Skip to main content

Combustion Characteristics of Materials and Generation of Fire Products

  • Chapter
SFPE Handbook of Fire Protection Engineering

Abstract

Hazards associated with fire are characterized by the generation of calorific energy and products, per unit of time, as a result of the chemical reactions of surfaces and material vapors with oxygen from air. Thermal hazards constitute those scenarios where the release of heat is of major concern. On the other hand, nonthermal hazards are characterized by fire products (smoke, toxic, corrosive, and odorous compounds.) Generation rates of heat and fire products (and their nature) are governed by (1) fire initiation (ignition); (2) fire propagation rate beyond the ignition zone; (3) fire ventilation; (4) external heat sources; (5) presence or absence of fire suppression/extinguishing agents; and (6) materials: (a) their shapes, sizes, and arrangements; (b) their chemical natures; (c) types of additives mixed in; and (d) presence of other materials. In this handbook most of these areas have been discussed from fundamental as well as applied views. For example, the mechanisms of thermal decomposition of polymers, which govern the generation rates of material vapors, are discussed in Chap. 7, generation rate of heat (or heat release rate) from the viewpoint of thermochemistry is discussed in Chap. 5, Flaming ignition of the mixture of material vapors and air is discussed in Chap. 21, and surface flame spread in Chap. 23.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABS:

acrylonitrile-butadiene-styrene

CDG:

carbon dioxide generation calorimetry

CPVC:

chlorinated polyvinylchloride

CR:

neoprene or chloroprene rubber

CSP (or CSM):

chlorosulfonated polyethylene rubber (Hypalon)

CTFE:

chlorotrifluoroethylene (Kel-F)

E-CTFE:

ethylene-chlorotrifluoroethylene (Halar)

EPR:

ethylene propylene rubber

ETFE:

ethylenetetrafluoroethylene (Tefzel)

EVA:

ethylvinyl acetate

FEP:

fluorinated polyethylene-polypropylene (Teflon)

FPA:

Fire Propagation Apparatus

GTR:

gas temperature rise calorimetry

IPST:

isophthalic polyester

OC:

oxygen consumption calorimetry

PAH:

polyaromatic hydrocarbons

PAN:

polyacrylonitrile

PC:

polycarbonate

PE:

polyethylene

PEEK:

polyether ether ketone

PES:

polyethersulfone

PEST:

polyester

PET:

polyethyleneterephthalate (Melinex Mylar)

PFA:

perfluoroalkoxy (Teflon)

PMMA:

polymethylmethacrylate

PO:

polyolefin

POM:

polyoxymethylene

PP:

polypropylene

PS:

polystyrene

PTFE:

polytetrafluoroethylene (Teflon)

PU:

polyurethane

PVC:

polyvinylchloride

PVCl2 :

polyvinylidene chloride (Saran)

PVDF:

polyvinylidenefluoride (Kynar)

PVEST:

polyvinylester

PVF:

polyvinyl fluoride (Tedlar)

PVF2 :

polyvinylidene fluoride (Kynar Dyflor)

SBR:

styrene-butadiene rubber

TFE:

tetrafluoroethylene (Teflon)

XLPE:

cross-linked polyethylene

References

  1. Smith, EE (1972) Measuring Rate of Heat, Smoke, and Toxic Gas Release. Fire Technol 8:237–245. doi:10.1007/BF02590547

    Article  Google Scholar 

  2. Smith, EE (1972) Heat Release Rate of Building Materials. In: Robertson AF (ed) Ignition, Heat Release, and Non-combustibility of Materials, ASTM Special Technical Publication 502, pp. 119–134. doi:10.1520/STP502-EB

    Google Scholar 

  3. ASTM E906/E906M-14 (2014) Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products. ASTM International, West Conshohocken, PA. doi:10.1520/E0906_E0906M, www.astm.org.

  4. Sarkos CP, Filipczak RA, Abramowitz A (1989) Preliminary Evaluation of an Improved Flammability Test Method for Aircraft Materials. Technical Report DOT/FAA/CT-89/15, Federal Aviation Administration, Atlantic City, NJ.

    Google Scholar 

  5. Tsuchiya Y, Mathieu JF (1991) Measuring Degrees of Combustibility Using an OSU Apparatus and Oxygen Depletion Principle. Fire Saf J 17:291–299. doi:10.1016/0379-7112(91)90024-S

    Article  Google Scholar 

  6. Tewarson A, Pion RF (1976) Flammability of Plastics. I. Burning Intensity. Combust Flame 26:85–103. doi:10.1016/0010-2180(76)90059-6

    Article  Google Scholar 

  7. Tewarson A (1976) Heat Release Rates from Samples of Polymethylmethacrylate and Polystyrene Burning in Normal Air. Fire Mater 1:90–96. doi:10.1002/fam.810010303

    Article  Google Scholar 

  8. Tewarson A, Tamanini F. (1976) Research and Development for a Laboratory-Scale Flammability Test Method for Cellular Plastics. Technical Report No. 22524, RC76-T-64, National Institute of Standards and Technology, Gaithersburg, MD.

    Google Scholar 

  9. Tewarson A (1977) Heat Release Rate in Fires. J Fire Flammabl 8:115–121.

    Google Scholar 

  10. ASTM E2058-13a (2013) Standard Test Methods for Measurement of Synthetic Polymer Material Flammability Using a Fire Propagation Apparatus (FPA), ASTM International, West Conshohocken, PA. doi:10.1520/E2058, www.astm.org.

  11. ISO 12136:2011 (2011) Reaction to Fire tests – Measurement of Material Properties Using a Fire Propagation Apparatus. International Organization for Standardization, Geneva, Switzerland.

    Google Scholar 

  12. Tewarson A. (1980) Physico-Chemical and Combustion/Pyrolysis Properties of Polymeric Materials, Technical Report NBS-GCR-80-295, National Institute of Standards and Technology, Gaithersburg, MD.

