Skip to main content

Recombinase Technology for Precise Genome Engineering

  • Chapter

Abstract

Here we review multiple uses of site-specific recombination and their applications in plant genomic engineering. We also outline various strategies for the combined use of multiple site-specific recombinase systems to precisely target transgenes into a predetermined locus and remove unwanted selectable marker genes.

For three decades, genetic engineering via introduction of DNA via Agrobacterium or biolistic technologies has been used to make plants with new traits. These methods can be employed to introduce new genes and/or alter the expression of native genes. These modifications of plant genomes have allowed scientists to establish relationships between genes and their effects on plant development, metabolism, and composition. The use of a variety of promoters has been established to drive gene expression in a constitutive, developmental, or tissue-specific fashion. Inducible promoters (e.g., heat shock, wounding) and promoter systems (glucocorticoid and estrogen based) are now available that allow the use of external signals to control gene expression. As we detail below, such control, when combined with site-specific recombination, allows one to remove unwanted selectable marker genes, turn genetic switches on or off, resolve complex insertions, and perform targeted integration.

With the release of genetically engineered (GE) versions of major crops such as cotton, soybean, canola, and maize with commercially useful traits, control of genetic modification for commercial production (Bioscience 58:391–401, 2008) has become an issue of global importance. The enhancements in crop quality through GE technology have had significant and positive impacts on farm income due to a combination of increased productivity and reduced inputs. In 2007, the direct global farm income benefit from biotech crops was $10.1 billion. Since 1996, farm incomes have increased by $44.1 billion (GM Crops Food 3:265–272, 2012) and thus the economic incentives for GE crops continue to grow. The isolation of stable transgenic lines with predictable and stable levels of transgene expression is highly desired but using standard approaches (e.g., Agrobacterium or biolistic technologies) is labor intensive and costly. It is often necessary to screen hundreds of independently transformed plants to identify those with suitable transgene structure and expression. Therefore, research endeavors are focused on goals to eliminate random DNA integration and/or reduce the frequency of multi-copy transgene insertions, and to reduce or eliminate events that exhibit unreliable transgene expression (In Vitro Cell Dev Biol Plant 41:213–219, 2005). Site-specific recombination is a promising tool that can be used to address these challenges for crop genome engineering. In this review, we examine previous studies and discuss recent advances in the applications of site-specific recombinase technology.

Author Contributions

Conceived the paper: JT. Wrote the paper: AB and JT. Edited the paper: AB and JT.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abi-Ghanem J, Chusainow J, Karimova M, Spiegel C, Hofmann-Sieber H, Hauber J, Buchholz F, Pisabarro MT (2013) Engineering of a target site-specific recombinase by a combined evolution- and structure-guided approach. Nucleic Acids Res 41:2394–2403

    PubMed Central  CAS  PubMed  Google Scholar 

  • Akbudak MA, More AB, Nandy S, Srivastava V (2010) Dosage-dependent gene expression from direct repeat locus in rice developed by site-specific gene integration. Mol Biotechnol 45:15–23

    CAS  PubMed  Google Scholar 

  • Akbudak MA, Nicholson S, Srivastava V (2013) Suppression of Arabidopsis genes by terminator-less transgene constructs. Plant Biotechnol Rep 7:415–424

    Google Scholar 

  • Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    CAS  PubMed  Google Scholar 

  • Anderson RP, Voziyanova E, Voziyanov Y (2012) Flp and Cre expressed from Flp-2A-Cre and Flp-IRES-Cre transcription units mediate the highest level of dual recombinase-mediated cassette exchange. Nucleic Acids Res 40:e62

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andreas S, Schwenk F, Küter-Luks B, Faust N, Kühn R (2002) Enhanced efficiency through nuclear localization signal fusion on phage ϕC31-integrase: activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Res 30:2299–2306

    PubMed Central  CAS  PubMed  Google Scholar 

  • Araki K, Araki M, Miyazaki J, Vassalli P (1995) Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc Natl Acad Sci U S A 92:160–164

    PubMed Central  CAS  PubMed  Google Scholar 

  • Araki K, Okada Y, Araki M, Yamamura K (2010) Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells. BMC Biotechnol 10:29

    PubMed Central  PubMed  Google Scholar 

  • Ballester A, Cervera M, Pena L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45

    CAS  PubMed  Google Scholar 

  • Baubonis W, Sauer B (1993) Genomic targeting with purified Cre recombinase. Nucleic Acids Res 21:2025–2029

    PubMed Central  CAS  PubMed  Google Scholar 

  • Belteki G, Gertsenstein M, Ow DW, Nagy A (2003) Site-specific cassette exchange and germline transmission with mouse ES cells expressing [phgr]C31 integrase. Nat Biotechnol 21:321–324

    CAS  PubMed  Google Scholar 

  • Blechl A, Lin J, Shao M, Thilmony R, Thomson J (2012) The Bxb1 recombinase mediates site-specific deletion in transgenic wheat. Plant Mol Biol Report 30:1357–1366

    CAS  Google Scholar 

  • Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D (2013) Amplifying genetic logic gates. Science 340:599–603

