Skip to main content

Hemispheric Coupling: Comparing Dynamo Simulations and Observations

  • Chapter

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 53))

Abstract

Numerical simulations that reproduce solar-like magnetic cycles can be used to generate long-term statistics. The variations in north-south hemispheric solar cycle synchronicity and amplitude produced in simulations has not been widely compared to observations. The observed limits on solar cycle amplitude and phase asymmetry show that hemispheric sunspot area production is no more than 20 % asymmetric for cycles 17–23 and that phase lags do not exceed 20 % (or two years) of the total cycle period, as determined from Royal Greenwich Observatory sunspot data. Several independent studies have found a long-term trend in phase values as one hemisphere leads the other for, on average, four cycles. Such persistence in phase is not indicative of a stochastic phenomenon. We compare these observational findings to the magnetic cycle found in a numerical simulation of solar convection recently produced with the EULAG-MHD model. This long “millennium simulation” spans more than 1600 years and generated 40 regular, sunspot-like cycles. While the simulated cycle length is too long (∼40 yrs) and the toroidal bands remain at too high of latitudes (>30°), some solar-like aspects of hemispheric asymmetry are reproduced. The model is successful at reproducing the synchrony of polarity inversions and onset of cycle as the simulated phase lags do not exceed 20 % of the cycle period. The simulated amplitude variations between the north and south hemispheres are larger than those observed in the Sun, some up to 40 %. An interesting note is that the simulations also show that one hemisphere can persistently lead the other for several successive cycles, placing an upper bound on the efficiency of transequatorial magnetic coupling mechanisms. These include magnetic diffusion, cross-equatorial mixing within latitudinally-elongated convective rolls (a.k.a. “banana cells”) and transequatorial meridional flow cells. One or more of these processes may lead to magnetic flux cancellation whereby the oppositely directed fields come in close proximity and cancel each other across the magnetic equator late in the solar cycle. We discuss the discrepancies between model and observations and the constraints they pose on possible mechanisms of hemispheric coupling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • E. Antonucci, J.T. Hoeksema, P.H. Scherrer, Astrophys. J. 360, 296 (1990)

    ADS  Google Scholar 

  • R. Arlt, R. Leussu, N. Giese, K. Mursula, I.G. Usoskin, Mon. Not. R. Astron. Soc. 433, 3165 (2013)

    ADS  Google Scholar 

  • R. Arlt, N. Weiss, Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0063-5

    Google Scholar 

  • H.D. Babcock, Astrophys. J. 130, 364 (1959)

    ADS  Google Scholar 

  • J.L. Ballester, R. Oliver, M. Carbonell, Astron. Astrophys. 431, 5L (2005)

    ADS  Google Scholar 

  • L.A. Balmaceda, S.K. Solanki, N.A. Krivova, S. Foster, J. Geophys. Res. 114, A07104 (2009)

    ADS  Google Scholar 

  • P. Beaudoin, P. Charbonneau, É. Racine, P.K. Smolarkiewicz, Sol. Phys. 282, 335–360 (2013)

    ADS  Google Scholar 

  • U. Becker, Z. Astrophys. 37, 47 (1955)

    ADS  Google Scholar 

  • J. Beer, S.M. Tobias, N.O. Weiss, Sol. Phys. 181, 237 (1998)

    ADS  Google Scholar 

  • E.E. Benevolenskaya, Highlights Astron. 14, 273 (2007)

    ADS  Google Scholar 

  • T.E. Berger, M.G. Löfdahl, R.A. Shine, A.M. Title, Astrophys. J. 506, 439 (1998)

    ADS  Google Scholar 

  • D.W. Boyer, E.H. Levy, Astrophys. J. 277, 848 (1984)

    ADS  Google Scholar 

  • A. Brandenburg, K. Subramanian, Phys. Rep. 417, 1–209 (2005)

    ADS  MathSciNet  Google Scholar 

  • A.-M. Broomhall, P. Chatterjee, R. Howe, A.A. Norton, M.J. Thompson, Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0101-3

    Google Scholar 

  • B.P. Brown, M.K. Browning, A.S. Brun, M.S. Miesch, J. Toomre, Astrophys. J. 711, 424 (2010)

    ADS  Google Scholar 

  • B.P. Brown, M.S. Miesch, M.K. Browning, A.S. Brun, J. Toomre, Astrophys. J. 731, 69 (2011)

    ADS  Google Scholar 

  • M.K. Browning, M.S. Miesch, A.S. Brun, J. Toomre, Astrophys. J. Lett. 648, L157–160 (2006)

    ADS  Google Scholar 

  • P. Bushby, Mon. Not. R. Astron. Soc. 328, 655 (2003)

    ADS  Google Scholar 

  • F.H. Busse, Phys. Fluids 14, 1301–1314 (2002)

    ADS  MathSciNet  Google Scholar 

  • P. Caligari, F. Moreno-Insertis, M. Schüssler, Astrophys. J. 441, 886 (1995)

    ADS  Google Scholar 

  • R.H. Cameron, M. Schüssler, Astrophys. J. 659, 801 (2007)

    ADS  Google Scholar 

  • R.H. Cameron, J. Jian, M. Schüssler, L. Gizon, J. Geophys. Res. 119, 680 (2014)

    Google Scholar 

  • M. Carbonell, R. Oliver, J.L. Ballester, Astron. Astrophys. 274, 497 (1993)

    ADS  Google Scholar 

  • M. Carbonell, J. Terradas, R. Oliver, J.L. Ballester, Astron. Astrophys. 476, 951 (2007)

    ADS  Google Scholar 

  • J. Chae, Y.E. Litvinenko, T. Sakurai, Astrophys. J. 683, 1153 (2008)

    ADS  Google Scholar 

  • P. Charbonneau, Sol. Phys. 229, 345 (2005)

    ADS  Google Scholar 

  • P. Charbonneau, Adv. Space Res. 40, 899 (2007)

    ADS  Google Scholar 

  • P. Charbonneau, Living Rev. Sol. Phys. 7, 3 (2010)

    ADS  Google Scholar 

  • P. Charbonneau, Annu. Rev. Astron. Astrophys. 52(1), 251 (2014)

    ADS  Google Scholar 

  • P. Charbonneau, G. Barlet, J. Atmos. Sol.-Terr. Phys. 7(73), 198 (2011)

    ADS  Google Scholar 

  • P. Chatterjee, A.R. Choudhuri, Sol. Phys. 239, 29 (2006)

    ADS  Google Scholar 

  • P. Chatterjee, D. Nandy, A.R. Choudhuri, Astron. Astrophys. 427, 1019 (2004)

    ADS  Google Scholar 

  • A.R. Choudhuri, Astron. Astrophys. 253, 277 (1992)

    ADS  MATH  Google Scholar 

  • A.R. Choudhuri, P.A. Gilman, Astrophys. J. 316, 788 (1987)

    ADS  Google Scholar 

  • P. Chowdhury, D.P. Choudhary, S. Gosain, Astrophys. J. 768, 188 (2013)

    ADS  Google Scholar 

  • F. Clette, L. Svalgaard, J.M. Vaquero, E.W. Cliver, Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0074-2

    Google Scholar 

  • J.-F. Cossette, P. Charbonneau, P.K. Smolarkiewicz, Astrophys. J. Lett. 777, L29 (2013)

    ADS  Google Scholar 

  • M. Dasi-Espuig, S.K. Solanki, N. Krivova, R. Cameron, T. Peñuela, Astron. Astrophys. 518, 10 (2010)

    Google Scholar 

  • M. Dikpati, P.A. Gilman, Astrophys. J. 559, 428–442 (2001)

    ADS  Google Scholar 

  • M. Dikpati, G. de Toma, P.A. Gilman, C.N. Arge, O.R. White, Astrophys. J. 601, 1136 (2004)

    ADS  Google Scholar 

  • M. Dikpati, G. de Toma, P.A. Gilman, Geophys. Res. Lett. 33, L05102 (2006)

    ADS  Google Scholar 

  • C.J. Durrant, P.R. Wilson, Sol. Phys. 214, 23 (2003)

    ADS  Google Scholar 

  • T.L. Duvall Jr., S.M. Jefferies, J.W. Harvey, M.A. Pomerantz, Nature 362, 430 (1993)

    ADS  Google Scholar 

  • Y. Fan, F. Fang, Astrophys. J. 789, 35 (2014)

    ADS  Google Scholar 

  • M. Ghizaru, P. Charbonneau, P.K. Smolarkiewicz, Astrophys. J. Lett. 715, L133–137 (2010)

    ADS  Google Scholar 

  • A. Goel, A.R. Choudhuri, Res. Astron. Astrophys. 9, 115 (2009)

    ADS  Google Scholar 

  • D.H. Hathaway, D. Nandy, R.M. Wilson, E.J. Reichmann, Astrophys. J. 589, 665 (2003)

    ADS  Google Scholar 

  • F. Hill, Astrophys. J. 343, L69 (1989)

    ADS  Google Scholar 

  • H. Hotta, T. Yokoyama, Astrophys. J. Lett. 714, L308 (2010)

    ADS  Google Scholar 

  • R. Howe, D. Baker, L. Harra, L. van Driel-Gesztelyi, R. Komm, F. Hill, I. González Hernández, ASP Conf. Ser. 478, 291 (2013)

    ADS  Google Scholar 

  • P. Hoyng, Astrophys. J. 332, 857 (1988)

    ADS  Google Scholar 

  • P. Hoyng, D. Schmitt, L.J.W. Teuben, Astron. Astrophys. 289, 265 (1994)

    ADS  Google Scholar 

  • J. Jiang, D.H. Hathaway, R.H. Cameron, S.K. Solanki, L. Gizon, L. Upton, Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0083-1

    Google Scholar 

  • B. Joshi, A. Joshi, Sol. Phys. 219, 343 (2004)

    ADS  Google Scholar 

  • P.J. Käpylä, M.J. Mantere, A. Brandenburg, Astrophys. J. Lett. 755, L22 (2012)

    ADS  Google Scholar 

  • P.J. Käpylä, M.J. Mantere, E. Cole, J. Warnecke, A. Brandenburg, Astrophys. J. 778, 41 (2013)

    ADS  Google Scholar 

  • B. Karak et al., Space Sci. Rev. (2014, this issue)

    Google Scholar 

  • R.W. Komm, R.F. Howard, J.W. Harvey, Sol. Phys. 158, 213 (1995)

    ADS  Google Scholar 

  • R. Komm, R. Howe, I. González Hernández, F. Hill, D. Haber, J. Phys. Conf. Ser. 271, 012077 (2011)

    ADS  Google Scholar 

  • R. Komm, R. Howe, I. González Hernández, F. Hill, R.S. Bogart, D. Haber, ASP Conf. Ser. 478, 217 (2013)

    ADS  Google Scholar 

  • F. Krause, K.-H. Rädler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Pergamon Press, Oxford, 1980), 271 pp.

    MATH  Google Scholar 

  • K.J. Li, X.H. Liu, H.S. Yun, S.Y. Xiong, H.F. Liang, H.Z. Zhao, L.S. Zhan, X.M. Gu, Publ. Astron. Soc. Pac. 54, 629 (2002)

    ADS  Google Scholar 

  • D.W. Longcope, G.H. Fisher, Astrophys. J. 458, 380 (1996)

    ADS  Google Scholar 

  • N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Phys. Rep. 438, 237 (2007)

    ADS  MathSciNet  Google Scholar 

  • E.W. Maunder, Mon. Not. R. Astron. Soc. 64, 747 (1904)

