Skip to main content

Food Preservation by Nanostructures-Water Interactions Control

  • Chapter
  • 2236 Accesses

Part of the book series: Food Engineering Series ((FSES))

Abstract

Understanding structure–function properties in food systems has led to possibilities of food preservation by managing product structural features so that water and nutriments are subjected to various levels of physical immobilization, thus reducing reactivity and allowing a better control of product stability. In this chapter it is noted that to achieve this, it is necessary to induce in the solid matrix of the product the formation of micro–nano cavities, fissures, and pores into which water and other substances will strongly (and tightly) bound. Important thermodynamic characteristics of the system control this reduction in mobility and entropy control of food matrix-liquid is aimed to achieve the task. Also, principles and practical applications of such processes are discussed as well as structural features-appraisal methodologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

a w :

Water activity

FD:

Fractal dimension

K :

Boltzmann’s constant

N :

Entire system

n :

Cooperative rearrangement

N−n :

Regions whose state does not allow such a transition

RH:

Relative humidity

S c :

Configurational entropy of the system

s c :

Configurational entropy of the subsystem with z molecules

T :

Absolute temperature

T 1 :

Spin-lattice relaxation time

T 2 s :

Spin-spin relaxation time

T g :

Glass transition temperature

W c1/N :

Average number of configurations depending on the size of z

z :

Energetic barrier

References

  • Adam G, Gibbs JH (1965) Temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43(1):139–147

    Article  CAS  Google Scholar 

  • Aguilera JM (2005) Why food microstructure? J Food Eng 67(1–2):3–11

    Article  Google Scholar 

  • Alamilla-Beltrán L, Chanona-Pérez JJ, Jiménez-Aparicio AR, Gutiérrez-López GF (2005) Description of morphological changes of particles along spray drying. J Food Eng 67(1–2):179–184

    Article  Google Scholar 

  • Azuara E, Beristain CI (2006) Enthalpic and entropic mechanisms related to water sorption of yogurt. Drying Technol 24:1501–1507

    Article  CAS  Google Scholar 

  • Azuara-Nieto E, Beristain-Guevara CI (2007) Estudio termodinámico y cinético de la adsorción de agua en proteína de suero de leche. Rev Mex Ing Quím 6(3):359–365

    CAS  Google Scholar 

  • Barletta BJ, Barbosa-Cánovas GV (1993) An attrition index to assess fines formation and particle size reduction in tapped agglomerated food powders. Powder Technol 77(1):89–93

    Article  CAS  Google Scholar 

  • Bell LN, Touma DE (1996) Glass transition temperatures determined using a temperature-cycling differential scanning calorimeter. J Food Sci 61(4):807–810

    Article  CAS  Google Scholar 

  • Beristain CI, Azuara E (1990) Maximal stability of dried products. Ciencia (México) 41(3):229–236

    Google Scholar 

  • Beristain CI, García HS, Azuara E (1996) Enthalpy-entropy compensation in food vapor adsorption. J Food Eng 30:405–415

    Article  Google Scholar 

  • Beristain CI, Azuara E, Vernon-Carter EJ (2002) Effect of water activity on the stability to oxidation of spray-dried encapsulated orange peel oil using mesquite gum (Prosopis juliflora) as wall material. J Food Sci 67:206–211

    Article  CAS  Google Scholar 

  • Biggin PC, Sansom MSP (2001) Channel gating: Twist to open. Curr Biol 11(9):R364–R366

    Article  CAS  Google Scholar 

  • Bunz UHF (2006) Breath figures as a dynamic templating method for polymers and nanomaterials. Adv Mater 18(8):973–989

    Article  CAS  Google Scholar 

  • Calzetta-Resio A, Aguerre RJ, Suárez C (1999) Analysis of the sorptional characteristics of amaranth starch. J Food Eng 42(1):51–57

    Article  Google Scholar 

  • Chanona JJ, Alamilla L, Farrera RR, Quevedo R, Aguilera JM, Gutiérrez GF (2003) Description of the convective air-drying of a food model by means of the fractal theory. Food Sci Technol Int 9:3207–3213

    Article  Google Scholar 

  • Chellaram C, Murugaboopathi G, John AA, Sivakumar R, Ganesan S, Krithika S, Priya G (2014) Significance of nanotechnology in food industry. APCBEE Proc 8:109–113

    Article  CAS  Google Scholar 

  • Chirife J, Buera MP (1994) Water activity, glass transition and microbial stability in concentrated/semimoist food systems. J Food Sci 59(5):921–927

    Article  CAS  Google Scholar 

  • Chui MM, Phillips RJ, McCarthy MJ (1995) Measurement of the porous microstructure of hydrogels by nuclear magnetic resonance. J Colloid Interface Sci 174(2):336–344

    Article  CAS  Google Scholar 

  • Corezzi S, Fioretto D, Casalini R, Rolla PA (2002) Glass transition of an epoxy resin induced by temperature, pressure and chemical conversion: a rationale based on configurational entropy. J Non-Cryst Solids 307–310:281–287

