Skip to main content

Solar Polar Fields and the 22-Year Activity Cycle: Observations and Models

  • Chapter
  • 1429 Accesses

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 53))

Abstract

We explore observations and models of the interacting, cyclical behavior of the active regions and the polar magnetic fields of the Sun. We focus on observational evidence of these fields interacting across the corridor between active and polar latitudes. We present observations of diverse magnetic signatures on, above and beneath the solar surface, and find much evidence of phenomena migrating in both directions across this corridor in each hemisphere, including photospheric fields, ephemeral bipoles, interior torsional oscillations, high-latitude filaments, and coronal green line intensity. Together these observations produce a complex physical picture of high-latitude solar magnetic field evolution in the photosphere, atmosphere and interior, and demonstrate their essential role in the solar cycle. The picture presented by these collected observations is consistent with the Babcock-Leighton phenomenological model for the cycle, and we discuss related efforts to predict cycle amplitudes based on polar field strengths and on combining activity and polar-field information in a single phase-independent, slowly-evolving index. We also briefly review related work on magnetic flux transport models for the solar cycle, with particular reference to the interaction between flux emergence patterns and meridional flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R.C. Altrock, Forecasting the maxima of solar cycle 24 with coronal Fe xiv emission. Sol. Phys. 289, 623 (2014)

    ADS  Google Scholar 

  • M.D. Altschuler, G. Newkirk, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Sol. Phys. 9, 131 (1969)

    ADS  Google Scholar 

  • H.D. Babcock, The Sun’s polar magnetic field. Astrophys. J. 130, 364 (1959)

    ADS  Google Scholar 

  • H.W. Babcock, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572 (1961)

    ADS  Google Scholar 

  • S. Basu, H.M. Antia, Characteristics of solar meridional flows during solar cycle 23. Astrophys. J. 717, 488 (2010)

    ADS  Google Scholar 

  • S. Bravo, G. Stewart, Evolution of polar coronal holes and sunspots during cycles 21 and 22. Sol. Phys. 154, 377 (1994)

    ADS  Google Scholar 

  • R.M. Broussard, R. Tousey, J.H. Underwood, N.R. Sheeley Jr., A survey of coronal holes and their solar wind associations throughout sunspot cycle 20. Sol. Phys. 56, 161 (1978)

    ADS  Google Scholar 

  • V. Bumba, R.F. Howard, Large-scale distribution of solar magnetic fields. Astrophys. J. 141, 1492 (1965)

    ADS  Google Scholar 

  • V. Bumba, R.F. Howard, Solar activity and recurrences in magnetic-field distribution. Sol. Phys. 7, 28 (1969)

    ADS  Google Scholar 

  • P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010)

    ADS  Google Scholar 

  • G. de Toma, Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Sol. Phys. 274, 195 (2011)

    ADS  Google Scholar 

  • M.L. DeRosa, A.S. Brun, J.T. Hoeksema, Solar magnetic field reversals and the role of dynamo families. Astrophys. J. 757, 96 (2012)

    ADS  Google Scholar 

  • M. Dikpati, Polar field puzzle: solutions from flux-transport dynamo and surface-transport models. Astrophys. J. 733, 90 (2011)

    ADS  Google Scholar 

  • T.L. Duvall, Large-scale solar velocity fields. Sol. Phys. 63, 3 (1979)

    ADS  Google Scholar 

  • Y. Fan, G.H. Fisher, Radiative heating and the Buoyant rise of magnetic flux tubes in the solar interior. Sol. Phys. 166, 17 (1996)

    ADS  Google Scholar 

  • V. Gaizauskas, K.L. Harvey, J.W. Harvey, C. Zwaan, Large-scale patterns formed by solar active regions during the ascending phase of cycle 21. Astrophys. J. 265, 1056 (1983)

    ADS  Google Scholar 

  • N. Gopalswamy, K. Shibasaki, M. Salem, Microwave enhancement in coronal holes: statistical properties. J. Astrophys. Astron. 21, 413 (2000)

    ADS  Google Scholar 

  • N. Gopalswamy, S. Yashiro, P. Makala, G. Michalek, K. Shibasaki, D.H. Hathaway, Behavior of solar cycles 23 and 24 revealed by microwave observations. Astrophys. J. 750, L42 (2012)

    ADS  Google Scholar 

  • S. Gosain, A.A. Pevtsov, G.V. Rudenko, S.A. Anfinogentov, First synoptic maps of photospheric vector magnetic field from SOLIS/VSM: non-radial magnetic fields and hemispheric pattern of helicity. Astrophys. J. 772, 52 (2013)

