulligan’s technique for adhesive capsulitis of the shoulder. J Rehabil Med. 2013;45(1):87–91.

    PubMed  Google Scholar 

  118. Fernandes MR. Arthroscopic capsular release for refractory shoulder stiffness. Rev Assoc Med Bras. 2013;59(4):347–53.

    PubMed  Google Scholar 

  119. Gam AN, Schydlowsky P, Rossel I, Remvig L, Jensen EM. Treatment of “frozen shoulder” with distension and glucocorticoid compared with glucocorticoid alone. A randomized controlled trial. Scand J Rheumatol. 1998;27(6):425–30.

    CAS  PubMed  Google Scholar 

  120. Koh ES, Chung SG, Kim TU, Kim HC. Changes in biomechanical properties of glenohumeral joint capsules with adhesive capsulitis by repeated capsule-preserving hydraulic distensions with saline solution and corticosteroid. PM R. 2012;4(12):976–84.

    PubMed  Google Scholar 

  121. Kordella T. Frozen shoulder & diabetes. Frozen shoulder affects 20 percent of people with diabetes. Proper treatment can help you work through it. Diabetes Forecast. 2002;55(8):60–4.

    PubMed  Google Scholar 

  122. Xu HZ, Yu B, Zhang QH, Chen XR. [Treatment of 48 cases of frozen shoulder with manual therapy under brachial plexus anesthesia through a retained tube]. Di Yi Jun Yi a Xue Xue Bao 2003;23(1):87–8.

    Google Scholar 

  123. Austin DC, Gans I, Park MJ, Carey JL, Kelly 4th JD. The association of metabolic syndrome markers with adhesive capsulitis. J Shoulder Elbow Surg. 2014;23(7):1043–51.

    PubMed  Google Scholar 

  124. Kabbabe B, Ramkumar S, Richardson M. Cytogenetic analysis of the pathology of frozen shoulder. Int J Shoulder Surg. 2010;4(3):75–8.

    PubMed Central  PubMed  Google Scholar 

  125. Kim YS, Kim JM, Lee YG, Hong OK, Kwon HS, Ji JH. Intercellular adhesion molecule-1 (ICAM-1, CD54) is increased in adhesive capsulitis. J Bone Joint Surg Am. 2013;95(4):e181–8.

    PubMed  Google Scholar 

  126. Lho YM, Ha E, Cho CH, Song KS, Min BW, Bae KC, Lee KJ, Hwang I, Park HB. Inflammatory cytokines are overexpressed in the subacromial bursa of frozen shoulder. J Shoulder Elbow Surg. 2013;22(5):666–72.

    PubMed  Google Scholar 

  127. Nago M, Mitsui Y, Gotoh M, Nakama K, Shirachi I, Higuchi F, Nagata K. Hyaluronan modulates cell proliferation and mRNA expression of adhesion-related procollagens and cytokines in glenohumeral synovial/capsular fibroblasts in adhesive capsulitis. J Orthop Res. 2010;28(6):726–31.

    CAS  PubMed  Google Scholar 

  128. Bunker TD, Anthony PP. The pathology of frozen shoulder. A Dupuytren-like disease. J Bone Joint Surg Br. 1995;77(5):677–83.

    CAS  PubMed  Google Scholar 

  129. Bunker TD, Reilly J, Baird KS, Hamblen DL. Expression of growth factors, cytokines and matrix metalloproteinases in frozen shoulder. J Bone Joint Surg Br. 2000;82(5):768–73.

    CAS  PubMed  Google Scholar 

  130. Ha’eri GB, Maitland A. Arthroscopic findings in the frozen shoulder. J Rheumatol. 1981;8(1):149–52.

    PubMed  Google Scholar 

  131. Kilian O, Kriegsmann OJ, Berghauser K, Stahl JP, Horas U, Heerdegen R. The frozen shoulder. Arthroscopy, histological findings and transmission electron microscopy imaging. Chirurg. 2001;72(11):1303–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Warth, R.J., Millett, P.J. (2015). Range of Motion. In: Physical Examination of the Shoulder. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2593-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2593-3_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2592-6

  • Online ISBN: 978-1-4939-2593-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics