Skip to main content
Book cover

Biobetters pp 203–220Cite as

Antibody-Like Molecules Designed for Superior Targeting and Pharmacokinetics

  • Chapter
  • 1649 Accesses

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 19))

Abstract

Antibody therapeutics is a thriving field with currently over thirty treatments that are approved primarily for oncology and inflammatory disorders. Antibodies have many advantages as drugs, including high specificity to their targets, long half-lives, and generally highly favorable toxicity profiles. The majority of the currently approved antibody therapeutics are conventional immunoglobulin Gs directed at a single target. However, as the field of protein engineering has advanced, a significant number of new antibody-like formats have been developed that possess robust bioactivity and manufacturability profiles. A number of these molecules have demonstrated superiority to conventional monoclonal antibodies in preclinical settings and have entered clinical testing. This review will discuss engineering of antibody-like molecules that optimize efficacy by targeting multiple receptors or by incorporating additional mechanisms of action, including altered effector function against established therapeutic targets. These molecules are commonly termed biobetters, which, formally speaking, are biologic drugs that are developed against previously validated target antigens but have some properties that are superior compared to currently approved products for commercial use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • (2006) Can super-antibody drugs be tamed? Nature 440:855–856

    Google Scholar 

  • Abarca K, Jung E, Fernández P, Zhao L, Harris B, Connor EM, Losonsky GA (2009) Safety, tolerability, pharmacokinetics, and immunogenicity of motavizumab, a humanized, enhanced-potency monoclonal antibody for the prevention of respiratory syncytial virus infection in at-risk children. Pediatr Infect Dis J 28:267–272

    Article  PubMed  Google Scholar 

  • Alyanakian M-A, Bernatowska E, Scherrmann J-M, Aucouturier P, Poplavsky J-L (2003) Pharmacokinetics of total immunoglobulin G and immunoglobulin G subclasses in patients undergoing replacement therapy for primary immunodeficiency syndromes. Vox Sang 84:188–192

    Article  CAS  PubMed  Google Scholar 

  • An Z, Forrest G, Moore R, Cukan M, Haytko P, Huang L, Vitelli S, Zhao JZ, Lu P, Hua J, Gibson CR, Harvey BR, Montgomery D, Zaller D, Wang F, Strohl W (2009) IgG2m4, an engineered antibody isotype with reduced Fc function. MAbs 1:572–579

    Article  PubMed Central  PubMed  Google Scholar 

  • Beck A (ed) (2013) Glycosylation engineering of biopharmaceuticals. Springer, New York

    Google Scholar 

  • Beck A, Reichert JM (2012) Marketing approval of mogamulizumab: a triumph for glyco-engineering. MAbs 4:419–425

    Article  PubMed Central  PubMed  Google Scholar 

  • Bostrom J, Yu S-F, Kan D, Appleton BA, Lee CV, Billeci K, Man W, Peale F, Ross S, Wiesmann C, Fuh G (2009) Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323:1610–1614

    Article  CAS  PubMed  Google Scholar 

  • Brambell F, Hemmings W, Morris I (1964) A theoretical model of gamma-globulin catabolism. Nature 26:1352–1354

    Article  Google Scholar 

  • Cang S, Mukhi N, Wang K, Liu D (2012) Novel CD20 monoclonal antibodies for lymphoma therapy. J Hematol Oncol 5:64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaparro-Riggers J, Liang H, DeVay RM, Bai L, Sutton JE, Chen W, Geng T, Lindquist K, Casas MG, Boustany LM, Brown CL, Chabot J, Gomes B, Garzone P, Rossi A, Strop P, Shelton D, Pons J, Rajpal A (2012) Increasing serum half-life and extending cholesterol lowering in vivo by engineering antibody with pH-sensitive binding to PCSK9. J Biol Chem 287:11090–11097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6:443–446

    Article  CAS  PubMed  Google Scholar 

  • Cunningham D, Hawkes EA, Jack A, Qian W, Smith P, Mouncey P, Pocock C, Ardeshna KM, Radford JA, McMillan A, Davies J, Turner D, Kruger A, Johnson P, Gambell J, Linch D (2013) Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone in patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: a phase 3 comparison of dose intensification with 14-day versus 21-day cycles. Lancet 381:1817–1826

    Article  CAS  PubMed  Google Scholar 

  • Dall’Acqua WF, Kiener PA, Wu H (2006) Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 281:23514–23524