    CAS  PubMed  Google Scholar 

  • Bouhassira E, Westerman K, Leboulch P (1997) Transcriptional behavior of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood 90:3332–3344

    CAS  PubMed  Google Scholar 

  • Brocard J, Feil R, Chambon P, Metzger D (1998) A chimeric Cre recombinase inducible by synthetic, but not by natural ligands of the glucocorticoid receptor. Nucleic Acids Res 26:4086–4090

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2012) The income and production effects of biotech crops globally 1996-2010. GM Crops Food 3:265–272

    PubMed  Google Scholar 

  • Buchholz F, Ringrose L, Angrand P-O, Rossi F, Stewart AF (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24:4256–4262

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burdon TG, Wall RJ (1992) Fate of microinjected genes in preimplantation mouse embryos. Mol Reprod Dev 33:436–442

    CAS  PubMed  Google Scholar 

  • Burgess SM, Kleckner N (1999) Collisions between yeast chromosomal loci in vivo are governed by three layers of organization. Genes Dev 13:1871–1883

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cao M-X, Huang J-Q, Yao Q-H, Liu S-J, Wang C-L, Wei Z-M (2006) Site-specific DNA excision in transgenic rice with a cell-permeable Cre recombinase. Mol Biotechnol 32:55–63

    CAS  PubMed  Google Scholar 

  • Carlson SR, Rudgers GW, Zieler H, Mach JM, Luo S, Grunden E, Krol C, Copenhaver GP, Preuss D (2007) Meiotic transmission of an in vitro assembled autonomous maize minichromosome. PLoS Genet 3:e179

    PubMed Central  Google Scholar 

  • Chawla R, Ariza-Nieto M, Wilson A, Moore S, Srivastava V (2006) Transgene expression produced by biolistic-mediated, site-specific gene integration is consistently inherited by the subsequent generations. Plant Biotechnol J 4:209–218

    CAS  PubMed  Google Scholar 

  • Chen K-S, Manian P, Koeuth T, Potocki L, Zhao Q, Chinault AC, Lee CC, Lupski JR (1997) Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet 17:154–163

    CAS  PubMed  Google Scholar 

  • Choi S, Begum D, Koshinsky H, Ow D, Wing R (2000) A new approach for the identification and cloning of genes: the pBACwich system using Cre/lox site-specific recombination. Nucleic Acids Res 28:E19

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chong-Pérez B, Kosky RG, Reyes M, Rojas L, Ocaña B, Tejeda M, Pérez B, Angenon G (2012) Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system. J Biotechnol 159:265–273

    PubMed  Google Scholar 

  • Christ N, Dröge P (2002) Genetic manipulation of mouse embryonic stem cells by mutant λ integrase. Genesis 32:203–208

    CAS  PubMed  Google Scholar 

  • Cuellar W, Gaudin A, Solorzano D, Casas A, Nopo L, Chudalayandi P, Medrano G, Kreuze J, Ghislain M (2006) Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol Biol 62:71–82

    CAS  PubMed  Google Scholar 

  • Dafhnis-Calas F, Xu Z, Haines S, Malla SK, Smith MCM, Brown WRA (2005) Iterative in vivo assembly of large and complex transgenes by combining the activities of φC31 integrase and Cre recombinase. Nucleic Acids Res 33:e189

    PubMed Central  PubMed  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci U S A 88:10558–10562

    PubMed Central  CAS  PubMed  Google Scholar 

  • Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8:1323–S1322

    CAS  PubMed  Google Scholar 

  • Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Paepe A, De Buck S, Nolf J, Van Lerberge E, Depicker A (2013) Site-specific T–DNA integration in Arabidopsis thaliana mediated by the combined action of CRE recombinase and ϕC31 integrase. Plant J 75:172–184

    PubMed  Google Scholar 

  • de Wit T, Drabek D, Grosveld F (1998) Microinjection of Cre recombinase RNA induces site-specific recombination of a transgene in mouse oocytes. Nucleic Acids Res 26:676–678

    PubMed Central  PubMed  Google Scholar 

  • Diaz V, Servert P, Prieto I, Gonzalez MA, Martinez-A C, Alonso JC, Bernad A (2001) New insights into host factor requirements for prokaryotic beta-recombinase-mediated reactions in mammalian cells. J Biol Chem 276:16257–16264

    CAS  PubMed  Google Scholar 

  • Djukanovic V, Lenderts B, Bidney D, Lyznik LA (2008) A Cre::FLP fusion protein recombines FRT or loxP sites in transgenic maize plants†. Plant Biotechnol J 6:770–781

    CAS  PubMed  Google Scholar 

  • Enyeart PJ, Chirieleison SM, Dao MN, Perutka J, Quandt EM, Yao J, Whitt JT, Keatinge-Clay AT, Lambowitz AM, Ellington AD (2013) Generalized bacterial genome editing using mobile group II introns and Cre-lox. Mol Syst Biol 9

    Google Scholar 

  • Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feng Y-Q, Seibler J, Alami R, Eisen A, Westerman KA, Leboulch P, Fiering S, Bouhassira EE (1999) Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol 292:779–785