    Article  Google Scholar 

  • Creed PG (2010) Chemical deterioration and physical instability in ready-to-eat meals and catered foods. In: Skibsted LH, Risbo J, Andersen ML (eds) Chemical deterioration and physical instability of food and beverages. Woodhead Publishing, Cambridge, pp 608–662

    Chapter  Google Scholar 

  • Djendoubi Mrad N, Bonazzi C, Courtois F, Kechaou N, Mihoubi NB (2013) Moisture desorption isotherms and glass transition temperatures of osmo-dehydrated apple and pear. Food Bioproducts Processing 91(2):121–128

    Article  CAS  Google Scholar 

  • Flores-Andrade E, Beristain CI, Vernon-Carter EJ, Gutiérrez-López GF, Azuara E (2009) Enthalpy-entropy compensation and water transfer mechanism in osmotically dehydrated agar gel. Drying Technol 27(6):999–1009

    Article  CAS  Google Scholar 

  • Fripiat JJ, Gatineau L, Van Damme H (1986) Multilayer physical adsorption on fractal surfaces. Langmuir 2(5):562–567

    Article  CAS  Google Scholar 

  • García-Armenta E, Téllez-Medina DI, Alamilla-Beltrán L, Arana-Errasquín R, Hernández-Sánchez H, Gutiérrez-López GF (2014) Multifractal breakage patterns of thick maltodextrin agglomerates. Powder Technol 266:440–446

    Article  Google Scholar 

  • Gould GW, Christian JHB (1998) Characterization of the state of water in foods - biological aspects. In: Seow C (ed) Food preservation by moisture control. Elsevier Applied Science, London, pp 43–56

    Google Scholar 

  • Hills BP, Arnould L, Bossu C, Ridge YP (2001) Microstructural factors controlling the survival of food-borne pathogens in porous media. Int J Food Microbiol 66(3):163–173

    Article  CAS  Google Scholar 

  • Huang H, Liu CH, Wu Y, Fan S (2005) Aligned carbon nanotube composite films for thermal management. Adv Mater 17(13):1652–1656

    Article  CAS  Google Scholar 

  • Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190

    Article  CAS  Google Scholar 

  • Jani AMMD, Losic D, Voelcker NH (2013) Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Prog Mater Sci 58(5):636–704

    Article  Google Scholar 

  • Johari GP (2000) On the origin of the heat capacity feature of annealed ices and ice clathrates, and interpreting water’s diffusivity in terms of the entropy. Chem Phys 258(2–3):277–290

    Article  CAS  Google Scholar 

  • Kalichevsky-Dong MT (2000) The glass transition and microbial stability. In: Kilcast D, Subramaniam P (eds) The stability and shelf-life of food. Woodhead Publishing, Cambridge, pp 25–54

    Chapter  Google Scholar 

  • Kayacier A, Singh RK (2002) Glass transition studies of baked tortilla chips using dynamic mechanical thermal analysis. LWT Food Sci Technol 35(1):34–37

    Article  CAS  Google Scholar 

  • Khraisheh MAM, McMinn WAM, Magee TRA (2004) Quality and structural changes in starchy foods during microwave and convective drying. Food Res Int 37(5):497–503

    Article  CAS  Google Scholar 

  • Knowles MRH, Rutterford G, Karnakis D, Dobrev T, Petkov P, Dimov S (2006) Laser micro-milling of ceramics, dielectrics and metals using nanosecond and picosecond lasers. Second international conference on multi-material micro manufacture, pp 131–134

    Google Scholar 

  • Kong F, Singh RP (2011) Chemical deterioration and physical instability of foods and beverages. In: Kilcast D, Subramaniam P (eds) Food and beverage stability and shelf life. Woodhead Publishing, Cambridge, pp 29–62

    Chapter  Google Scholar 

  • Kurosaki S (1954) The dielectric behavior of sorbed water on silica gel. J Phys Chem 58(4):320–324

    Article  CAS  Google Scholar 

  • Labuza TP, McNally L, Gallagher D, Hawkes J, Hurtado F (1972) Stability of intermediate moisture foods. 1. Lipid Oxidation. J Food Sci 37(1):154–159

    Article  CAS  Google Scholar 

  • Li XY, Zhao QL, Xu TT, Huang J, Wei LH, Ma Z (2014) Highly ordered microporous polystyrene-b-poly(acrylic acid) films: study on the influencing factors in their fabrication via a static breath-figure method. Eur Polym J 50:135–141

    Article  CAS  Google Scholar 

  • Liu CX, Lang WZ, Shi BB, Guo YJ (2013) Fabrication of ordered honeycomb porous polyvinyl chloride (PVC) films by breath figures method. Mater Lett 107:53–55

    Article  CAS  Google Scholar 

  • Ludescher RD, Shah NK, McCaul CP, Simon KV (2001) Beyond Tg: optical luminescence measurements of molecular mobility in amorphous solid foods. Food Hydrocoll 15(4–6):331–339

    Article  CAS  Google Scholar 

  • Mandelbrot BB, Riedi RH (1997) Inverse measures, the inversion formula, and discontinuous multifractals. Adv Appl Math 18(1):50–58

    Article  Google Scholar 

  • Marañón J, Marañón J (2003) Confined water in nanotube. J Mol Struct (THEOCHEM) 623(1–3):159–166

    Article  Google Scholar 

  • Nunes RV, Rotstein E (1991) Thermodynamics of the water-foodstuff equilibrium. Drying Technology: An International Journal 9(1):113–137

    Article  Google Scholar 

  • Ortony JH, Choi SH, Spruell JM, Hunt JN, Lynd NA, Krogstad DV, Urban VS, Hawker CJ, Kramer EJ, Han S (2014) Fluidity and water in nanoscale domains define coacervate hydrogels. Chem Sci 5:58–67

    Article  CAS  Google Scholar 

  • Peponi L, Puglia D, Torre L, Valentini L, Kenny JM (2014) Processing of nanostructured polymers and advanced polymeric based nanocomposites. Materials Science and Engineering: R: Reports 85:1–46

    Article  Google Scholar 

  • Perez J (1994) Theories of liquid-glass transition. J Food Eng 22(1–4):89–114

    Article  Google Scholar 

  • Rahman MS (2010) Food stability determination by macro–micro region concept in the state diagram and by defining a critical temperature. J Food Eng 99(4):402–416

    Article  Google Scholar 

  • Roos Y (1993) Melting and glass transitions of low molecular weight carbohydrates. Carbohydr Res 238:39–48

    Article  CAS  Google Scholar 

  • Roos YH, Karel M, Kokini JL (1996) Glass transitions in low moisture and frozen foods: effects on shelf life and quality. Food Technol 50(11):95–108

    Google Scholar 

  • Ruan R, Long Z, Chen P, Huang V, Almaer S, Taub I (1999) Pulse NMR study of glass transition in maltodextrin. J Food Sci 64(1):6–9

    Article  CAS  Google Scholar 

  • Salerno M, Landoni P, Verganti R (2008) Designing foresight studies for Nanoscience and Nanotechnology (NST) future developments. Technol Forecast Soc Chang 75(8):1202–1223

    Article  Google Scholar 

  • Sealy C (2004) Water on the nanoscale: carbon nanotubes. Materials Today 7(12):12

    Google Scholar 

  • Slade L, Levine H (1991) Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr 30(2–3):115–360

    Article  CAS  Google Scholar 

  • Sri Haryani Anwar SH, Kunz B (2011) The influence of drying methods on the stabilization of fish oil microcapsules: comparison of spray granulation, spray drying, and freeze drying. J Food Eng 105(2):367–378

    Article  Google Scholar 

  • Vermeulen A, Marvig CL, Daelman J, Xhaferi R, Nielsen DS, Devlieghere F (2014) Strategies to increase the stability of intermediate moisture foods towards Zygosaccharomyces rouxii: the effect of temperature, ethanol, pH and water activity, with or without the influence of organic acids. Food Microbiol 45:119–125

    Article  Google Scholar 

  • Wang Y (2014) Nanogeochemistry: nanostructures, emergent properties and their control on geochemical reactions and mass transfers. Chem Geol 378–379:1–23

    Article  Google Scholar 

  • Wang F, Li S (1997) Determination of the surface fractal dimension for porous media by capillary condensation. Ind Eng Chem Res 36(5):1598–1602

    Article  CAS  Google Scholar 

  • Yamamoto T, Endo A, Inagi Y, Ohmori T, Nakaiwa M (2005) Evaluation of thermoporometry for characterization of mesoporous materials. J Colloid Interface Sci 284(2):614–620

    Article  CAS  Google Scholar 

  • Zeller BL, Saleeb FZ (1996) Production of microporous sugars for adsorption of volatile flavors. J Food Sci 61(4):749–752

    Article  CAS  Google Scholar 

  • Ying JY, Mehnert CP, Wong MS (1999) Synthesis and applications of supramolecular-templated mesoporous materials. Angew Chem Int Ed 38(1):56–77

    Article  CAS  Google Scholar 

  • Zimmerman JR, Holmes BG, Lasater JA (1956) A study of adsorbed water on silica gel by nuclear resonance techniques. J Phys Chem 60(9):1157–1161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Gutiérrez-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Flores-Andrade, E. et al. (2015). Food Preservation by Nanostructures-Water Interactions Control. In: Gutiérrez-López, G., Alamilla-Beltrán, L., del Pilar Buera, M., Welti-Chanes, J., Parada-Arias, E., Barbosa-Cánovas, G. (eds) Water Stress in Biological, Chemical, Pharmaceutical and Food Systems. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2578-0_2

Download citation

Publish with us

Policies and ethics