    Google Scholar 

  13. Tewarson A, Lee JL, Pion RF (1981) The Influence of Oxygen Concentration on Fuel Parameters for Fire Modeling, Proc Combust Inst 18:563–570. doi:10.1016/S0082-0784(81)80061-6

    Article  Google Scholar 

  14. Tewarson A. (1982) Experimental Evaluation of Flammability Parameters of Polymeric Materials. In: Lewin M, Atlas SM, Pearce EM (eds) Flame Retardant Polymeric Materials, Plenum Press, New York, pp. 97–153.

    Chapter  Google Scholar 

  15. Tewarson A. (1986) Prediction of Fire Properties of Materials Part 1: Aliphatic and Aromatic Hydrocarbons and Related Polymers. Technical Report NBS-GCR-86-521, National Institute of Standards and Technology, Gaithersburg, MD.

    Google Scholar 

  16. Tewarson A, Khan MM (1992) A New Standard Test Method for the Quantification of Fire Propagation Behavior of Electrical Cables Using Factory Mutual Research Corporation’s Small-Scale Flammability Apparatus. Fire Technol 28:215–227. doi:10.1007/BF01857691

    Article  Google Scholar 

  17. FM Approval Class Number 3972 (2009) Test Standard for Cable Fire Propagation. FM Approvals, Norwood, MA. http://www.fmglobal.com/assets/pdf/fmapprovals/3972.pdf. Accessed August 2015.

  18. FM Approval Class Number 4880 (2010) Approval Standard for Class 1 Fire Rating of Insulated Wall or Wall and Roof/Ceiling Panels, Interior Finish Materials or Coatings and Exterior Wall Systems. FM Approvals, Norwood, MA. http://www.fmglobal.com/assets/pdf/fmapprovals/4880.pdf. Accessed August 2015.

  19. ANSI/FM Approvals 4910 (2013) American National Standard for Cleanroom Materials Flammability Test Protocol. FM Approvals, Norwood, MA. http://www.fmglobal.com/assets/pdf/fmapprovals/4910ansi1.pdf. Accessed August 2015.

  20. FM Approval Class Number 4998 (1995) Approval Standard for Class 1 Conveyor Belting. FM Approvals, Norwood, MA. http://www.fmglobal.com/assets/pdf/fmapprovals/4998.pdf. Accessed August 2015.

  21. Hugget C (1980) Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements. Fire Mater 4:61–65. doi:10.1002/fam.810040202

    Article  Google Scholar 

  22. Babrauskas V (1982) Development of the Cone Calorimeter - A Bench-Scale Heat Release Rate Apparatus Based on Oxygen Consumption. Technical Report NBSIR 82–2611, National Institute of Standards and Technology, Gaithersburg, MD.

    Google Scholar 

  23. Babrauskas V (1992) The Cone Calorimeter, In: Babrauskas V, Grayson SJ (eds) Heat Release in Fires, Elsevier Publishing Company, London, UK, pp. 61–92.

    Google Scholar 

  24. ASTM E1354-15 (2015) Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, ASTM International, West Conshohocken, PA. doi:10.1520/E1354-15, www.astm.org.

  25. Tewarson, A. (2004) Combustion Efficiency and Its Radiative Component. Fire Saf J 39:131–141. doi:10.1016/j.firesaf.2003.07.004

    Article  Google Scholar 

  26. Mikkola E, Wichman IS (1989) On the Thermal Ignition of Combustible Materials. Fire Mater 14:87–96. doi:10.1002/fam.810140303

    Article  Google Scholar 

  27. Delichatsios MA, Panagiotou Th, Kiley F (1991) . The Use of Time to Ignition Data for Characterizing the Thermal Inertia and the Minimum (Critical) Heat Flux for Ignition or Pyrolysis. Combust Flame 84:323–332. doi:10.1016/0010-2180(91)90009-Z

    Article  Google Scholar 

  28. Tewarson A, Khan MM (1988) Flame Propagation for Polymers in Cylindrical Configuration and Vertical Orientation. Proc Combust Inst 22:1231–1240. doi:10.1016/S0082-0784(89)80134-1

    Article  Google Scholar 

  29. Khan MM, de Ris JL, Ogden SD (2008) Effect of Moisture on Ignition Time of Cellulosic Materials. Fire Saf Sci 9:167–178. doi:10.3801/IAFSS.FSS.9-167

    Google Scholar 

  30. de Ris JL, Khan MM (2000) A Sample Holder for Determining Material Properties. Fire Mater 24:219–226. doi:10.1002/1099-1018(200009/10)

    Article  Google Scholar 

  31. Tewarson A, Ogden SD (1992) Fire Behavior of Polymethylmethacrylate. Combust Flame 89:237–259. doi:10.1016/0010-2180(92)90013-F

    Article  Google Scholar 

  32. Scudamore MJ, Briggs PJ, Prager FH (1991) Cone Calorimetry - A Review of Tests Carried Out on Plastics for the Association of Plastics Manufacturers in Europe. Fire Mater 15:65–84. doi:10.1002/fam.810150205

    Article  Google Scholar 

  33. Jiang F, de Ris JL, Khan MM (2009) Absorption of Thermal Energy in PMMA by In-Depth Radiation. Fire Saf J 44:106–112. doi:10.1016/j.firesaf.2008.04.004

    Article  Google Scholar 

  34. Bal N, Raynard J, Rein G, Torero JL, Försth M, Boulet M, Parent G, Acem Z, Linteris G (2013) Experimental Study of Radiative Heat Transfer in a Translucent Fuel Sample Exposed to Different Spectral Sources. Int J Heat Mass Transf 61:742–748. doi:10.1016/j.ijheatmasstransfer.2013.02.017

    Article  Google Scholar 

  35. Chaos, M (2014) Spectral Aspects of Bench-Scale Flammability Testing: Application to Hardwood Pyrolysis. Fire Saf Sci 11. http://www.iafss.org/publications/fss/11/160

  36. Khan MM, de Ris JL (2005) Operator Independent Ignition Measurements. Fire Saf Sci 8:163–174. doi:10.3801/IAFSS.FSS.8-163

    Google Scholar 

  37. ASTM E1321-13 (2013) Standard Test Method for Determining Material Ignition and Flame Spread Properties, ASTM International, West Conshohocken, PA. doi:10.1520/E1321, www.astm.org

  38. Fernández-Pello AC, Hirano T (1983) Controlling Mechanisms of Flame Spread. Combust Sci Technol 32:1–31. doi:10.1080/00102208308923650.

    Article  Google Scholar 

  39. ICEA T-29-520 (1986) Conducting Vertical Cable Tray Flame Tests with Theoretical Heat Input Rate of 210,000 B.T.U./Hour, Insulated Cable Engineers Association, Englewood, CO

    Google Scholar 

  40. CAN/CSA-C22.2 (2009) Optical Fiber Cable and Communication Cable Raceway Systems, CSA Group, Toronto, ON

    Google Scholar 

  41. UL 1581 (2001) Reference Standard for Electrical Wires, Cables, and Flexible Cords, Underwriters Laboratories, Northbrook, IL

    Google Scholar 

  42. Tewarson A, Chin W, Shuford R (2004) Materials Specifications, Standards, and Testing. In: Harper CA (ed) Handbook of Building Materials for Fire Protection. McGraw-Hill, New York, pp. 2.1-2.54 .

    Google Scholar 

  43. Tewarson A, Macaione D (1993) Polymers and Composites - An Examination of Fire Spread and Generation of Heat and Fire Products. J Fire Sci 11:421–441. doi:10.1177/0734904193011005041993

    Article  Google Scholar 

  44. Tewarson A (1994) Flammability Parameters of Materials: Ignition, Combustion, and Fire Propagation. J Fire Sci 12:329–356. doi:10.1177/073490419401200401

    Article  Google Scholar 

  45. Khan MM (1999) Fire Propagation Characteristics of Conveyor Belts. Proceedings of the Third International Conference on Fire Research and Engineering, pp. 205-216, Society of Fire Protection Engineers, Bethesda, MD.

    Google Scholar 

  46. Khan MM, Bill RG Jr, Alpert RL (2006) Screening of Plenum Cables Using a Small-Scale Fire Test Protocol. Fire Mater 30:65–76. doi:10.1002/fam.899

    Article  Google Scholar 

  47. Tewarson A (2003) Flammability of Polymers. In: Andrady AL (ed) Plastics and Environment. John Wiley & Sons, Inc., Hoboken, NJ, pp. 403–489.

    Google Scholar 

  48. Tewarson A (1994) Fire Hardening Assessment (FHA) Technology for Composite Systems. Technical Report ARL-CR-178, Army Research Laboratory, Aberdeen Proving Ground, MD.

    Google Scholar 

  49. Tewarson A, Khan MM, Wu PK, Bill RG Jr (2001) Flammability of Clean Room Polymeric Materials for the Semiconductor Industry. Fire Mater 25:31–42. doi:10.1002/1099-1018(200101/02)25:1<31::AID-FAM755>3.0.CO;2-A

    Article  Google Scholar 

  50. Lyon RE, Janssens ML (2005) Polymer Flammability. Final Report DOT/FAA/AR-05/14, Office of Aviation Research, Washington, D.C.

    Google Scholar 

  51. Newman JS, Tewarson A (1991) Flame Spread Behavior of Char-Forming Wall/Ceiling Insulations. Fire Saf Sci 3:679–688. doi:10.3801/IAFSS.FSS.3-679

    Google Scholar 

  52. Newman JS (1993) Integrated Approach to Flammability Evaluation of Polyurethane Wall/Ceiling Materials. Polyurethanes World Congress, Society of the Plastics Industry, Washington, D.C.

    Google Scholar 

  53. Nam S, Bill RG Jr (2009) A New Intermediate-scale Fire Test for Evaluating Building Material Flammability. J Fire Prot Eng 19:157–176. doi:10.1177/1042391508101994

    Article  Google Scholar 

  54. Haynes WM (ed) (2012) CRC Handbook of Chemistry and Physics, 93rd ed. CRC Press, Inc., Boca Raton, FL.

    Google Scholar 

  55. Paul MA (1962) Physical Chemistry. D.C. Heath and Company, Boston, MA, p. 46.

    Google Scholar 

  56. Kern DQ (1950) Process Heat Transfer. McGraw-Hill Book Company, New York, NY, p. 72.

    Google Scholar 

  57. Hottel HC (1959) Review of Certain Laws Governing Diffusive Burning of Liquids. Fire Res Abstr Rev 1:41–44.

    Google Scholar 

  58. Croce P (2001) The FORUM for International Cooperation on Fire Research: A Position Paper on Evaluation of Products and Services for Global Acceptance. Fire Saf J 36:715–717. doi:10.1016/S0379-7112(01)00034-0

    Article  Google Scholar 

  59. Gritzo LA, Senseny PE, Xin Y, Thomas JR (2005) The International FORUM of Fire Research Directors: A Position Paper on Verification and Validation of Numerical Fire Models. Fire Saf J 40:485–490. doi:10.1016/j.firesaf.2005.02.001.

    Article  Google Scholar 

  60. Dorofeev SB, Chaos M, Khan MM, Krishnamoorthy N, Chatterjee P, Wang Y, Bill RG Jr (2011) An Approach for Evaluation of Material Flammability Via Bench-Scale Testing and CFD Simulations. Proceedings of the 12th International Conference on Fire and Materials, San Francisco, CA, pp. 321–332.

    Google Scholar 

  61. McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2015) Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model. NIST Special Publication 1018-1, 6th ed, National Institute of Standards and Technology, Gaithersburg, MD. doi:10.6028/NIST.SP.1018-1

  62. Stoliarov SI, Lyon RE (2008) Thermo-Kinetic Model of Burning. Technical Report DOT/FAA/AR-TN08/17, Federal Aviation Administration, Atlantic City, NJ.

    Google Scholar 

  63. Lautenberger CW (2007) A Generalized Pyrolysis Model for Combustible Solids. PhD Dissertation, University of California, Berkeley, CA. http://escholarship.org/uc/item/7wz5m7dg. Accessed August 2015.