    CAS  PubMed  Google Scholar 

  • Fiering S, Kim CG, Epner EM, Groudine M (1993) An “in-out” strategy using gene targeting and FLP recombinase for the functional dissection of complex DNA regulatory elements: analysis of the beta-globin locus control region. Proc Natl Acad Sci U S A 90:8469–8473

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fladung M, Becker D (2011) Targeted integration and removal of transgenes in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) using site-specific recombination systems. Plant Biol 13:223–223

    Google Scholar 

  • Floss T, Schnutgen F (2008) Conditional gene trapping using the FLEx system. In: Davis G, Kayser K (eds) Chromosomal mutagenesis. Humana, Totowa, pp 127–138

    Google Scholar 

  • Gaeta RT, Masonbrink RE, Krishnaswamy L, Zhao C, Birchler JA (2012) Synthetic chromosome platforms in plants. Annu Rev Plant Biol 63:307–330

    CAS  PubMed  Google Scholar 

  • Gaj T, Mercer AC, Sirk SJ, Smith HL, Barbas CF (2013) A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res 41:3937–3946

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gerlitz M, Hrabak O, Schwab H (1990) Partitioning of broad-host-range plasmid RP4 is a complex system involving site-specific recombination. J Bacteriol 172:6194–6203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghosh P, Kim AI, Hatfull GF (2003) The orientation of mycobacteriophage Bxb1 integration is solely dependent on the central dinucleotide of attP and attB. Mol Cell 12:1101–1111

    CAS  PubMed  Google Scholar 

  • Ghosh P, Wasil LR, Hatfull GF (2006) Control of phage Bxb1 excision by a novel recombination directionality factor. PLoS Biol 4:e186

    PubMed Central  PubMed  Google Scholar 

  • Gidoni D, Srivastava V, Carmi N (2008) Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cell Dev Biol Plant 44:457–467

    CAS  Google Scholar 

  • Gilbertson L, Dioh W, Addae P, Ekena J, Keithly G, Neuman M, Peschke V, Petersen M, Samuelson C, Subbarao S, Wei L, Zhang W, Barton K (2003) Cre/lox mediated marker gene excision in transgenic crop plants. In: Vasil I (ed) Plant biotechnology 2002 and beyond. Springer, Netherlands, pp 225–228

    Google Scholar 

  • Gils M, Marillonnet S, Werner S, Grützner R, Giritch A, Engler C, Schachschneider R, Klimyuk V, Gleba Y (2008) A novel hybrid seed system for plants. Plant Biotechnol J 6:226–235

    CAS  PubMed  Google Scholar 

  • Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the drosophila genome. Cell 59:499–509

    CAS  PubMed  Google Scholar 

  • Gottfried P, Lotan O, Kolot M, Maslenin L, Bendov R, Gorovits R, Yesodi V, Yagil E, Rosner A (2005) Site-specific recombination in Arabidopsis plants promoted by the Integrase protein of coliphage HK022. Plant Mol Biol 57:435–444

    CAS  PubMed  Google Scholar 

  • Grindley NDF, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605

    CAS  PubMed  Google Scholar 

  • Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 97:5995–6000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hare PD, Chua N-H (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20:575–580

    CAS  PubMed  Google Scholar 

  • Henikoff S (1998) Conspiracy of silence among repeated transgenes. Bioessays 20:532–535

    CAS  PubMed  Google Scholar 

  • Herault Y, Rassoulzadegan M, Cuzin F, Duboule D (1998) Engineering chromosomes in mice through targeted meiotic recombination (TAMERE). Nat Genet 20:381–384

    CAS  PubMed  Google Scholar 

  • Hoa TTC, Bong BB, Huq E, Hodges TK (2002) Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet 104:518–525

    CAS  PubMed  Google Scholar 

  • Hobbs SA, Kpodar P, DeLong CO (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15:851–864

    CAS  PubMed  Google Scholar 

  • Hoess RH, Abremski K (1984) Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. Proc Natl Acad Sci U S A 81:1026–1029

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoess R, Wierzbicki A, Abremski K (1986) The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res 14:2287–2300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoff T, Schnorr K, Mundy J (2001) A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol Biol 45:41–49

    CAS  PubMed  Google Scholar 

  • Hohn B, Levy AA, Puchta H (2001) Elimination of selection markers from transgenic plants. Curr Opin Biotechnol 12:139–143

    CAS  PubMed  Google Scholar 

  • Horn C, Handler AM (2005) Site-specific genomic targeting in Drosophila. Proc Natl Acad Sci U S A 102:12483–12488

    PubMed Central  CAS  PubMed  Google Scholar 

  • Houben A, Dawe RK, Jiang J, Schubert I (2008) Engineered plant minichromosomes: a bottom-up success? Plant Cell Online 20:8–10

    CAS  Google Scholar 

  • Hu Q, Kononowicz-Hodges H, Nelson-Vasilchik K, Viola D, Zeng P, Liu H, Kausch AP, Chandlee JM, Hodges TK, Luo H (2008) FLP recombinase-mediated site-specific recombination in rice. Plant Biotechnol J 6:176–188

    CAS  PubMed  Google Scholar 

  • Huang L-C, Wood EA, MCox M (1991) A bacterial model system for chromosomal targeting. Nucleic Acids Res 19:443–448