    ADS  Google Scholar 

  • J. Hagenaar Hermance, C.J. Schrijver, A.M. Title, The properties of small magnetic regions on the solar surface and the implications for the solar dynamo(s). Astrophys. J. 584, 1107 (2003)

    ADS  Google Scholar 

  • G.E. Hale, Invisible sun-spots. Mon. Not. R. Astron. Soc. 82, 168 (1920)

    ADS  Google Scholar 

  • G.E. Hale, F. Ellerman, S.B. Nicholson, A.H. Joy, The magnetic polarity of sun-spots. Astrophys. J. 49, 153 (1919)

    ADS  Google Scholar 

  • G.E. Hale, S.B. Nicholson, The law of sun-spot polarity. Astrophys. J. 62, 270 (1925)

    ADS  Google Scholar 

  • J.W. Harvey, The Sun in time. Space Sci. Rev. 176, 47 (2013)

    ADS  Google Scholar 

  • J.W. Harvey, A.S. Krieger, J.M. Davis, A.F. Timothy, G.S. Vaiana, Comparison of Skylab X-Ray and ground-based Helium observations. Bull. Am. Astron. Soc. 7, 358 (1975)

    ADS  Google Scholar 

  • J.W. Harvey, N.R. Sheeley Jr., Coronal holes and solar magnetic fields. Space Sci. Rev. 23, 139 (1979)

    ADS  Google Scholar 

  • K.L. Harvey, S.F. Martin, Ephemeral active regions. Sol. Phys. 32, 389 (1973)

    ADS  Google Scholar 

  • K.L. Harvey, F. Recely, Polar coronal holes during cycles 22 and 23. Sol. Phys. 211, 31 (2002)

    ADS  Google Scholar 

  • K.L. Harvey, C. Zwaan, Properties and emergence of bipolar active regions. Sol. Phys. 148, 85 (1993)

    ADS  Google Scholar 

  • D.H. Hathaway, P.A. Gilman, J.W. Harvey, F. Hill, R.F. Howard, H.P. Jones, J.C. Kasher, J.W. Leibacher, J.A. Pintar, G.W. Simon, GONG observations of solar surface flows. Science 272, 1306 (1996)

    ADS  Google Scholar 

  • D.H. Hathaway, L. Rightmire, Variations in the Sun’s meridional flow over a solar cycle. Science 327, 1350 (2010)

    ADS  Google Scholar 

  • J.T. Hoeksema, Structure and evolution of the large-scale solar and heliospheric magnetic fields. Ph.D. Thesis, Stanford University (1984)

    Google Scholar 

  • J.T. Hoeksema, Evolution of the large-scale magnetic field over three solar cycles, in Solar and Stellar Variability: Impact on Earth and Planets, Proceedings of the International Astronomical Union. IAU Symposium, vol. 264, (2010), p. 222

    Google Scholar 

  • R. Howard, B.J. LaBonte, The sun is observed to be a torsional oscillator with a period of 11 years. Sol. Phys. 239, 33 (1980)

    Google Scholar 

  • R. Howe, D. Baker, L. Harra, L. van Driel-Gesztelyi, R. Komm, F. Hill, I. González Hernńdez, Magnetic polarity streams and subsurface flows, in Fifty Years of Seismology of the Sun and Stars, ed. by K. Jain, S.C. Tripathy, F. Hill, J.W. Leibacher, A.A. Pevtsov. ASP Conference Proceedings, vol. 478, (2013), p. 291

    Google Scholar 

  • R. Howe, F. Hill, R. Komm, J. Christensen-Dalsgaard, T.P. Larson, J. Schou, M.J. Thompson, R. Ulrich, The torsional oscillation and the new solar cycle. J. Phys. Conf. Ser. 271, 012074 (2011)

    ADS  Google Scholar 

  • R. Howe, J. Christensen-Dalsgaard, F. Hill, R. Komm, T.P. Larson, M. Rempel, J. Schou, M.J. Thompson, The high-latitude branch of the solar torsional oscillation in the rising phase of cycle 24. Astrophys. J. Lett. 767, 20 (2013)

    ADS  Google Scholar 

  • J. Jiang, R. Cameron, D. Schmitt, M. Schüssler, Can surface flux transport account for the weak polar field in cycle 23? Space Sci. Rev. 176, 289 (2011)

    ADS  Google Scholar 

  • C.L. Jin, J.W. Harvey, A. Pietarila, Synoptic mapping of chromospheric magnetic flux. Astrophys. J. 765, 79 (2013)

    ADS  Google Scholar 

  • R.W. Komm, R.F. Howard, J.W. Harvey, Meridional flow of small photospheric magnetic features. Sol. Phys. 147, 207 (1993)

    ADS  Google Scholar 

  • A.S. Krieger, A.F. Timothy, E.C. Roelof, A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys. 29, 505 (1973)

    ADS  Google Scholar 

  • B.J. LaBonte, R. Howard, Solar rotation measurements at Mount Wilson. III. Meridional flow and limbshift. Sol. Phys. 80, 361 (1982)

    ADS  Google Scholar 

  • R.B. Leighton, Transport of magnetic fields on the Sun. Astrophys. J. 140, 1547 (1964)

    ADS  MATH  Google Scholar 

  • R.B. Leighton, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1 (1969)

    ADS  Google Scholar 

  • J.L. Leroy, On the orientation of magnetic fields in quiescent prominences. Astron. Astrophys. 64, 247 (1978)

    ADS  MathSciNet  Google Scholar 

  • J.L. Leroy, V. Bommier, S. Sahal-Brechot, The magnetic field in the prominences of the polar crown. Sol. Phys. 83, 135 (1983)

    ADS  Google Scholar 

  • J.-L. Leroy, J.-C. Noens, Does the solar activity cycle extend over more than an 11-year period? Astron. Astrophys. 120, L1 (1983)

    ADS  Google Scholar 

  • J.A. Linker, R. Lionello, Z. Mikić, V.S. Titov, S.K. Antiochos, The evolution of open magnetic flux driven by photospheric dynamics. Astrophys. J. 731, 110 (2011)

    ADS  Google Scholar 

  • D.H. Mackay, J.T. Karpen, J.L. Ballester, B. Schmieder, G. Aulanier, Physics of solar prominences. II. Magnetic structure and dynamics. Space Sci. Rev. 151, 333 (2010)

    ADS  Google Scholar 

  • D. Mackay, A. Yeates, The Sun’s global photospheric and coronal magnetic fields: observations and models. Living Rev. Sol. Phys. 9, 6 (2012)

    ADS  Google Scholar 

  • V.I. Makarov, V.V. Makarova, Polar faculae and sunspot cycles. Sol. Phys. 163, 267 (1996)

    ADS  Google Scholar 

  • S.F. Martin, R. Bilimoria, P.W. Tracadas, Magnetic field configurations basic to filament channels and filaments, in Solar Surface Magnetism, ed. by R.J. Rutten, C.J. Schrijver (Kluwer Academic, Dordrecht, 1994), p. 303

    Google Scholar 

  • E.W. Maunder, Sun, place of the, distribution of sun-spots in heliographic latitude, 1874–1913. Mon. Not. R. Astron. Soc. 74, 112 (1913)

    ADS  Google Scholar 

  • B.H. McClintock, A.A. Norton, Recovering Joy’s law as a function of solar cycle, hemisphere, and longitude. Sol. Phys. 287, 215 (2013)

    ADS  Google Scholar 

  • P.S. McIntosh, Solar magnetic fields derived from hydrogen alpha filtergrams. Rev. Geophys. Space Phys. 10, 837 (1972)

    ADS  Google Scholar 

  • R. Müller, Zur Statistik der Koronastrahlen. Mit 2 Textabbildungen. Z. Astrophys. 38, 212 (1955)

    ADS  Google Scholar 

  • A. Muñoz-Jaramillo, M. Dasi-Espuig, L.A. Balmaceda, E.E. DeLuca, Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies. Astrophys. J. Lett. 767, L25 (2013)

    ADS  Google Scholar 

  • A. Muñoz-Jaramillo, N.R. Sheeley Jr., J. Zhang, E.E. DeLuca, Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753, 146 (2012)

    ADS  Google Scholar 

  • D. Nandy, A. Muñoz-Jaramillo, P.C.H. Martens, The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature 471, 80 (2011)

    ADS  Google Scholar 

  • V.N. Obridko, B.D. Shelting, On prediction of the strength of the 11-year solar cycle no. 24. Sol. Phys. 248, 191 (2008)

    ADS  Google Scholar 

  • E.N. Parker, The formation of sunspots from the solar toroidal field. Astrophys. J. 121, 491 (1955)

    ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958)

    ADS  Google Scholar 

  • G.J.D. Petrie, Evolution of active and polar photospheric magnetic fields during the rise of cycle 24 compared to previous cycles. Sol. Phys. 281, 577 (2012)

    ADS  Google Scholar 

  • G.J.D. Petrie, Solar magnetic activity cycles, coronal potential field models and eruption rates. Astrophys. J. 768, 162 (2013)

    ADS  Google Scholar 

  • G.J.D. Petrie, K.J. Haislmaier, Low-latitude coronal holes, decaying active regions, and global coronal magnetic structure. Astrophys. J. 775, 100 (2013)

    ADS  Google Scholar 

  • G.J.D. Petrie, I. Patrikeeva, A comparative study of magnetic fields in the solar photosphere and chromosphere at equatorial and polar latitudes. Astrophys. J. 699, 871 (2009)

    ADS  Google Scholar 

  • N.-E. Raouafi, J.W. Harvey, C.J. Henney, Latitude distribution of polar magnetic flux in the chromosphere near solar minimum. Astrophys. J. 669, 636 (2007)

    ADS  Google Scholar 

  • M. Rempel, High-latitude solar torsional oscillations during phases of changing magnetic cycle amplitude. Astrophys. J. Lett. 750, 8 (2012)

    ADS  Google Scholar 

  • E. Robbrecht, Y.-M. Wang, N.R. Sheeley Jr., N.B. Rich, On the “extended” solar cycle in coronal emission. Astrophys. J. 716, 693 (2010)

    ADS  Google Scholar 

  • D.M. Rust, S.F. Martin, A correlation between sunspot whirls and filament type, in Solar Active Region Evolution: Comparing Models with Observations, ed. by K.S. Balasubramaniam, W. George. ASP Conf. Ser., vol. 68 (Simon, San Francisco, 1994), p. 337

    Google Scholar 

  • K.H. Schatten, Large-scale solar magnetic field mapping: I. SpringerPlus 2, 21 (2013a). http://download.springer.com/static/pdf/412/art (Open access)

    Google Scholar 

  • K.H. Schatten, Solar field mapping and dynamo behavior (2013b). http://www.hindawi.com/journals/aa/2012/923578/

  • K. Schatten, D.J. Myers, S. Sofia, Solar activity forecast for solar cycle 23. Geophys. Res. Lett. 23, 605 (1996)

    ADS  Google Scholar 

  • K.H. Schatten, W.D. Pesnell, An early solar dynamo prediction: cycle 23 is approximately cycle 22. Geophys. Res. Lett. 20, 2275 (1993)

    ADS  Google Scholar 

  • K.H. Schatten, P.H. Scherrer, L. Svalgaard, J.M. Wilcox, Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys. Res. Lett. 5, 411 (1978)

    ADS  Google Scholar 

  • K.H. Schatten, S. Sofia, Forecast of an exceptionally large even-numbered solar cycle. Geophys. Res. Lett. 14, 632 (1987)

    ADS  Google Scholar 

  • K.H. Schatten, J.M. Wilcox, N.F. Ness, A model of interplanetary and coronal magnetic fields. Sol. Phys. 6, 442 (1969)

    ADS  Google Scholar 

  • C.J. Schrijver, Simulations of the photospheric magnetic activity and outer atmospheric radiative losses of cool stars based on characteristics of the solar magnetic field. Astrophys. J. 547, 475 (2001)

    ADS  Google Scholar 

  • C.J. Schrijver, Y. Liu, The global solar magnetic field through a full sunspot cycle: observations and model results. Sol. Phys. 252, 19 (2008)

    ADS  Google Scholar 

  • C.J. Schrijver, C. Zwaan, Solar and Stellar Magnetic Activity (Cambridge University Press, New York, 2000)

    Google Scholar 

  • N.R. Sheeley Jr., A century of polar faculae variations. Astrophys. J. 374, 386 (1991)

    ADS  Google Scholar 

  • N.R. Sheeley Jr., Polar faculae—1906–1990. Astrophys. J. 680, 1553 (2008)

    ADS  Google Scholar 

  • E.J. Smith, A. Balogh, Decrease in heliospheric magnetic flux in this solar minimum: recent Ulysses magnetic field observations. Geophys. Res. Lett. 35, L22103 (2008)