  64. GPyro. http://reaxengineering.com/trac/gpyro. Accessed August 2015.

  65. Lattimer BY, Ouellette J (2006) Properties of Composite Materials for Thermal Analysis Involving Fires. Compos: Part A 37:1068–1081. doi:10.1016/j.compositesa.2005.01.029

    Article  Google Scholar 

  66. Stoliarov SI, Crowley S, Lyon RE, Linteris GT (2009) Prediction of the Burning Rates of Non-Charring Polymers. Combust Flame 156:1068–1083. doi:10.1016/j.combustflame.2008.11.010

    Article  Google Scholar 

  67. Stoliarov SI, Crowley S, Walters RN, Lyon RE (2010) Prediction of the Burning Rates of Charring Polymers. Combust Flame 157:2024–2034. doi:10.1016/j.combustflame.2010.03.011

    Article  Google Scholar 

  68. de Ris JL, Yan Z (1998) Modeling Ignition and Pyrolysis of Solid Fuels. Proceedings of the 5th International Conference on Fire and Materials, San Antonio, TX, pp. 111–121.

    Google Scholar 

  69. Theuns E, Merci B, Vierendeels J, Vandevelde P (2005) Critical Evaluation of an Integral Model for the Pyrolysis of Charring Materials. Fire Saf J 40:121–140. doi:10.1016/j.firesaf.2004.09.003

    Article  Google Scholar 

  70. Lautenberger C, Rein G, Fernández-Pello C (2006) The Application of a Genetic Algorithm to Estimate Material Properties for Fire Modeling from Bench-Scale Fire Test Data. Fire S J 41:204–214. doi:10.1016/j.firesaf.2005.12.004

    Article  Google Scholar 

  71. Lautenberger C, Kim E, Dembsey N, Fernández-Pello C (2008) The Role of Decomposition Kinetics in Pyrolysis Modeling – Application to a Fire Retardant Polyester Composite. Fire Safety Science 9:1201–1212. doi:10.3801/IAFSS.FSS.9-1201

    Google Scholar 

  72. Webster RD (2009) Pyrolysis Model Parameter Optimization Using a Customized Stochastic Hill-Climber Algorithm and Bench Scale Fire Test Data. MS Thesis, University of Maryland, College Park, MD. http://hdl.handle.net/1903/10004. Accessed August 2015.

  73. Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB (2010) FPA Bench-Scale Flammability Tests and Extraction of Solid Fuel Properties for Fire Models. Proceedings of the 6th International Seminar on Fire and Explosion Hazards, Leeds, UK, paper 161. doi:10.3850/978-981-08-7724-8_15-01

  74. Chaos M, Khan MM, Krishnamoorthy M, de Ris JL, Dorofeev SB (2010) Bench-Scale Flammability Experiments: Determination of Material Properties Using Pyrolysis Models for Use in CFD Fire Simulations. Proceedings of the 12th International Fire Science and Engineering Conference, Interflam2010, Nottingham, UK, pp. 697–708.

    Google Scholar 

  75. Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB (2011) Evaluation of Optimization Schemes and Determination of Solid Fuel Properties for CFD Fire Models using Bench-scale Pyrolysis Tests. Proc Combust Inst 33:2599–2606. doi:10.1016/j.proci.2010.07.018

    Article  Google Scholar 

  76. Matala A, Hostikka S (2011) Pyrolysis Modelling of PVC Cable Materials. Fire Saf Sci 10:917–930. doi:10.3801/IAFSS.FSS.10-917

    Google Scholar 

  77. Huang CH, Özisik MN (1991) Direct Integration Approach for Simultaneously Estimating Temperature Dependent Thermal Conductivity and Heat Capacity. Numer Heat Transf A 20:95–110. doi:10.1080/10407789108944811

    Article  Google Scholar 

  78. Jurkowski T, Jarny Y, Delaunay D (1997) Estimation of Thermal Conductivity of Thermoplastics under Moulding Conditions: An Apparatus and an Inverse Algorithm. Int J Heat Mass Transf 40:4169–4181. doi:10.1016/S0017-9310(97)00027-6

    Article  Google Scholar 

  79. García S, Guynn J, Scott EP (1998) Use of Genetic Algorithms in Thermal Property Estimation: Part II – Simultaneous Estimation of Thermal Properties. Numer Heat Transf A 33:149–168. doi:10.1080/10407789808913931

    Article  Google Scholar 

  80. Loulou T (2007) Combined Parameter and Function Estimation with Application to Thermal Conductivity and Surface Heat Flux. J Heat Transf 129:1309–1320. doi:10.1115/1.2755064

    Article  Google Scholar 

  81. Veiseh S, Hakkaki-Fard A, Kowsary F (2009) Determining of the Air/Fiber Conductivity of Mineral Wool Insulations in Building Applications Using Parameter Estimation Methods. J Build Phys 32:243–260. doi:10.1177/1744259108099431

    Article  Google Scholar 

  82. Molavi H, Pourshaban I, Hakkaki-Fard A, Molavi M, Ayasoufi A, Rahmani RK (2009) Inverse Identification of Thermal Properties of Charring Ablators. Numer Heat Transf B 56:478–501. doi:10.1080/10407790903508129

    Article  Google Scholar 

  83. Nelder JA, Mead R (1965) A Simplex Method for Function Minimization. Comput J 7:308–313. doi:10.1093/comjnl/7.4.308

    Article  MathSciNet  MATH  Google Scholar 

  84. Coleman TF, Li Y (1996) An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM J Optim 6:418–445. doi:10.1137/S1052623494240456

    Article  MathSciNet  MATH  Google Scholar 

  85. Duan Q, Gupta VK, Sorooshian S (1993) Shuffled Complex Evolution Approach for Effective and Efficient Global Minimization. J Optim Theory Appl 76:501–521. doi:10.1007/BF00939380