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang J, Zhou W, Dong W, Watson AM, Hong Y (2009) Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc Natl Acad Sci U S A 106:8284–8289

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hunter NL, Awatramani RB, Farley FW, Dymecki SM (2005) Ligand-activated Flpe for temporally regulated gene modifications. Genesis 41:99–109

    CAS  PubMed  Google Scholar 

  • Iglesias VA, Moscone EA, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke AJ (1997) Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell Online 9:1251–1264

    CAS  Google Scholar 

  • Iyer L, Kumpatla S, Chandrasekharan M, Hall T (2000) Transgene silencing in monocots. Plant Mol Biol 43:323–346

    CAS  PubMed  Google Scholar 

  • Jia H, Pang Y, Chen X, Fang R (2006) Removal of the selectable marker gene from transgenic tobacco plants by expression of Cre recombinase from a tobacco mosaic virus vector through agroinfection. Transgenic Res 15:375–384

    CAS  PubMed  Google Scholar 

  • Kapusi E, Kempe K, Rubtsova M, Kumlehn J, Gils M (2012) phiC31 integrase-mediated site-specific recombination in barley. PLoS One 7:e45353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kellendonk C, Tronche F, Monaghan A-P, Angrand P-O, Stewart F, Schütz G (1996) Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res 24:1404–1411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kempe K, Rubtsova M, Berger C, Kumlehn J, Schollmeier C, Gils M (2010) Transgene excision from wheat chromosomes by phage phiC31 integrase. Plant Mol Biol 72:673–687

    CAS  PubMed  Google Scholar 

  • Keravala A, Groth A, Jarrahian S, Thyagarajan B, Hoyt J, Kirby P, Calos M (2006) A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics 276:135–146

    CAS  PubMed  Google Scholar 

  • Keravala A, Lee S, Thyagarajan B, Olivares EC, Gabrovsky VE, Woodard LE, Calos MP (2008) Mutational derivatives of PhiC31 integrase with increased efficiency and specificity. Mol Ther 17:112–120

    PubMed Central  PubMed  Google Scholar 

  • Kerbach S, Lorz H, Becker D (2005) Site-specific recombination in Zea mays. Theor Appl Genet 111:1608–1616

    CAS  PubMed  Google Scholar 

  • Khaleel T, Younger E, McEwan AR, Varghese AS, Smith MCM (2011) A phage protein that binds φC31 integrase to switch its directionality. Mol Microbiol 80:1450–1463

    CAS  PubMed  Google Scholar 

  • Kholodii G (2001) The shuffling function of resolvases. Gene 269:121–130

    CAS  PubMed  Google Scholar 

  • Kim AI, Ghosh P, Aaron MA, Bibb LA, Jain S, Hatfull GF (2003) Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol 50:463–473

    CAS  PubMed  Google Scholar 

  • Kittiwongwattana C, Lutz K, Clark M, Maliga P (2007) Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol Biol 64:137–143

    CAS  PubMed  Google Scholar 

  • Kohli A, Twyman R, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    CAS  PubMed  Google Scholar 

  • Kolb AF, Siddell SG (1997) Genomic targeting of a bicistronic DNA fragment by Cre-mediated site-specific recombination. Gene 203:209–216

    CAS  PubMed  Google Scholar 

  • Kolot M, Silberstein N, Yagil E (1999) Site-specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022—site-specific recombination in mammalian cells promoted by a phage integrase. Mol Biol Rep 26:207–213

    CAS  PubMed  Google Scholar 

  • Kondrak M, Meer I, Banfalvi Z (2006) Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border agrobacterium transformation vector. Transgenic Res 15:729–737

    CAS  PubMed  Google Scholar 

  • Kopertekh L, Schiemann J (2005) Agroinfiltration as a tool for transient expression of cre recombinase in vivo. Transgenic Res 14:793–798

    CAS  PubMed  Google Scholar 

  • Kopertekh L, Juttner G, Schiemann J (2004) Site-specific recombination induced in transgenic plants by PVX virus vector expressing bacteriophage P1 recombinase. Plant Sci 166:485–492

    CAS  Google Scholar 

  • Kopertekh L, Schulze K, Frolov A, Strack D, Broer I, Schiemann J (2010) Cre-mediated seed-specific transgene excision in tobacco. Plant Mol Biol 72:597–605

    CAS  PubMed  Google Scholar 

  • Korenberg JR, Chen XN, Schipper R, Sun Z, Gonsky R, Gerwehr S, Carpenter N, Daumer C, Dignan P, Disteche C (1994) Down syndrome phenotypes: the consequences of chromosomal imbalance. Proc Natl Acad Sci U S A 91:4997–5001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koshinsky HA, Lee E, Ow DW (2000) Cre-lox site-specific recombination between Arabidopsis and tobacco chromosomes. Plant J 23:715–722

    CAS  PubMed  Google Scholar 

  • Lauth M, Spreafico F, Dethleffsen K, Meyer M (2002) Stable and efficient cassette exchange under non-selectable conditions by combined use of two site-specific recombinases. Nucleic Acids Res 30:e115

    PubMed Central  PubMed  Google Scholar 

  • Lee G, Saito I (1998) Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216:55–65

    CAS  PubMed  Google Scholar 

  • Lewandoski M, Martin GR (1997) Cre-mediated chromosome loss in mice. Nat Genet 17:223–225

    CAS  PubMed  Google Scholar 

  • Li Z, Xing A, Moon B, Burgoyne S, Guida A, Liang H, Lee C, Caster C, Barton J, Klein T, Falco S (2007) A Cre/loxP-mediated self-activating gene excision system to produce marker gene free transgenic soybean plants. Plant Mol Biol 65:329–341

    CAS  PubMed  Google Scholar 

  • Li Z, Xing A, Moon BP, McCardell RP, Mills K, Falco SC (2009) Site-specific integration of transgenes in soybean via recombinase-mediated DNA cassette exchange. Plant Physiol 151:1087–1095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li Z, Moon BP, Xing A, Liu Z-B, McCardell RP, Damude HG, Falco SC (2010) Stacking multiple transgenes at a selected genomic site via repeated recombinase-mediated DNA cassette exchanges. Plant Physiol 154:622–631

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu H-K, Yang C, Wei Z-M (2005) Heat shock-regulated site-specific excision of extraneous DNA in transgenic plants. Plant Sci 168:997–1003

    CAS  Google Scholar 

  • Logie C, Stewart AF (1995) Ligand-regulated site-specific recombination. Proc Natl Acad Sci U S A 92:5940–5944

    PubMed Central  CAS  PubMed  Google Scholar 

  • Louwerse JD, van Lier MCM, van der Steen DM, de Vlaam CMT, Hooykaas PJJ, Vergunst AC (2007) Stable recombinase-mediated cassette exchange in arabidopsis using Agrobacterium tumefaciens. Plant Physiol 145:1282–1293

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luff B, Pawlowski L, Bender J (1999) An inverted repeat triggers cytosine methylation of identical sequences in arabidopsis. Mol Cell 3:505–511

    CAS  PubMed  Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–374

    CAS  PubMed  Google Scholar 

  • Lutz KA, Corneille S, Azhagiri AK, Svab Z, Maliga P (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J 37:906–913

    CAS  PubMed  Google Scholar 

  • Lyznik LA, Rao KV, Hodges TK (1996) FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acids Res 24:3784–3789

    PubMed Central  CAS  PubMed  Google Scholar 

  • Malchin N, Molotsky T, Yagil E, Kotlyar AB, Kolot M (2008) Molecular analysis of recombinase-mediated cassette exchange reactions catalyzed by integrase of coliphage HK022. Res Microbiol 159:663–670

    CAS  PubMed  Google Scholar 

  • Maqbool S, Christou P (1999) Multiple traits of agronomic importance in transgenic indica rice plants: analysis of transgene integration patterns, expression levels and stability. Mol Breed 5:471–480

    Google Scholar 

  • Marenkova TV, Loginova DB, Deineko EV (2012) Mosaic patterns of transgene expression in plants. Russ J Genet 48:249–260

    CAS  Google Scholar 

  • Martinez de Alba AE, Elvira-Matelot E, Vaucheret H (2013) Gene silencing in plants: a diversity of pathways. Biochim Biophys Acta 1829:1300–1308

    CAS  PubMed  Google Scholar 

  • Matsunaga E, Sugita K, Ebinuma H (2002) Asexual production of selectable marker-free transgenic woody plants, vegetatively propagated species. Mol Breed 10:95–106

    CAS  Google Scholar 

  • McClintock B (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23:315–376

    PubMed Central  CAS  PubMed  Google Scholar 

  • Medberry SL, Dale E, Qin M, Ow DW (1995) Intra-chromosomal rearrangements generated by Cre-lox site-specific recombination. Nucleic Acids Res 23:485–490

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mercer AC, Gaj T, Fuller RP, Barbas CF (2012) Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res 40:11163–11172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92:6991–6995

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer P (2000) Transcriptional transgene silencing and chromatin components. Plant Mol Biol 43:221–234

    CAS  PubMed  Google Scholar 

  • Mlynárová L, Conner AJ, Nap J-P (2006) Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol J 4:445–452

    PubMed  Google Scholar 

  • Monetti C, Nishino K, Biechele S, Zhang P, Baba T, Woltjen K, Nagy A (2011) PhiC31 integrase facilitates genetic approaches combining multiple recombinases. Methods 53:380–385

    CAS  PubMed  Google Scholar 

  • Moon H, Abercrombie L, Eda S, Blanvillain R, Thomson J, Ow D, Stewart CN Jr (2011) Transgene excision in pollen using a codon optimized serine resolvase CinH-RS2 site-specific recombination system. Plant Mol Biol 75:621–631

    CAS  PubMed  Google Scholar 

  • Mouw KW, Rowland S-J, Gajjar MM, Boocock MR, Stark WM, Rice PA (2008) Architecture of a serine recombinase-DNA regulatory complex. Mol Cell 30:145–155

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nandy S, Srivastava V (2011) Site-specific gene integration in rice genome mediated by the FLP–FRT recombination system. Plant Biotechnol J 9:713–721

    CAS  PubMed  Google Scholar 

  • Nanto K, Ebinuma H (2008) Marker-free site-specific integration plants. Transgenic Res 17:337–344

    CAS  PubMed  Google Scholar 

  • Nanto K, Yamada-Watanabe K, Ebinuma H (2005) Agrobacterium-mediated RMCE approach for gene replacement. Plant Biotechnol J 3:203–214

    CAS  PubMed  Google Scholar 

  • Nanto K, Sato K, Katayama Y, Ebinuma H (2009) Expression of a transgene exchanged by the recombinase-mediated cassette exchange (RMCE) method in plants. Plant Cell Rep 28:777–785

    CAS  PubMed  Google Scholar 

  • Obayashi H, Kawabe Y, Makitsubo H, Watanabe R, Kameyama Y, Huang S, Takenouchi Y, Ito A, Kamihira M (2012) Accumulative gene integration into a pre-determined site using Cre/loxP. J Biosci Bioeng 113:381–388

    CAS  PubMed  Google Scholar 

  • O’Gorman S, Fox D, Wahl G (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251:1351–1355

    PubMed  Google Scholar 

  • Ohtsuka M, Ogiwara S, Miura H, Mizutani A, Warita T, Sato M, Imai K, Hozumi K, Sato T, Tanaka M, Kimura M, Inoko H (2010) Pronuclear injection-based mouse targeted transgenesis for reproducible and highly efficient transgene expression. Nucleic Acids Res 38:e198

    PubMed Central  PubMed  Google Scholar 

  • Olivares EC, Hollis RP, Calos MP (2001) Phage R4 integrase mediates site-specific integration in human cells. Gene 278:167–176

    CAS  PubMed  Google Scholar 

  • Olson L, Tien J, South S, Reeves R (2005) Long-range chromosomal engineering is more efficient in vitro than in vitro. Transgenic Res 14:325–332

    CAS  PubMed  Google Scholar 

  • Onouchi H, Yokoi K, Machida C, Matsuzaki H, Oshima Y, Matsuoka K, Nakamura K, Machida Y (1991) Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucleic Acids Res 19:6373–6378

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ou H-L, Huang Y, Qu L-J, Xu M, Yan J-B, Ren Z-R, Huang S-Z, Zeng Y-T (2009) A ϕC31 integrase-mediated integration hotspot in favor of transgene expression exists in the bovine genome. FEBS J 276:155–163

    CAS  PubMed  Google Scholar 

  • Ow DW (2005) 2004 SIVB congress symposium proceeding: transgene management via multiple site-specific recombination systems. In Vitro Cell Dev Biol Plant 41:213–219

    CAS  Google Scholar 

  • Peitz M, Pfannkuche K, Rajewsky K, Edenhofer F (2002) Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc Natl Acad Sci U S A 99:4489–4494

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prorocic MM, Wenlong D, Olorunniji FJ, Akopian A, Schloetel J-G, Hannigan A, McPherson AL, Stark WM (2011) Zinc-finger recombinase activities in vitro. Nucleic Acids Res 39:9316–9328

    PubMed Central  CAS  PubMed  Google Scholar 

  • Proudfoot C, McPherson AL, Kolb AF, Stark WM (2011) Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One 6:e19537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qin M, Bayley C, Stockton T, Ow DW (1994) Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci U S A 91:1706–1710

    PubMed Central  CAS  PubMed  Google Scholar 

  • Radhakrishnan P, Srivastava V (2005) Utility of the FLP-FRT recombination system for genetic manipulation of rice. Plant Cell Rep 23:721–726

    CAS  PubMed  Google Scholar 

  • Ramirez-Solis R, Liu P, Bradley A (1995) Chromosome engineering in mice. Nature 378:720–724

    CAS  PubMed  Google Scholar 

  • Raymond CS, Soriano P (2007) High-efficiency FLP and φC31 site-specific recombination in mammalian cells. PLoS One 2:e162

    PubMed Central  PubMed  Google Scholar 

  • Rubtsova M, Kempe K, Gils A, Ismagul A, Weyen J, Gils M (2008) Expression of active Streptomyces phage phiC31 integrase in transgenic wheat plants. Plant Cell Rep 27:1821–1831

    CAS  PubMed  Google Scholar 

  • Russell S, Hoopes J, Odell J (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 234:49–59

    CAS  PubMed  Google Scholar 

  • Russell J, Chang D, Tretiakova A, Padidam M (2006) Phage Bxb1 integrase mediates highly efficient. Biotechniques 40:460–464

    CAS  PubMed  Google Scholar 

  • Sang Y, Millwood RJ, Neal Stewart Jr C (2013) Gene use restriction technologies for transgenic plant bioconfinement. Plant Biotechnol J 11:649–658

    CAS  PubMed  Google Scholar 

  • Sarkis GJ, Murley LL, Leschziner AE, Boocock MR, Stark WM, Grindley NDF (2001) A model for the gamma delta resolvase synaptic complex. Mol Cell 8:623–631

    CAS  PubMed  Google Scholar 

  • Sauer B (1996) Multiplex crellox recombination permits selective site-specific DNA targeting to both a natural and an engineered site in the yeast genome. Nucleic Acids Res 24:4608–4613