    Article  PubMed  Google Scholar 

  • Digiammarino EL, Harlan JE, Walter KA, Ladror US, Edalji RP, Hutchins CW, Lake MR, Greischar AJ, Liu J, Ghayur T, Jakob CG (2011) Ligand association rates to the inner-variable-domain of a dual-variable-domain immunoglobulin are significantly impacted by linker design. MAbs 3:487–494

    Article  PubMed Central  PubMed  Google Scholar 

  • DiGiammarino E, Ghayur T, Liu J (2012) Design and generation of DVD-IgTM molecules for dual-specific targeting. Methods Mol Biol 899:145–156

    Article  CAS  PubMed  Google Scholar 

  • Eigenbrot C, Fuh G (2013) Two-in-One antibodies with dual action Fabs. Curr Opin Chem Biol 17:400–405

    Article  CAS  PubMed  Google Scholar 

  • Fauvel B, Yasri A (2014) Antibodies directed against receptor tyrosine kinases: current and future strategies to fight cancer. MAbs 6:838–851

    Article  PubMed Central  PubMed  Google Scholar 

  • Feng Y, Ma PC (2011) Anti-MET targeted therapy has come of age: the first durable complete response with MetMAb in metastatic gastric cancer. Cancer Discov 1:550–554

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald J, Lugovskoy A (2011) Rational engineering of antibody therapeutics targeting multiple oncogene pathways. MAbs 3:299–309

    Article  PubMed Central  PubMed  Google Scholar 

  • Fitzgerald JB, Johnson BW, Baum J, Adams S, Iadevaia S, Tang J, Rimkunas V, Xu L, Kohli N, Rennard R, Razlog M, Jiao Y, Harms BD, Olivier KJ, Schoeberl B, Nielsen UB, Lugovskoy AA (2014) MM-141, an IGF-IR- and ErbB3-directed bispecific antibody, overcomes network adaptations that limit activity of IGF-IR inhibitors. Mol Cancer Ther 13:410–425

    Article  CAS  PubMed  Google Scholar 

  • Gerdes CA, Nicolini VG, Herter S, van Puijenbroek E, Lang S, Roemmele M, Moessner E, Freytag O, Friess T, Ries CH, Bossenmaier B, Mueller HJ, Umaña P (2013) GA201 (RG7160): a novel, humanized, glycoengineered anti-EGFR antibody with enhanced ADCC and superior in vivo efficacy compared with cetuximab. Clin Cancer Res 19:1126–1138

    Article  CAS  PubMed  Google Scholar 

  • Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, Chagorova T, de la Serna J, Dilhuydy M-S, Illmer T, Opat S, Owen CJ, Samoylova O, Kreuzer K-A, Stilgenbauer S, Döhner H, Langerak AW, Ritgen M, Kneba M, Asikanius E, Humphrey K, Wenger M, Hallek M (2014) Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 370:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Golay J, Da Roit F, Bologna L, Ferrara C, Leusen JH, Rambaldi A, Klein C, Introna M (2013) Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood 122:3482–3491

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Ghayur T (2012) Generation of dual-variable-domain immunoglobulin molecules for dual-specific targeting. Methods Enzymol 502:25–41

    Article  CAS  PubMed  Google Scholar 

  • Harms BD, Kearns JD, Su SV, Kohli N, Nielsen UB, Schoeberl B (2012) Optimizing properties of antireceptor antibodies using kinetic computational models and experiments. Methods Enzymol 502:67–87

    Article  CAS  PubMed  Google Scholar 

  • Harms BD, Kearns JD, Iadevaia S, Lugovskoy AA (2014) Understanding the role of cross-arm binding efficiency in the activity of monoclonal and multispecific therapeutic antibodies. Methods 65:95–104

    Article  CAS  PubMed  Google Scholar 

  • Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32:40–51

    Article  CAS  PubMed  Google Scholar 

  • Herter S, Herting F, Mundigl O, Waldhauer I, Weinzierl T, Fauti T, Muth G, Ziegler-Landesberger D, Van Puijenbroek E, Lang S, Duong MN, Reslan L, Gerdes CA, Friess T, Baer U, Burtscher H, Weidner M, Dumontet C, Umana P, Niederfellner G, Bacac M, Klein C (2013) Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther 12:2031–2042