    Article  MathSciNet  MATH  Google Scholar 

  86. Duan Q, Sorooshian S, Gupta VK (1994) Optimal Use of the SCE-UA Global Optimization Method for Calibrating Watershed Models. J Hydrol 158:265–284. doi:10.1016/0022-1694(94)90057-4

    Article  Google Scholar 

  87. Lautenberger C, Fernández-Pello C (2011) Optimization Algorithms for Material Pyrolysis Property Estimation. Fire Saf Sci 10:751–764. doi:10.3801/IAFSS.FSS.10-751

    Google Scholar 

  88. Gaviano M, Lera D (1998) Test Functions with Variable Attraction Regions for Global Optimization Problems. J Glob Optim 13:207–223. doi:10.1023/A:1008225728209

    Google Scholar 

  89. Chaos M, Khan MM, Dorofeev SB (2012) Pyrolysis of Corrugated Cardboard in Inert and Oxidative Environments. Proc Combust Inst 34. doi:10.1016/j.proci.2012.06.031

    Google Scholar 

  90. Savitzky A, Golay MJE (1964) Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal Chem 36:1627–1639. doi:10.1021/ac60214a047

    Article  Google Scholar 

  91. Staggs JEJ (2005) Savitzky-Golay Smoothing and Numerical Differentiation of Cone Calorimeter Mass Data. Fire Saf J 40:493–505. doi:10.1016/j.firesaf.2005.05.002.

    Article  Google Scholar 

  92. Bromba MUA, Ziegler H (1981) Application Hints for Savitzky-Golay Digital Smoothing Filters. Anal Chem 53:1583–1586. doi:10.1021/ac00234a011

    Article  Google Scholar 

  93. Krishnamoorthy N, Chaos M, Khan MM, Chatterjee P, Wang Y, Dorofeev SB (2010) Experimental and Numerical Study of Flame Spread in Parallel Panel Geometry. Proceedings of the 6th International Seminar on Fire and Explosion Hazards, Leeds, UK, paper 155. doi:10.3850/978-981-08-7724-8_03-07

  94. Krishnamoorthy N, Chaos M, Khan MM, Chatterjee P, Wang Y, Dorofeev SB (2010) Application of Bench-Scale Material Flammability Data to Model Flame Spread in Medium-Scale Parallel Panel Test. Proceedings of the 12th International Fire Science and Engineering Conference, Interflam2010, Nottingham UK, pp. 709–720.

    Google Scholar 

  95. Chaos M, Khan MM, Krishnamoorthy N, Chatterjee P, Wang Y, Dorofeev SB (2011) Experiments and Modeling Of Single- and Triple-Wall Corrugated Cardboard: Effective Material Properties and Fire Behavior. Proceedings of the 12th International Conference on Fire and Materials, San Francisco, CA, pp. 625–636.

    Google Scholar 

  96. Krishnamoorthy N, Chaos M, Khan MM, Chatterjee P, Wang Y, Dorofeev SB (2011) Numerical Modeling of Flame Spread over Corrugated Cardboard on Vertical Parallel Panels. Proceedings of the 7th US National Technical Meeting of the Combustion Institute, Atlanta, GA, Paper 1 F16.

    Google Scholar 

  97. Chaos M, Wang Y, Dorofeev SB (2012) CFD Modeling of Flame Spread over Corrugated Cardboard Panels. Proceedings of the International Congress on Fire and Computer Modeling, Oct. 18–19, 2012, Universidad de Cantabria, Spain.

    Google Scholar 

  98. Wang Y, Chatterjee P, de Ris JL (2011) Large Eddy Simulation of Fire Plumes. Proc Combust Inst 33:2473–2480. doi:10.1016/j.proci.2010.07.031

    Article  Google Scholar 

  99. http://www.fmglobal.com/modeling. Accessed August 2015.

  100. Thornton WM (1917) The Relation of Oxygen to the Heat of Combustion of Organic Compounds. Philos Mag Ser 6 33:196–203. doi:10.1080/14786440208635627

    Article  Google Scholar 

  101. Macrae JC (1966) An Introduction to the Study of Fuel. Elsevier Publishing Company, London, UK.

    Google Scholar 

  102. ASTM D4809-13 (2013) Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method). ASTM International, West Conshohocken, PA. doi:10.1520/D4809-13, www.astm.org.

  103. Tewarson A, Jiang FH, Morikawa T (1993) Ventilation-Controlled Combustion of Polymers. Combust Flame 95:151–169. doi:10.1016/0010-2180(93)90058-B

    Article  Google Scholar 

  104. Tewarson A, Khan MM (1993) Extinguishment of Diffusion Flames of Polymeric Materials by Halon 1301. J Fire Sci 11:407–420. doi:10.1177/073490419301100503

    Article  Google Scholar 

  105. Costa C, Treand G, Moineault F, Gustin J-L (1999) Assessment of the Thermal and Toxic Effects of Chemical and Pesticide Pool Fires Based on Experimental Data Obtained Using the Tewarson Apparatus. Process Saf Environ Prot 77:154–164. doi:10.1205/095758299529974

    Article  Google Scholar 

  106. Brohez S, Delvosalle C (2009) Carbon Dioxide Generation Calorimetry - Errors Induced by the Simplifying Assumptions in the Standard Test Methods. Fire Mater 33:89–97. doi:10.1002/fam.988

    Article  Google Scholar 

  107. Tewarson A, Marlair G (2004) Liquids and Chemicals. In: Harper CA (ed) Handbook of Building Materials for Fire Protection. McGraw-Hill, New York, pp. 8.1–8.43.