    ADS  Google Scholar 

  • B.H. McClintock, A.A. Norton, Sol. Phys. 287, 215 (2013)

    ADS  Google Scholar 

  • S.W. McIntosh et al., Astrophys. J. 765, 146 (2013)

    ADS  Google Scholar 

  • M.S. Miesch, J. Toomre, Annu. Rev. Fluid Mech. 41, 317–340 (2009)

    ADS  Google Scholar 

  • M. Miesch, J.R. Elliott, J. Toomre, T.L. Clune, G.A. Glatzmaier, P.A. Gilman, Astrophys. J. 532, 593 (2000)

    ADS  Google Scholar 

  • P. Mininni, D.O. Gómez, Astrophys. J. 573, 454 (2002)

    ADS  Google Scholar 

  • H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge, 1978), 343 pp.

    Google Scholar 

  • D. Moss, A. Brandenburg, R. Tavakol, I. Tuominen, Astron. Astrophys. 265, 843 (1992)

    ADS  Google Scholar 

  • A. Muñoz-Jaramillo, N.R. Sheeley, J. Zhang Jr., E.E. Deluca, Astrophys. J. 753, 146 (2012)

    ADS  Google Scholar 

  • A. Muñoz-Jaramillo, M. Dasi-Espuig, L. Balmaceda, E. DeLuca, Astrophys. J. Lett. 767, L25 (2013a)

    ADS  Google Scholar 

  • A. Muñoz-Jaramillo, L. Balmaceda, E. DeLuca, Phys. Rev. Lett. 111, 041106 (2013b)

    ADS  Google Scholar 

  • J. Muraközy, A. Ludmány, Mon. Not. R. Astron. Soc. 419, 3624 (2012)

    ADS  Google Scholar 

  • K. Mursula, T. Hiltula, Geophys. Res. Lett. 30, 2135 (2003)

    ADS  Google Scholar 

  • N.J. Nelson, B.P. Brown, A.S. Brun, M.S. Miesch, J. Toomre, Astrophys. J. 762, 73 (2013)

    ADS  Google Scholar 

  • H.W. Newton, A.S. Milsom, Mon. Not. R. Astron. Soc. 115, 398 (1955)

    ADS  Google Scholar 

  • A.A. Norton, P.A. Gallagher, Sol. Phys. 261, 193 (2010)

    ADS  Google Scholar 

  • A.A. Norton, P.A. Gilman, Astrophys. J. 630, 1194 (2005)

    ADS  Google Scholar 

  • S.V. Olemskoy, L.L. Kitchatinov, Astrophys. J. 777, 71 (2013)

    ADS  Google Scholar 

  • M.A.J.H. Ossendrijver, Astron. Astrophys. Rev. 11, 287–367 (2003)

    ADS  Google Scholar 

  • A.J.H. Ossendrijver, P. Hoyng, D. Schmitt, Astron. Astrophys. 313, 938 (1996)

    ADS  Google Scholar 

  • A.J.H. Ossendrijver, M. Stix, A. Brandenburg, Astron. Astrophys. 376, 713 (2001)

    ADS  Google Scholar 

  • M.A.J.H. Ossendrijver, M. Stix, A. Brandenburg, G. Rüdiger, Astron. Astrophys. 394, 735–745 (2002)

    ADS  MATH  Google Scholar 

  • D. Passos, P. Charbonneau, Astron. Astrophys. 568, A113 (2014). doi:10.1051/0004-6361/201423700

    ADS  Google Scholar 

  • D. Passos, D. Nandy, S. Hazra, I. Lopes, Astron. Astrophys. 562, A18 (2014)

    Google Scholar 

  • V.V. Pipin, Astron. Astrophys. 346, 295 (1999)

    ADS  Google Scholar 

  • V.V. Pipin, A.G. Kosovichev, Astrophys. J. 776, 36 (2013)