    ADS  Google Scholar 

  • X. Sun, Y. Liu, J.T. Hoeksema, K. Hayashi, X. Zhao, A new method for polar field interpolation. Sol. Phys. 270, 9 (2011)

    ADS  Google Scholar 

  • L. Svalgaard, T.L. Duvall, P.H. Scherrer, The strength of the Sun’s polar fields. Sol. Phys. 58, 225 (1978)

    ADS  Google Scholar 

  • J. Sykora, M. Parisi, A new database of the green-line corona brightness as compiled for the last five solar cycles and its possible utilization in the ISCS project. Astron. Astrophys. Trans. 16, 75 (1998)

    ADS  Google Scholar 

  • S.J. Tappin, R.C. Altrock, The extended solar cycle tracked high into the corona. Sol. Phys. 282, 249 (2013)

    ADS  Google Scholar 

  • A.G. Tlatov, V.V. Vasil’eva, A.A. Pevtsov, Distribution of magnetic bipoles on the sun over three solar cycles. Astrophys. J. 717, 357 (2010)

    ADS  Google Scholar 

  • M. Trellis, Contribution a L’Étude de la couronne solaire. Suppl. Aux. Ann. Astrophys. 5, 3 (1957)

    ADS  Google Scholar 

  • S. Tsuneta, K. Ichimoto, Y. Katsukawa, B.W. Lites, K. Matsuzaki, S. Nagata et al., The magnetic landscape of the Sun’s polar region. Astrophys. J. 688, 1374 (2008)

    ADS  Google Scholar 

  • R.K. Ulrich, The controversial sun, in Inside the Stars, ed. by W.W. Weiss, A. Baglin. IAU Colloq., vol. 137, (1993), p. 25

    Google Scholar 

  • R.K. Ulrich, Solar meridional circulation from Doppler shifts of the Fe I line at 5250 Å as measured by the 150-foot solar tower telescope at the Mt. Wilson observatory. Astrophys. J. 725, 658 (2010)

    ADS  Google Scholar 

  • R.K. Ulrich, T. Tran, The global solar magnetic field—identification of traveling, long-lived ripples. Astrophys. J. 768, 189 (2013)

    ADS  Google Scholar 

  • L. Upton, D.H. Hathaway, Predicting the Sun’s polar magnetic fields with a surface flux transport model. Astrophys. J. 780, 5 (2014)

    ADS  Google Scholar 

  • M. Waldmeier, Die Sonnenkorona, 2nd edn. (Birkhäuser, Basel, 1957)

    Google Scholar 

  • M. Waldmeier, Das Verhalten der koronalen Polarzone. Mit 4 Textabbildungen. Z. Astrophys. 59, 205 (1964)

    ADS  Google Scholar 

  • Y.-M. Wang, J.L. Lean, N.R. Sheeley Jr., Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522 (2005)

    ADS  Google Scholar 

  • Y.-M. Wang, E. Robbrecht, N.R. Sheeley Jr., On the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J. 707, 1372 (2009)

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., The solar origin of long-term variations of the interplanetary magnetic field strength. J. Geophys. Res. 93, 11227 (1988)

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726 (1990)

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., Magnetic flux transport and the Sun’s dipole moment—new twists to the Babcock–Leighton model. Astrophys. J. 375, 761 (1991)

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., On potential field models of the solar corona. Astrophys. J. 392, 310 (1992)

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., A.G. Nash, A new solar cycle model including meridional circulation. Astrophys. J. 383, 431 (1991)

    ADS  Google Scholar 

  • J. Worden, J. Harvey, An evolving synoptic magnetic flux map and implications for the distribution of photospheric magnetic flux. Sol. Phys. 195, 247 (2000)

    ADS  Google Scholar 

  • A.R. Yeates, D.H. Mackay, Chirality of high-latitude filaments over solar cycle 23. Astrophys. J. 753, L34 (2012)

    ADS  Google Scholar 

  • X.P. Zhao, J.T. Hoeksema, P.H. Scherrer, Changes of the boot-shaped coronal hole boundary during Whole Sun Month near sunspot minimum. J. Geophys. Res. 104, 9735 (1999)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. D. Petrie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petrie, G.J.D., Petrovay, K., Schatten, K. (2015). Solar Polar Fields and the 22-Year Activity Cycle: Observations and Models. In: Balogh, A., Hudson, H., Petrovay, K., von Steiger, R. (eds) The Solar Activity Cycle. Space Sciences Series of ISSI, vol 53. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2584-1_11

Download citation

Publish with us

Policies and ethics