    Article  CAS  PubMed  Google Scholar 

  • Hezareh M, Hessell AJ, Jensen RC, van de Winkel JG, Parren PW (2001) Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. J Virol 75:12161–12168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hinton PR, Johlfs MG, Xiong JM, Hanestad K, Ong KC, Bullock C, Keller S, Tang MT, Tso JY, Vásquez M, Tsurushita N (2004) Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem 279:6213–6216

    Article  CAS  PubMed  Google Scholar 

  • Huang GS, Brouwer-Visser J, Ramirez MJ, Kim CH, Hebert TM, Lin J, Arias-Pulido H, Qualls CR, Prossnitz ER, Goldberg GL, Smith HO, Horwitz SB (2010) Insulin-like growth factor 2 expression modulates Taxol resistance and is a candidate biomarker for reduced disease-free survival in ovarian cancer. Clin Cancer Res 16:2999–3010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Igawa T, Ishii S, Tachibana T, Maeda A, Higuchi Y, Shimaoka S, Moriyama C, Watanabe T, Takubo R, Doi Y, Wakabayashi T, Hayasaka A, Kadono S, Miyazaki T, Haraya K, Sekimori Y, Kojima T, Nabuchi Y, Aso Y, Kawabe Y, Hattori K (2010) Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol 28:1203–1207

    Article  CAS  PubMed  Google Scholar 

  • Isakoff SJ, Lugovskoy A, Manoli S, Czibere A, LoRusso P, Arnedos M (2014) First-in-human study of MM-141: a novel tetravalent monoclonal antibody targeting IGF-1R and ErbB3 [abstract]. J Clin Oncol 32(Suppl 3):abstr 3068

    Google Scholar 

  • Kienast Y, Klein C, Scheuer W, Raemsch R, Lorenzon E, Bernicke D, Herting F, Yu S, The HH, Martarello L, Gassner C, Stubenrauch K-G, Munro K, Augustin HG, Thomas M (2013) Ang-2-VEGF-A CrossMab, a novel bispecific human IgG1 antibody blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy. Clin Cancer Res 19:6730–6740

    Article  CAS  PubMed  Google Scholar 

  • Klein C, Sustmann C, Thomas M, Stubenrauch K, Croasdale R, Schanzer J, Brinkmann U, Kettenberger H, Regula JT, Schaefer W (2012) Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. MAbs 4:653–663

    Article  PubMed Central  PubMed  Google Scholar 

  • Kontermann RE (2012) Dual targeting strategies with bispecific antibodies. MAbs 4:182–197

    Article  PubMed Central  PubMed  Google Scholar 

  • Labrijn AF, Buijsse AO, van den Bremer ETJ, Verwilligen AYW, Bleeker WK, Thorpe SJ, Killestein J, Polman CH, Aalberse RC, Schuurman J, van de Winkel JGJ, Parren PWHI (2009) Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol 27:767–771

    Article  CAS  PubMed  Google Scholar 

  • Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC, Vielmetter J, Carmichael DF, Hayes RJ, Dahiyat BI (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci U S A 103:4005–4010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee CV, Koenig P, Fuh G (2014) A two-in-one antibody engineered from a humanized interleukin 4 antibody through mutation in heavy chain complementarity-determining regions. MAbs 6:622–627

    Article  PubMed Central  PubMed  Google Scholar 

  • Lieu C, Harb WA, Beeram M, Power L, Kearns JD, Nering R, Moyo VM, Wolf BB, Adjei AA (2014) Phase I trial of MM-151, a novel oligoclonal anti-EGFR antibody combination in patients with refractory solid tumors [abstract]. J Clin Oncol 32:5s, abstr 2518

    Google Scholar 

  • Linke R, Klein A, Seimetz D (2010) Catumaxomab: clinical development and future directions. MAbs 2:129–136

    Article  PubMed Central  PubMed  Google Scholar 

  • Listinsky JJ, Siegal GP, Listinsky CM (2013) Glycoengineering in cancer therapeutics: a review with fucose-depleted Trastuzumab as the model. Anticancer Drugs 24:219–227

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Lee-Gabel L, Nadeau MC, Ferencz TM, Soefje SA (2014) Clinical evaluation of compounds targeting PD-1/PD-L1 pathway for cancer immunotherapy. J Oncol Pharm Pract

