Skip to main content

Structure of Monoclonal Antibodies

  • Chapter
Biobetters

Abstract

Immunoglobulins (Ig) or antibodies (Ab) are the key functional units of the humoral immune system. Antibody molecules have a highly specialized structure that can mediate biological response upon specifically binding to an antigen. This chapter introduces readers to the chemical structure of antibodies, with specific focus on the structure of immunoglobulin G (IgG). The chapter also highlights functionally important IgG domains and their susceptibility to chemical degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

CDC:

Complement-dependent cytotoxicity

CDR:

Complementarity-determining region

CH :

Constant heavy chain

CL :

Constant light chain

Fab:

Antigen binding fragment

Fc:

Fragment crystallizable

Ig:

Immunoglobulin

mAbs:

Monoclonal antibodies

MBL:

Mannan binding lectin

MR:

Mannose receptor

SpA:

Staphylococcal protein A

SpG:

Streptococcal protein G

VH :

Variable heavy chain

VL :

Variable light chain

References

  • Alzari PM, Lascombe MB, Poljak RJ (1988) Three-dimensional structure of antibodies. Annu Rev Immunol 6:555–580

    Article  CAS  PubMed  Google Scholar 

  • Bertolotti-Ciarlet A, Wang W, Lownes R, Pristatsky P, Fang Y, Mckelvey T, Li Y, Drummond J, Prueksaritanont T, Vlasak J (2009) Impact of methionine oxidation on the binding of human IgG1 to Fc Rn and Fc gamma receptors. Mol Immunol 46:1878–1882

    Article  CAS  PubMed  Google Scholar 

  • Burton DR (1985) Immunoglobulin G: functional sites. Mol Immunol 22:161–206

    Article  CAS  PubMed  Google Scholar 

  • Burton DR, Woof JM (1992) Human antibody effector function. Adv Immunol 51:1–84

    Article  CAS  PubMed  Google Scholar 

  • Coloma MJ, Trinh RK, Martinez AR, Morrison SL (1999) Position effects of variable region carbohydrate on the affinity and in vivo behavior of an anti-(1→6) dextran antibody. J Immunol 162:2162–2170

    CAS  PubMed  Google Scholar 

  • Davies DR, Metzger H (1983) Structural basis of antibody function. Annu Rev Immunol 1:87–117

    Article  CAS  PubMed  Google Scholar 

  • Harris LJ, Larson SB, Hasel KW, Mcpherson A (1997) Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36:1581–1597

    Article  CAS  PubMed  Google Scholar 

  • Harris LJ, Skaletsky E, Mcpherson A (1998) Crystallographic structure of an intact IgG1 monoclonal antibody. J Mol Biol 275:861–872

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Lu J, Wroblewski VJ, Beals JM, Riggin RM (2005) In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal Chem 77:1432–1439

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Mochizuki K, Hashizume S, Tachibana H, Shirahata S, Murakami H (1993) Activity enhancement of a lung cancer-associated human monoclonal antibody HB4C5 by N-deglycosylation. Hum Antibodies Hybridomas 4:9–14

    CAS  PubMed  Google Scholar 

  • Khurana S, Raghunathan V, Salunke DM (1997) The variable domain glycosylation in a monoclonal antibody specific to GnRh modulates antigen binding. Biochem Biophys Res Commun 234:465–469

    Article  CAS  PubMed  Google Scholar 

  • Liu H, May K (2012) Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. mAbs 4:17–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu D, Ren D, Huang H, Dankberg J, Rosenfeld R, Cocco MJ, Li L, Brems DN, Remmele RL Jr (2008) Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Biochemistry 47:5088–5100

    Article  CAS  PubMed  Google Scholar 

  • Liu YD, Van Enk JZ, Flynn GC (2009) Human antibody Fc deamidation in vivo. Biologicals 37:313–322

    Article  CAS  PubMed  Google Scholar 

  • Mimura Y, Ashton PR, Takahashi N, Harvey DJ, Jefferis R (2007) Contrasting glycosylation profiles between Fab and Fc of a human IgG protein studied by electrospray ionization mass spectrometry. J Immunol Methods 326:116–126