    Google Scholar 

  108. Brohez S, Delvosalle C, Marlair G, Tewarson A. (2000) The Measurement of Heat Release from Oxygen Consumption in Sooty Fires. J Fire Sci 18:327–353. doi:10.1177/073490410001800501

    Article  Google Scholar 

  109. Brohez, S (2005) Uncertainty Analysis of Heat Release Rate Measurement from Oxygen Consumption Calorimetry. Fire Mater 29:383–394. doi:10.1002/fam.895

    Article  Google Scholar 

  110. Biteau H, Fuentes A, Marlair G, Brohez S, Torero JL (2009) Ability of the Fire Propagation Apparatus to Characterise the Heat Release Rate of Energetic Materials. J Hazard Mater 166:916–924. doi:10.1016/j.jhazmat.2008.11.100

    Article  Google Scholar 

  111. Biteau H, Steinhaus T, Schemel C, Simeoni A, Marlair G, Bal N, Torero JL (2008) Calculation Methods for the Heat Release Rate of Materials of Unknown Composition. Fire Saf Sci 9:1165–1176. doi:10.3801/IAFSS.FSS.9-1165

    Google Scholar 

  112. Tewarson A (1986) Prediction of Fire Properties of Materials Part 1: Aliphatic and Aromatic Hydrocarbons and Related Polymers. Technical Report NBS-GCR-86-521, National Institute of Standards and Technology, Gaithersburg, MD.

    Google Scholar 

  113. Hirschler MM (1987) Fire Hazard and Toxic Potency of the Smoke from Burning Materials. J Fire Sci 5:289–307. doi:10.1177/073490418700500501

    Article  Google Scholar 

  114. Tewarson A (1988) Smoke Point Height and Fire Properties of Materials. Technical Report NBS-GCR-88-555, National Institute of Standards and Technology, Gaithersburg, MD.

    Google Scholar 

  115. Tewarson A, Zalosh RG (1989) Flammability Testing of Aircraft Cabin Materials, Paper 33 in AGARD Conference Proceedings No. 467 - Aircraft Fire Safety; Propulsion and Energetics Panel 73rd Symposium, Sintra, Portugal, May 22–26, 1989.

    Google Scholar 

  116. Tsantarides L, Ostman B (1989) Smoke, Gas, and Heat Release Data for Building Products in the Cone Calorimeter. Technical Report I 8903013, Swedish Institute for Wood Technology Research, Stockholm, Sweden.

    Google Scholar 

  117. Khan MM (1992) Characterization of Liquid Fuel Spray Fires. In: Cho P, Quintiere J (eds) Heat and Mass Transfer in Fire and Combustion Systems, American Society of Mechanical Engineers, New York, NY.

    Google Scholar 

  118. Sivathanu YR, Faeth GM (1990) Generalized State Relationships for Scalar Properties in Nonpremixed Hydrocarbon/Air Flames. Combust Flame 82:211–230. doi:10.1016/0010-2180(90)90099-D

    Article  Google Scholar 

  119. Khan MM, Bill RG Jr (2003) Comparison of Flammability Measurements in Vertical and Horizontal Exhaust Duct in the ASTM E-2058 Fire Propagation Apparatus. Fire Mater 27:253–266. doi:10.1002/fam.830

    Article  Google Scholar 

  120. Newman JS, Steciak J (1987) Characterization of Particulates from Diffusion Flames. Combust Flame 67:55–64. doi:10.1016/0010-2180(87)90013-7

    Article  Google Scholar 

  121. Mulholland GW, Choi MY (1998) Measurement of the Mass Specific Extinction Coefficient for Acetylene and Ethene Smoke Using the Large Agglomerate Optics Facility. Proc Combust Inst 27:1515–1522. doi:10.1016/S0082-0784(98)80559-6

    Article  Google Scholar 

  122. Drysdale D (1985) An Introduction to Fire Dynamics. Wiley, New York, NY, pp. 278–400.

    Google Scholar 

  123. Beyler CL (1986) Major Species Production by Diffusion Flames in a Two-Layer Compartment Fire Environment. Fire Saf J 10:47–56. doi:10.1016/0379-7112(86)90031-7

    Article  Google Scholar 

  124. Beyler CL (1991) Analysis of Compartment Fires with Overhead Forced Ventilation. Fire Saf Sci 3:291–300. doi:10.3801/IAFSS.FSS.3-291

    Google Scholar 

  125. Morehart JH, Zukoski EE, Kubota T (1991) Characteristics of Large Diffusion Flames Burning in a Vitiated Atmosphere. Fire Saf Sci 3:575–583. doi:10.3801/IAFSS.FSS.3-575

    Google Scholar 

  126. Tewarson A, Chu F, Jiang FH (1994) Combustion of Halogenated Polymers. Fire Saf Sci 4:563–574. doi:10.3801/IAFSS.FSS.4-563

    Google Scholar 

  127. ASTM D1322-08 (2008) Standard Test Method for Smoke Point of Kerosine and Aviation Turbine Fuel, ASTM International, West Conshohocken, PA. doi:10.1520/D1322-08, www.astm.org.

  128. Haynes BS, Wagner HGg (1981) Soot Formation. Prog Energy Combust Sci 7:229–273. doi:10.1016/0360-1285(81)90001-0

    Google Scholar 

  129. Kent JH, Wagner HGg (1984) Why Do Diffusion Flames Emit Soot. Combust Sci Technol 41:245–269. doi:10.1080/00102208408923834

    Google Scholar 

  130. Olson DB, Pickens JC, Gill RJ (1985) The Effects of Molecular Structure on Soot Formation, II. Diffusion Flames. Combust Flame 62:43–60. doi:10.1016/0010-2180(85)90092-6

    Article  Google Scholar 

  131. Markstein GH (1985) Relationship between Smokepoint and Radiant Emission from Buoyant Turbulent and Laminar Diffusion Flames. Proc Combust Inst 20:1055–1061. doi:10.1016/S0082-0784(85)80595-6

    Article  Google Scholar 

  132. Kent JH (1986) A Quantitative Relationship Between Soot Yield and Smoke Point Measurements. Combust Flame 63:349–358. doi:10.1016/0010-2180(86)90004-0

    Article  Google Scholar 

  133. Kent JH (1987) Turbulent Diffusion Flame Sooting - Relationship to Smoke-Point Tests. Combust Flame 67:223–233. doi:10.1016/0010-2180(87)90098-8