    ADS  Google Scholar 

  • P.J. Pulkkinen, J. Brooke, J. Pelt, I. Tuominen, Astron. Astrophys. 341, L43 (1999)

    ADS  Google Scholar 

  • E. Racine, P. Charbonneau, M. Ghizaru, A. Bouchat, P.K. Smolarkiewicz, Astrophys. J. 735, 46 (2011)

    ADS  Google Scholar 

  • M. Rempel, in Heliophysics, ed. by C.J. Schrijver, G.L. Siscoe (2006), pp. 42–74

    Google Scholar 

  • J.C. Ribes, E. Nesme-Ribes, Astron. Astrophys. 276, 549 (1993)

    ADS  Google Scholar 

  • B. Schmieder et al., Space Sci. Rev. (2014, this issue). doi:10.1007/s11214-014-0088-9

    Google Scholar 

  • G.W. Simon, A.M. Title, N.O. Weiss, Astrophys. J. 442, 886 (1995)

    ADS  Google Scholar 

  • P.K. Smolarkiewicz, P. Charbonneau, J. Comput. Phys. 236, 608–623 (2013)

    ADS  MathSciNet  Google Scholar 

  • D. Sokoloff, E. Nesme-Ribes, Astron. Astrophys. 288, 293 (1994)

    ADS  Google Scholar 

  • G. Spörer, Publicationen des Astrophysikalischen Observatoriums zu Potsdam. Nr., vol. 32, Vol. 10, part 1 (Wilhelm Engelmann, Leipzig, 1894)

    Google Scholar 

  • X. Sun, Y. Liu, J.T. Hoeksema, K. Kayashi, X. Zhao, Sol. Phys. 270, 9 (2011)

    ADS  Google Scholar 

  • M. Temmer, J. Rybák, P. Bendík, A. Veronig, F. Vogler, W. Otruba, W. Pötzi, A. Hanslmeier, Astron. Astrophys. 447, 735 (2006)

    ADS  Google Scholar 

  • M. Ternullo, Mem. Soc. Astron. Ital. 78, 596 (2007)

    ADS  Google Scholar 

  • S. Tobias, Astron. Astrophys. 322, 1007 (1997)

    ADS  Google Scholar 

  • S.M. Tobias, N.H. Brummell, T.L. Clune, J. Toomre, Astrophys. J. 549, 1183–1203 (2001)

    ADS  Google Scholar 

  • I.I. Virtanen, K. Mursula, Astrophys. J. 781, 99 (2014)

    ADS  Google Scholar 

  • M. Waldmeier, Ergebnisse und Probleme der Sonnenforschung, 2nd edn. (Geest & Portig, Leipzig, 1955)

    Google Scholar 

  • N.O. Weiss, F. Cattaneo, C.A. Jones, Geophys. Astrophys. Fluid Dyn. 30, 305 (1984)

    ADS  MATH  MathSciNet  Google Scholar 

  • A. Yeates, D. Nandy, D.H. Mackay, Astrophys. J. 673, 544 (2008)

    ADS  Google Scholar 

  • J. Zhao, R.S. Bogart, A.G. Kosovichev, T.L. Duvall Jr., T. Hartlep, Astrophys. J. 774, 29 (2013)

    ADS  Google Scholar 

  • N.V. Zolotova, D.I. Ponyavin, N. Marwan, J. Kurths, Astron. Astrophys. 503, 197 (2009)

    ADS  Google Scholar 

  • N.V. Zolotova, D.I. Ponyavin, R. Arlt, I. Tuominen, Astron. Nachr. 331, 765 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Norton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Norton, A.A., Charbonneau, P., Passos, D. (2015). Hemispheric Coupling: Comparing Dynamo Simulations and Observations. In: Balogh, A., Hudson, H., Petrovay, K., von Steiger, R. (eds) The Solar Activity Cycle. Space Sciences Series of ISSI, vol 53. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2584-1_9

Download citation

Publish with us

Policies and ethics