    Article  CAS  PubMed  Google Scholar 

  • Nose M, Wigzell H (1983) Biological significance of carbohydrate chains on monoclonal antibodies. Proc Natl Acad Sci U S A 80:6632–6636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Padlan EA, Segal DM, Spande TF, Davies DR, Rudikoff S, Potter M (1973) Structure at 4.5 A resolution of a phosphorylcholine-binding fab. Nat New Biol 245:165–167

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Chen K, Chu L, Kinderman F, Apostol I, Huang G (2009) Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn. Protein Sci 18:424–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pound JD, Lund J, Jefferis R (1993) Aglycosylated chimaeric human IgG3 can trigger the human phagocyte respiratory burst. Mol Immunol 30:233–241

    Article  CAS  PubMed  Google Scholar 

  • Radaev S, Motyka S, Fridman WH, Sautes-Fridman C, Sun PD (2001) The structure of a human type III Fcgamma receptor in complex with Fc. J Biol Chem 276:16469–16477

    Article  CAS  PubMed  Google Scholar 

  • Redpath S, Michaelsen TE, Sandlie I, Clark MR (1998) The influence of the hinge region length in binding of human IgG to human Fcgamma receptors. Hum Immunol 59:720–727

    Article  CAS  PubMed  Google Scholar 

  • Saphire EO, Parren PW, Pantophlet R, Zwick MB, Morris GM, Rudd PM, Dwek RA, Stanfield RL, Burton DR, Wilson IA (2001) Crystal structure of a neutralizing human IgG against HIV-1: a template for vaccine design. Science 293:1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Satoh M, Iida S, Shitara K (2006) Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. Expert Opin Biol Ther 6:1161–1173

    Article  CAS  PubMed  Google Scholar 

  • Scallon BJ, Tam SH, Mccarthy SG, Cai AN, Raju TS (2007) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44:1524–1534

    Article  CAS  PubMed  Google Scholar 

  • Segal DM, Padlan EA, Cohen GH, Rudikoff S, Potter M, Davies DR (1974) The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin fab and the nature of the antigen binding site. Proc Natl Acad Sci U S A 71:4298–4302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith MA, Easton M, Everett P, Lewis G, Payne M, Riveros-Moreno V, Allen G (1996) Specific cleavage of immunoglobulin G by copper ions. Int J Pept Protein Res 48:48–55

    Article  CAS  PubMed  Google Scholar 

  • Sondermann P, Huber R, Oosthuizen V, Jacob U (2000) The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex. Nature 406:267–273

    Article  CAS  PubMed  Google Scholar 

  • Tachibana H, Seki K, Murakami H (1993) Identification of hybrid-type carbohydrate chains on the light chain of human monoclonal antibody specific to lung adenocarcinoma. Biochim Biophys Acta 1182:257–263

    Article  CAS  PubMed  Google Scholar 

  • Terry WD, Matthews BW, Davies DR (1968) Crystallographic studies of a human immunoglobulin. Nature 220:239–241

    Article  CAS  PubMed  Google Scholar 

  • Voynov V, Chennamsetty N, Kayser V, Helk B, Forrer K, Zhang H, Fritsch C, Heine H, Trout BL (2009) Dynamic fluctuations of protein-carbohydrate interactions promote protein aggregation. PLoS One 4:E8425

    Article  PubMed Central  PubMed  Google Scholar 

  • Wallick SC, Kabat EA, Morrison SL (1988) Glycosylation of a VH residue of a monoclonal antibody against alpha (1-6) dextran increases its affinity for antigen. J Exp Med 168:1099–1109

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Kumar S, Singh SK (2011) Disulfide scrambling in IgG2 monoclonal antibodies: insights from molecular dynamics simulations. Pharm Res 28:3128–3144

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Feng J, Lin HY, Mullapudi S, Bishop E, Tous GI, Casas-Finet J, Hakki F, Strouse R, Schenerman MA (2007) Identification of a single tryptophan residue as critical for binding activity in a humanized monoclonal antibody against respiratory syncytial virus. Anal Chem 79:2797–2805

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Topp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Moorthy, B.S. et al. (2015). Structure of Monoclonal Antibodies. In: Rosenberg, A., Demeule, B. (eds) Biobetters. AAPS Advances in the Pharmaceutical Sciences Series, vol 19. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2543-8_6

Download citation

Publish with us

Policies and ethics