    Google Scholar 

  • McDonagh CF, Huhalov A, Harms BD, Adams S, Paragas V, Oyama S, Zhang B, Luus L, Overland R, Nguyen S, Gu J, Kohli N, Wallace M, Feldhaus MJ, Kudla AJ, Schoeberl B, Nielsen UB (2012) Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol Cancer Ther 11:582–593

    Article  CAS  PubMed  Google Scholar 

  • Merchant M, Ma X, Maun HR, Zheng Z, Peng J, Romero M, Huang A, Yang N, Nishimura M, Greve J, Santell L, Zhang Y-W, Su Y, Kaufman DW, Billeci KL, Mai E, Moffat B, Lim A, Duenas ET, Phillips HS, Xiang H, Young JC, Vande Woude GF, Dennis MS, Reilly DE, Schwall RH, Starovasnik MA, Lazarus RA, Yansura DG (2013) Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Natl Acad Sci U S A 110:E2987–E2996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moore GL, Chen H, Karki S, Lazar GA (2010) Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions. MAbs 2:181–189

    Article  PubMed Central  PubMed  Google Scholar 

  • Mössner E, Brünker P, Moser S, Püntener U, Schmidt C, Herter S, Grau R, Gerdes C, Nopora A, van Puijenbroek E, Ferrara C, Sondermann P, Jäger C, Strein P, Fertig G, Friess T, Schüll C, Bauer S, Dal Porto J, Del Nagro C, Dabbagh K, Dyer MJS, Poppema S, Klein C, Umaña P (2010) Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 115:4393–4402

    Article  PubMed Central  PubMed  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8:34–47

    Article  CAS  PubMed  Google Scholar 

  • Oganesyan V, Gao C, Shirinian L, Wu H, Dall’Acqua WF (2008) Structural characterization of a human Fc fragment engineered for lack of effector functions. Acta Crystallogr D Biol Crystallogr 64:700–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pollak M (2012) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12:159–169

    CAS  PubMed  Google Scholar 

  • Pedersen MW, Jacobsen HJ, Koefoed K, Hey A, Pyke C, Haurum JS, Krah M (2010) Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 70:588–97

    Google Scholar 

  • Prat M, Crepaldi T, Pennacchietti S, Bussolino F, Comoglio PM (1998) Agonistic monoclonal antibodies against the Met receptor dissect the biological responses to HGF. J Cell Sci 111(Pt 2):237–47

    Google Scholar 

  • Presta LG (2006) Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev 58:640–656

    Article  CAS  PubMed  Google Scholar 

  • Presta LG (2008) Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 20:460–470

    Article  CAS  PubMed  Google Scholar 

  • Price TJ, Peeters M, Kim T, Li J, Cascinu S, Ruff P, Suresh A, Zhang K, Murugappan S, Sidhu R (2013) ASPECCT: a randomized, multicenter, open-label, phase 3 study of panitumumab (pmab) vs cetuximab (cmab) for previously treated wild-type (WT) KRAS metastatic colorectal cancer (mCRC). Abstract. ESMO, LBA18

    Google Scholar 

  • Reichert JM, Dhimolea E (2012) The future of antibodies as cancer drugs. Drug Discov Today 17:954–963

    Article  CAS  PubMed  Google Scholar 

  • Richards JO, Karki S, Lazar GA, Chen H, Dang W, Desjarlais JR (2008) Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol Cancer Ther 7:2517–2527

    Article  CAS  PubMed  Google Scholar 

  • Ridgway JB, Presta LG, Carter P (1996) “Knobs-into-holes” engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 9:617–621

    Article  CAS  PubMed  Google Scholar 

  • Robbie GJ, Criste R, Dall’acqua WF, Jensen K, Patel NK, Losonsky GA, Griffin MP (2013) A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob Agents Chemother 57:6147–6153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rudnick SI, Adams GP (2009) Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm 24:155–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salfeld JG (2007) Isotype selection in antibody engineering. Nat Biotechnol 25:1369–1372

    Article  CAS  PubMed  Google Scholar 

  • Schaefer G, Haber L, Crocker LM, Shia S, Shao L, Dowbenko D, Totpal K, Wong A, Lee CV, Stawicki S, Clark R, Fields C, Lewis Phillips GD, Prell RA, Danilenko DM, Franke Y, Stephan J-P, Hwang J, Wu Y, Bostrom J, Sliwkowski MX, Fuh G, Eigenbrot C (2011a) A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell 20:472–486

    Article  CAS  PubMed  Google Scholar 

  • Schaefer W, Regula JT, Bähner M, Schanzer J, Croasdale R, Dürr H, Gassner C, Georges G, Kettenberger H, Imhof-Jung S, Schwaiger M, Stubenrauch KG, Sustmann C, Thomas M, Scheuer W, Klein C (2011b) Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci U S A 108:11187–11192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schoeberl B, Pace EA, Fitzgerald JB, Harms BD, Xu L, Nie L, Linggi B, Kalra A, Paragas V, Bukhalid R, Grantcharova V, Kohli N, West KA, Leszczyniecka M, Feldhaus MJ, Kudla AJ, Nielsen UB (2009) Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal 2:ra31

    Article  PubMed  Google Scholar 

  • Shapiro RI, Plavina T, Schlain BR, Pepinsky RB, Garber EA, Jarpe M, Hochman PS, Wehner NG, Bard F, Motter R, Yednock TA, Taylor FR (2011) Development and validation of immunoassays to quantify the half-antibody exchange of an IgG4 antibody, natalizumab (Tysabri®) with endogenous IgG4. J Pharm Biomed Anal 55:168–175

    Article  CAS  PubMed  Google Scholar 

  • Stebbings R, Findlay L, Edwards C, Eastwood D, Bird C, North D, Mistry Y, Dilger P, Liefooghe E, Cludts I, Fox B, Tarrant G, Robinson J, Meager T, Dolman C, Thorpe SJ, Bristow A, Wadhwa M, Thorpe R, Poole S (2007) “Cytokine storm” in the phase I trial of monoclonal antibody TGN1412: better understanding the causes to improve preclinical testing of immunotherapeutics. J Immunol 179:3325–3331

    Article  CAS  PubMed  Google Scholar 

  • Swain SM, Kim S-B, Cortés J, Ro J, Semiglazov V, Campone M, Ciruelos E, Ferrero J-M, Schneeweiss A, Knott A, Clark E, Ross G, Benyunes MC, Baselga J (2013) Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 14:461–471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tesar DB, Björkman PJ (2010) An intracellular traffic jam: Fc receptor-mediated transport of immunoglobulin G. Curr Opin Struct Biol 20:226–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 117:244–279

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Lu P, Fang Y, Hamuro L, Pittman T, Carr B, Hochman J, Prueksaritanont T (2011) Monoclonal antibodies with identical Fc sequences can bind to FcRn differentially with pharmacokinetic consequences. Drug Metab Dispos 39:1469–1477

    Article  CAS  PubMed  Google Scholar 

  • Weiner GJ (2010) Rituximab: mechanism of action. Semin Hematol 47:115–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, Bose S, McCarthy D, Zhu R-R, Santora L, Davis-Taber R, Kunes Y, Fung E, Schwartz A, Sakorafas P, Gu J, Tarcsa E, Murtaza A, Ghayur T (2007) Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 25:1290–1297

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Ying H, Bose S, Miller R, Medina L, Santora L, Ghayur T (2009) Molecular construction and optimization of anti-human IL-1alpha/beta dual variable domain immunoglobulin (DVD-Ig) molecules. MAbs 1:339–347

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu L, Kohli N, Rennard R, Jiao Y, Razlog M, Zhang K, Baum J, Johnson B, Tang J, Schoeberl B, Fitzgerald J, Nielsen U, Lugovskoy A (2013) Rapid optimization and prototyping for therapeutic antibody-like molecules. MAbs 5:237–254

    Article  PubMed Central  PubMed  Google Scholar 

  • Yano S, Takeuchi S, Nakagawa T, Yamada T (2012) Ligand-triggered resistance to molecular targeted drugs in lung cancer: roles of hepatocyte growth factor and epidermal growth factor receptor ligands. Cancer Sci 103:1189–1194

    Article  CAS  PubMed  Google Scholar 

  • Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IWL, Sproule TJ, Lazar GA, Roopenian DC, Desjarlais JR (2010) Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 28:157–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Lugovskoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Lugovskoy, A.A., Geddie, M.L. (2015). Antibody-Like Molecules Designed for Superior Targeting and Pharmacokinetics. In: Rosenberg, A., Demeule, B. (eds) Biobetters. AAPS Advances in the Pharmaceutical Sciences Series, vol 19. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2543-8_12

Download citation

Publish with us

Policies and ethics