    Article  Google Scholar 

  134. Glassman I (1989) Soot Formation in Combustion Processes. Proc Combust Inst 22:295–311. doi:10.1016/S0082-0784(89)80036-0

    Article  Google Scholar 

  135. Markstein GH (1989) Correlations for Smoke Points and Radiant Emission of Laminar Hydrocarbon Diffusion Flames. Proc Combust Inst 22:363–370. doi:10.1016/S0082-0784(89)80042-6

    Article  Google Scholar 

  136. Gülder ÖL (1989) Influence of Hydrocarbon Fuel Structure Constitution and Flame Temperature on Soot Formation in Laminar Diffusion Flames. Combust Flame 78:179–194. doi:10.1016/0010-2180(89)90124-7

    Article  Google Scholar 

  137. Shivathanu YR, Faeth GM (1990) Soot Volume Fractions in the Overfire Region of Turbulent Diffusion Flames. Combust Flame 81:133–149. doi:10.1016/0010-2180(90)90060-5

    Article  Google Scholar 

  138. Köylü ÜÖ, Sivathanu YR, Faeth GM (1991) Carbon Monoxide and Soot Emissions from Buoyant Turbulent Diffusion Flames. Fire Saf Sci 3:625–634. doi:10.3801/IAFSS.FSS.3-625

    Google Scholar 

  139. Köylü ÜÖ, Faeth GM (1991) Carbon Monoxide and Soot Emissions from Liquid-Fueled Buoyant Turbulent Diffusion Flames. Combust Flame 87:61–76. doi:10.1016/0010-2180(91)90027-9

    Article  Google Scholar 

  140. Orloff L, de Ris JL, Delichatsios MA (1992) Radiation from Buoyant Turbulent Diffusion Flames. Combust Sci Technol 84:177–186. doi:10.1080/00102209208951852

    Article  Google Scholar 

  141. Gülder ÖL (1992) Soot Formation in Laminar Diffusion Flames at Elevated Temperatures. Combust Flame 88:75–82. doi:10.1016/0010-2180(92)90008-D

    Article  Google Scholar 

  142. Köylü ÜÖ, Faeth GM (1992) Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times. Combust Flame 89:140–156. doi:10.1016/0010-2180(92)90024-J

    Article  Google Scholar 

  143. de Ris JL, Cheng X (1994) The Role of Smoke-point in Material Flammability Testing. Fire Saf Sci 4:301–312. doi:10.3801/IAFSS.FSS.4-301

    Google Scholar 

  144. Linteris GT, Rafferty JP (2008) Flame Size, Heat Release, and Smoke Points in Materials Flammability. Fire Saf J 43:442–450. doi:10.1016/j.firesaf.2007.11.006

    Article  Google Scholar 

  145. Tran MK, Dunn-Rankin D, Pham TK (2012) Characterizing Sooting Propensity in Biofuel-Diesel Flames. Combust Flame 159:2181–2191. doi:10.1016/j.combustflame.2012.01.008

    Article  Google Scholar 

  146. Lautenberger CW, de Ris JL, Dembsey NA, Barnett JR, Baum HR (2005) A Simplified Model for Soot Formation and Oxidation in CFD Simulation of Non-Premixed Hydrocarbon Flames. Fire Saf J 40:141–176. doi:10.1016/j.firesaf.2004.10.002

    Article  Google Scholar 

  147. Chatterjee P, de Ris JL, Wang Y, Dorofeev SB (2011) A Model for Soot Radiation in Buoyant Diffusion Flames. Proc Combust Inst 33:2665–2671. doi:10.1016/j.proci.2010.06.112

    Article  Google Scholar 

  148. Madorsky SL (1964) Thermal Degradation of Organic Polymers. Interscience Publishers, John Wiley & Sons, Inc., New York, NY, p. 192.

    Google Scholar 

  149. Tewarson A, Khan MM (1991) The Role of Active and Passive Fire Protection Techniques in Fire Control, Suppression and Extinguishment. Fire Saf Sci 3:1007–1017. doi:10.3801/IAFSS.FSS.3-1007

    Google Scholar 

  150. Rasbash DJ (1976) A Flame Extinction Criterion for Fire Spread. Combust Flame 26:411–412. doi:10.1016/0010-2180(76)90095-X

    Article  Google Scholar 

  151. Rasbash DJ (1986) The Extinction of Fire with Plain Water: A Review. Fire Saf Sci 1:1145–1163. doi:10.3801/IAFSS.FSS.1-1145

    Google Scholar 

  152. Spalding DB (1960) A Standard Formulation of the Steady Convective Mass Transfer Problem. Int J Heat Mass Transf 1:192–207. doi:10.1016/0017-9310(60)90022-3

    Article  Google Scholar 

  153. Heskestad G (1980) The Role of Water in Suppression of Fire: A Review. J Fire Flammabl 11:254–262.

    Google Scholar 

  154. Magee RS, Reitz RD (1975) Extinguishment of Radiation Augmented Plastic Fires by Water Sprays. Proc Combust Inst 15:337–347. doi:10.1016/S0082-0784(75)80309-2

    Article  Google Scholar 

  155. Thomson HE, Drysdale DD (1989) Critical Mass Flowrate at the Firepoint of Plastics. Fire Saf Sci 2:67–76. doi:10.3801/IAFSS.FSS.2-67

    Google Scholar 

  156. Beyler C (1992) A Unified Model of Fire Suppression. J Fire Prot Eng 4:5–16. doi:10.1177/104239159200400102

    Article  Google Scholar 

  157. Kodama H, Miyasaka K, Fernández-Pello AC (1987) Extinction and Stabilization of a Diffusion Flame on a Flat Combustible Surface with Emphasis on Thermal Controlling Mechanisms. Combust Sci Technol 54:37–50. doi:10.1080/00102208708947042

    Article  Google Scholar 

  158. Kulkarni AK, Sibulkin M (1982) Burning Rate Measurements on Vertical Fuel Surfaces. Combust Flame 44:185–186. doi:10.1016/0010-2180(82)90072-4