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sauer B, Henderson N (1990) Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol 2:441–449

    CAS  PubMed  Google Scholar 

  • Schlake T, Bode J (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33:12746–12751

    CAS  PubMed  Google Scholar 

  • Schwikardi M, Dröge P (2000) Site-specific recombination in mammalian cells catalyzed by γδ resolvase mutants: implications for the topology of episomal DNA. FEBS Lett 471:147–150

    CAS  PubMed  Google Scholar 

  • Sclimenti CR, Thyagarajan B, Calos MP (2001) Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res 29:5044–5051

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seibler J, Bode J (1997) Double-reciprocal crossover mediated by FLP-recombinase: a concept and an assay. Biochemistry 36:1740–1747

    CAS  PubMed  Google Scholar 

  • Semprini S, Troup TJ, Kotelevtseva N, King K, Davis JRE, Mullins LJ, Chapman KE, Dunbar DR, Mullins JJ (2007) Cryptic loxP sites in mammalian genomes: genome-wide distribution and relevance for the efficiency of BAC/PAC recombineering techniques. Nucleic Acids Res 35:1402–1410

    PubMed Central  CAS  PubMed  Google Scholar 

  • Senecoff JF, Rossmeissl PJ, Cox MM (1988) DNA recognition by the FLP recombinase of the yeast 2 μ plasmid: a mutational analysis of the FLP binding site. J Mol Biol 201:405–421

    CAS  PubMed  Google Scholar 

  • Shao M, Kumar S, Thomson JG (2013) Precise excision of plastid DNA by the large serine recombinase Bxb1. Plant Biotechnol J

    Google Scholar 

  • Siuti P, Yazbek J, Lu TK (2013) Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol 31:448–452

    CAS  PubMed  Google Scholar 

  • Smith MCM, Brown WRA, McEwan AR, Rowley PA (2010) Site-specific recombination by φC31 integrase and other large serine recombinases. Biochem Soc Trans 38:388–394

    CAS  PubMed  Google Scholar 

  • Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z (2005) Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep 24:86–94

    CAS  PubMed  Google Scholar 

  • Srivastava V, Gidoni D (2010) Site-specific gene integration technologies for crop improvement. In Vitro Cell Dev Biol Plant 46:219–232

    CAS  Google Scholar 

  • Srivastava V, Ow DW (2001) Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol Biol 46:561–566

    CAS  PubMed  Google Scholar 

  • Srivastava V, Ow D (2002) Biolistic mediated site-specific integration in rice. Mol Breed 8:345–350

    Google Scholar 

  • Srivastava V, Ow DW (2003) Rare instances of Cre-mediated deletion product maintained in transgenic wheat. Plant Mol Biol 52:661–668

    CAS  PubMed  Google Scholar 

  • Srivastava V, Ow DW (2004) Marker-free site-specific gene integration in plants. Trends Biotechnol 22:627–629

    CAS  PubMed  Google Scholar 

  • Srivastava V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci U S A 96:11117–11121

    PubMed Central  CAS  PubMed  Google Scholar 

  • Srivastava V, Ariza-Nieto M, Wilson A (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2:169–179

    CAS  PubMed  Google Scholar 

  • Stoll SM, Ginsburg DS, Calos MP (2002) Phage TP901-1 site-specific integrase functions in human cells. J Bacteriol 184:3657–3663

    PubMed Central  CAS  PubMed  Google Scholar 

  • Street VA, Goldy JD, Golden AS, Tempel BL, Bird TD, Chance PF (2002) Mapping of charcot-marie-tooth disease type 1C to chromosome 16p identifies a novel locus for demyelinating neuropathies. Am J Hum Genet 70:244–250

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi T, Naito S, Komeda Y (1992) Isolation and analysis of the expression of two genes for the 81-kilodalton heat-shock proteins from Arabidopsis. Plant Physiol 99:383–390

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takata Y, Kondo S, Goda N, Kanegae Y, Saito I (2011) Comparison of efficiency between FLPe and Cre for recombinase-mediated cassette exchange in vitro and in adenovirus vector production. Genes Cells 16:765–777

    CAS  PubMed  Google Scholar 

  • Thomason L, Calendar R, Ow D (2001) Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage C31 site-specific recombination system. Mol Genet Genomics 265:1031–1038

    CAS  PubMed  Google Scholar 

  • Thomson JG, Ow DW (2006) Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis 44:465–476

    CAS  PubMed  Google Scholar 

  • Thomson JG, Rucker EB, Piedrahita JA (2003) Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA. Genesis 36:162–167

    CAS  PubMed  Google Scholar 

  • Thomson JG, Yau YY, Blanvillain R, Chiniquy D, Thilmony R, Ow DW (2009) ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgenic Res 18:237–248

    CAS  PubMed  Google Scholar 

  • Thomson JG, Chan R, Thilmony R, Yau YY, Ow DW (2010) PhiC31 recombination system demonstrates heritable germinal transmission of site-specific excision from the Arabidopsis genome. BMC Biotechnol 10:17

    PubMed Central  PubMed  Google Scholar 

  • Thomson J, Chan R, Smith J, Thilmony R, Yau Y-Y, Wang Y, Ow D (2012) The Bxb1 recombination system demonstrates heritable transmission of site-specific excision in Arabidopsis. BMC Biotechnol 12:9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thorpe HM, Smith MCM (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A 95:5505–5510

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thorpe HM, Wilson SE, Smith MCM (2000) Control of directionality in the site-specific recombination system of the Streptomyces phage φC31. Mol Microbiol 38:232–241

    CAS  PubMed  Google Scholar 

  • Thyagarajan B, Guimaraes MJ, Groth AC, Calos MP (2000) Mammalian genomes contain active recombinase recognition sites. Gene 244:47–54

    CAS  PubMed  Google Scholar 

  • Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP (2001) Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 21:3926–3934

    PubMed Central  CAS  PubMed  Google Scholar 

  • Torres R, García A, Payá M, Ramirez JC (2011) Non-integrative lentivirus drives high-frequency cre-mediated cassette exchange in human cells. PLoS One 6:e19794

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsanov KM, Nishi Y, Peterson KA, Liu J, Baetscher M, McMahon AP (2012) An embryonic stem cell-based system for rapid analysis of transcriptional enhancers. Genesis 50:443–450

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turan S, Zehe C, Kuehle J, Qiao J, Bode J (2013) Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene 515:1–27

    CAS  PubMed  Google Scholar 

  • Uemura M, Niwa Y, Kakazu N, Adachi N, Kinoshita K (2010) Chromosomal manipulation by site-specific recombinases and fluorescent protein-based vectors. PLoS One 5:e9846

    PubMed Central  PubMed  Google Scholar 

  • Van Deursen J, Fornerod M, Van Rees B, Grosveld G (1995) Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. Proc Natl Acad Sci U S A 92:7376–7380

    PubMed Central  PubMed  Google Scholar 

  • Vergunst A, Hooykaas P (1998) Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre. Plant Mol Biol 38:393–406

    CAS  PubMed  Google Scholar 

  • Vergunst A, Jansen L, Hooykaas P (1998) Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Res 26:2729–2734

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CMT, Regensburg-Tuïnk TJ, Hooykaas PJ (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290:979–982

    CAS  PubMed  Google Scholar 

  • Verweire D, Verleyen K, De Buck S, Claeys M, Angenon G (2007) Marker-free transgenic plants through genetically programmed auto-excision. Plant Physiol 145:1220–1231

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang K, Moeller L (2008) Engineering with precision: tools for the new generation of transgenic crops. Bioscience 58:391–401

    Google Scholar 

  • Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of selectable marker gene from transgenic plants by the Cre/lox site-specific recombination system. Transgenic Res 14:605–614

    CAS  PubMed  Google Scholar 

  • Wang Y, Yau Y-Y, Perkins-Balding D, Thomson J (2011) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267–285

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wunderlich FT, Wildner H, Rajewsky K, Edenhofer F (2001) New variants of inducible Cre recombinase: a novel mutant of Cre-PR fusion protein exhibits enhanced sensitivity and an expanded range of inducibility. Nucleic Acids Res 29:e47

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wurdig J, Flachowsky H, Hanke M-V (2013) Studies on heat shock induction and transgene expression in order to optimize the Flp/FRT recombinase system in apple (Malus X domestica Borkh.). Plant Cell Tiss Organ Cult 115:457–467

    Google Scholar 

  • Yau Y, Wang Y, Thomson J, Ow D (2011) Method for Bxb1-mediated site-specific integration in planta. Methods Mol Biol 701:147–166

    CAS  PubMed  Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168

    CAS  PubMed  Google Scholar 

  • Zhang Y, Li H, Ouyang B, Lu Y, Ye Z (2006) Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol Lett 28:1247–1253

    CAS  PubMed  Google Scholar 

  • Zhang L, Wang L, Wang J, Ou X, Zhao G, Ding X (2010) DNA cleavage is independent of synapsis during streptomyces phage φBT1 integrase-mediated site-specific recombination. J Mol Cell Biol 2:264–275

    CAS  PubMed  Google Scholar 

  • Zheng B, Sage M, Cai W-W, Thompson DM, Tavsanli BC, Cheah Y-C, Bradley A (1999) Engineering a mouse balancer chromosome. Nat Genet 22:375–378

    CAS  PubMed  Google Scholar 

  • Zou X, Peng A, Xu L, Liu X, Lei T, Yao L, He Y, Chen S (2013) Efficient auto-excision of a selectable marker gene from transgenic citrus by combining the Cre/loxP system and ipt selection. Plant Cell Rep 32:1601–1613

    CAS  PubMed  Google Scholar 

  • Zuo J, Niu Q-W, Moller SG, Chua N-H (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research was funded by USDA-ARS project 5325-21000-020-00D and by the Biotechnology Risk Assessment Program competitive grant 2010-33522-21773 from the USDA - National Institute of Food and Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Thomson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomson, J.G., Blechl, A. (2015). Recombinase Technology for Precise Genome Engineering. In: Zhang, F., Puchta, H., Thomson, J. (eds) Advances in New Technology for Targeted Modification of Plant Genomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2556-8_7

Download citation

Publish with us

Policies and ethics