    Article  Google Scholar 

  159. Xin Y, Khan MM (2007) Flammability of Combustible Materials in Reduced Oxygen Environment. Fire Saf J 42:536–547. doi:10.1016/j.firesaf.2007.04.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Nomenclature, Greek Letters, Subscripts and Superscripts

A

total exposed surface area of the material (m2)

a j

mass coefficient for the product yield (g/g)

b j

molar coefficient for the product yield (g/mol)

B cr

critical mass transfer number

CHF

critical heat flux (kW/m2)

Ċ O

mass consumption rate of oxygen (g/m2/s)

Ċ stoich,O

stoichiometric mass consumption rate of oxygen (g/m2/s)

c O

mass of oxygen consumed per unit mass of fuel (g/g)

c P

specific heat (kJ/g/K)

Δc P

difference between the heat capacities of the extinguishing agent and the fire products (kJ/g/K)

D

optical density (1/m)

E i

total amount of heat generated in the combustion of a material (kJ)

f j

volume fraction of a product

fp

fire property

FPI

Fire Propagation Index

FSP c

convective flame spread parameter

Ġ j

mass generation rate of product j (g/m2/s)

Ġ stoich,j

stoichiometric mass generation rate of product j (g/m2/s)

ΔH i

heat of combustion per unit mass of fuel vaporized (kJ/g)

ΔH D

heat of dissociation (kJ/g)

ΔH g

heat of gasification at ambient temperature (kJ/g)

ΔH g,con

flame convective energy transfer to the fuel per unit mass of fuel gasified (kJ/g)

ΔH m

heat of melting at the melting temperature (kJ/g)

ΔH T

net heat of complete combustion per unit of fuel vaporized (kJ/g)

ΔH v

heat of vaporization at the vaporization temperature (kJ/g)

ΔH *CO

net heat of complete combustion per unit mass of CO generated (kJ/g)

\( \varDelta {H}_{{\mathrm{CO}}_2}^{*} \)

net heat of complete combustion per unit mass of CO2 generated (kJ/g)

ΔH *O

net heat of complete combustion per unit mass of oxygen consumed (kJ/g)

HRP

heat release parameter

h i

mass coefficient for the heat of combustion (kJ/g)

I/I 0

fraction of light transmitted through smoke

j

fire product

k

thermal conductivity (kW/m/K)

L sp

smoke point (m)

l

optical path length (m)

mass loss rate (g/m2/s)

M

molecular weight (g/mol)

m i

molar coefficient for the heat of combustion (kJ/mol)

air

mass flow rate of air (g/s)

\( {\dot{q}}_e^{{\prime\prime} } \)

external heat flux (kW/m2)

\( {\dot{q}}_f^{{\prime\prime} } \)

flame heat flux (kW/m2)

\( {\dot{Q}}_i^{{\prime\prime} } \)

heat release rate per unit sample surface area (kW/m2)

\( {\dot{Q}}_i^{\prime } \)

heat release rate per unit sample width (kW/m)

S

stoichiometric mass air-to-fuel ratio (g/g)

t

time (s)

t f

time at which there is no more vapor formation (s)

t 0

time at which the sample is exposed to heat (s)

T

temperature (K)

ΔT ig

ignition temperature above ambient (K)

TRP

thermal response parameter (kW⋅s1/2/m2)

u

fire propagation rate (mm/s or m/s)

\( \dot{V} \)

total volumetric flow rate of fire product-air mixture (m3/s)

total mass flow rate of the fire product-air mixture (g/s)

W f

total mass of the material lost in the flaming and nonflaming process (g)

W j

total mass of product j generated in the flaming and nonflaming process (g)

X f

flame height (m or mm)

X p

pyrolysis front (m or mm)

X t

total length available for fire propagation (m or mm)

y j

yield of product j

Y j,ex

mass fraction of extinguishing agent

Y O

mass fraction of oxygen

α

correlation coefficient (nonflaming fire)

β

correlation coefficient (transition region)

ϕ

kinetic parameter for flame extinction

ξ

correlation coefficient (transition region)

Φ

equivalence ratio

χ ch

combustion efficiency

χ con

convective component of the combustion efficiency

χ rad

radiative component of the combustion efficiency

η j

generation efficiency

κ

ratio between the kinetic parameters for the flame temperature and adiabatic flame temperature

λ

wavelength of light (μm)

σ

Stefan-Boltzmann constant (56.7 × 10−12 kW/m2/K4)

\( \overline{\tau} \)

average specific extinction area (m2/g)

ρ

density (g/m3)

ν j

stoichiometric coefficient of product j

ν O

stoichiometric coefficient of oxygen

Ψ j

stoichiometric yield for the maximum conversion of fuel to product j

ΨO

stoichiometric mass oxygen-to-fuel ratio (g/g)

ζ

ratio of fire properties for ventilation-controlled to well-ventilated combustion

ζ oxid

oxidation zone product generation efficiency ratio

ζ red

reduction zone product generation efficiency ratio

a

air or ambient

ad

adiabatic

asy

asymptotic

ch

chemical

con

convective

cr

critical

e

external

ex

extinguishment

f

flame or fuel

fc

flame convective

fr

flame radiative

g

gas

g,con

flame convective energy for fuel gasification

i

chemical, convective, radiative

ig

ignition

j

fire product

n

net

0

initial

oxid

oxidation zone of a flame

rad

radiation

red

reduction zone of a flame

stoich

stoichiometric for the maximum possible conversion of fuel monomer to a product

rr

surface re-radiation

s

surface, smoke

vc

ventilation-controlled fire

wv

well-ventilated fire

infinite amount of air

.

per unit time (s−1)

per unit width (m−1)

ʺ

per unit area (m−2)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Society of Fire Protection Engineers

About this chapter

Cite this chapter

Khan, M.M., Tewarson, A., Chaos, M. (2016). Combustion Characteristics of Materials and Generation of Fire Products. In: Hurley, M.J., et al. SFPE Handbook of Fire Protection Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2565-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2565-0_36

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2564-3

  • Online ISBN: 978-1-4939-2565-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics