Skip to main content

Salt Adaptation Mechanisms of Halophytes: Improvement of Salt Tolerance in Crop Plants

  • Chapter

Abstract

Soil salinity is one of the most serious environmental factors that affect crop productivity worldwide. Inevitable global climate change leading to rise in sea water level would exacerbate degradation of irrigation systems and contamination of ground water resources, which render conventional agricultural practices impossible due to the sensitivity of most crops to salinity. Breeding for development of salt-tolerant crop plants has been a major challenge due to the complexity and multigenic control of salt tolerance traits. Halophytes are capable of surviving and thriving under salt at concentrations as high as 5 g/L, by maintaining negative water potential. Physiological and molecular studies have suggested that halophytes, unlike glycophytes, have evolved mechanisms, such as ion homeostasis through ion extrusion and compartmentalization, osmotic adjustments, and antioxidant production for adaptation to salinity. Employment of integrated approaches involving different omics tools would amplify our understanding of the biology of stress response networks in the halophytes. Translation of the knowledge and resources generated from halophyte relatives of crop plants through functional genomics will lead to the development of new breeds of crops that are suitable for saline agriculture.

Keywords

  • Functional genomics
  • Crop plants
  • Halophyte
  • Salt tolerance
  • Smooth cordgrass

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-2540-7_9
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-2540-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

References

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    CAS  PubMed  Google Scholar 

  • Ahmad I, Larher F, Stewart G (1981) The accumulation of acetylornithine and other solutes in the salt marsh grass Puccinellia maritima. Phytochemistry 20:1501–1504

    CAS  Google Scholar 

  • Albert R, Kinzel H (1973) Unterscheidung von Physiotypen bei Halophyten des Neusied-lerseegebietes (Osterreich). Z Pflanzenphysiol 70:138–157

    CAS  Google Scholar 

  • Albert R, Popp M (1977) Chemical composition of halophytes from the Neusiedler lake region in Austria. Oecologia 27:157–170

    Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    PubMed Central  CAS  PubMed  Google Scholar 

  • An Y, Wang Y, Lou L, Zheng T, Qu GZ (2011) A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance. J Plant Res 124:689–697

    CAS  PubMed  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    CAS  PubMed  Google Scholar 

  • Araújo SAM, Silveira JAG, Almeida TD, Rocha IMA, Morais DL, Viégas RA (2006) Salinity tolerance of halophyte Atriplex nummularia L. grown under increasing NaCl levels. Rev Bras Eng Agríc Ambient 10:848–854

    Google Scholar 

  • Arbona V, Argamasilla R, Gómez-Cadenas A (2010) Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Physiol 167:1342–1350

    CAS  PubMed  Google Scholar 

  • Ardie SW, Xie LN, Takahashi R, Liu SK, Takano T (2009) Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J Exp Bot 60:3491–3502

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ardie SW, Liu S, Takano T (2010) Expression of the AKT1-type K (+) channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep 29:865–874

    CAS  PubMed  Google Scholar 

  • Ardie SW, Nishiuchi S, Liu S, Takano T (2011) Ectopic expression of the K+ channel beta subunits from Puccinellia tenuiflora (KPutB1) and rice (KOB1) alters K+ homeostasis of yeast and Arabidopsis. Mol Biotechnol 48:76–86

    CAS  PubMed  Google Scholar 

  • Aronson JA (1989) HALOPH a data base of salt tolerant plants of the world. Office of Arid Land Studies, University of Arizona, Tucson

    Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30

    CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Asins MJ, Breto MP, Cambra M, Carbonell EA (1993) Salt tolerance in Lycopersicon species. I. Character definition and changes in gene expression. Theor Appl Genet 86:737–743

    CAS  PubMed  Google Scholar 

  • Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6:2542–2554

    CAS  PubMed  Google Scholar 

  • Aslam R, Bostan N, Amen N, Maria M, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plants Res 5:7108–7118

    CAS  Google Scholar 

  • Ayers RS, Wescott DW (1989) Water quality for agriculture. FAO Irrig Drain 29:737–746

    Google Scholar 

  • Baisakh N, Subudhi PK, Parami NP (2006) cDNA–AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. Plant Sci 170:1141–1149

    CAS  Google Scholar 

  • Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct Integr Genomics 8:287–300

    CAS  PubMed  Google Scholar 

  • Baisakh N, Rajasekharan K, Deleon T, Biradar H, Parco A, Singh P, Subudhi PK (2009) Overexpression of Myo-inositol phosphate synthase gene from a halophyte Spartina alterniflora confers salt tolerance in transgenic tobacco and rice. Plant and Animal Genome XVII, San Diego, Jan 10–14 2009, Poster No. 616, Final abstract guide: 117

    Google Scholar 

  • Baisakh N, RamanaRao MV, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A (2012) Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Loisel. Plant Biotechnol J 10:453–464

    CAS  PubMed  Google Scholar 

  • Balnokin YV, Kotov AA, Myasoedov NA, Khailova GF, Kurkova EB, Lun’kov RV, Kotova LM (2005) Involvement of long-distance Na+ transport in maintaining water potential gradient in the medium-root-leaf system of a halophyte Suaeda altissima. Rus J Plant Physiol 52:489–496

    CAS  Google Scholar 

  • Barkla B, Zingarelli L, Blumwald L, Smith J (1995) Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum. Plant Physiol 108:549–556

    Google Scholar 

  • Barkla BJ, Vera-Estrella R, Camacho-Emiterio J, Pantoja O (2002) Na+/H+ exchange in the halophyte Mesembryanthemum crystallinum is associated with cellular sites of Na+ storage. Funct Plant Biol 29:1017–1024

    CAS  Google Scholar 

  • Barrett-Lennard EG (2002) Restoration of saline land through revegetation. Agric Water Manag 53:213–226

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Bayat F, Shiran B, Belyaev DV (2011) Overexpression of HvNHX2, a vacuolar Na+/H+ antiporter gene from barley improves salt tolerance in Arabidopsis thaliana. Aust J Crop Sci 5:428–432

    CAS  Google Scholar 

  • Blaha G, Stelzl U, Spahn CMT, Agrawal RK, Frank J, Nierhaus KH (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol 317:292–309

    CAS  PubMed  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochem Biophys Acta 1465:140–151

    CAS  PubMed  Google Scholar 

  • Boesch DF, Josselyn MN, Mehta AJ, Morris JT, Nuttle WK, Simenstad CA, Swift DJP (1994) Scientific assessment of coastal wetland loss, restoration and management in Louisiana. J Coastal Res 20:11–103

    Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    CAS  Google Scholar 

  • Bohnert HJ, Shen B (1998) Transformation and compatible solutes. J Hortic Sci Biotechnol 191:41–46

    Google Scholar 

  • Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hortic 78:237–260

    CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms-getting genomics going. Curr Opin Plant Biol 9:180–188

    CAS  PubMed  Google Scholar 

  • Boyko H, Boyko E (1959) Seawater irrigation, a new line of research on a bioclimatic plant-soil complex. Int J Bioclim 3:1–17

    Google Scholar 

  • Breckle SW (2002) Salinity, halophytes and salt affected natural ecosystems. In: Lauchli A, Luttge U (eds) Salinity: environment-plants-molecules. Kluwer Academic, Dordrecht, pp 53–77

    Google Scholar 

  • Bressan RA, Park HC, Orsini F, Oh D, Dassanayake M, Inan G, Yun DJ, Bohnert HJ, Maggio A (2013) Biotechnology for mechanisms that counteract salt stress in extremophile species: a genome-based view. Plant Biotech Rep 7:27–37

    Google Scholar 

  • Britto DT, Kronzucker HJ (2006) Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci 11:529–534

    CAS  PubMed  Google Scholar 

  • Cambrolle J, Redondo-Gomez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Marine Poll Bull 56:2037–2042

    CAS  Google Scholar 

  • Chauhan S, Forsthoefel N, Ran YQ, Quigley F, Nelson DE, Bohnert HJ (2000) Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant J 24:511–522

    CAS  PubMed  Google Scholar 

  • Cheeseman J (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87:104–108

    Google Scholar 

  • Chen AP, Wang GL, Qu ZL, Lu CX, Liu N, Wang F, Xia GX (2007) Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Rep 26:237–245

    CAS  PubMed  Google Scholar 

  • Chen X, Han H, Jiang P, Nie L, Bao X, Fan P, Lv S, Feng J, Li Y (2011) Transformation of β-lycopene cyclase genes from salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco. Plant Cell Physiol 52:909–921

    CAS  PubMed  Google Scholar 

  • Cheng L, Li X, Huang X, Ma T, Liang Y, Ma X, Peng X, Jia J, Chen S, Chen Y, Deng B, Liu G (2013) Overexpression of sheep grass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis. Plant Physiol Biochem 70:252–260

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Clipson NJW, Flowers TJ (1987) Salt tolerance in the halophyte Suaeda maritima L. Dum. The effect of salinity on the concentration of sodium in the xylem. New Phytol 105:359–366

    CAS  Google Scholar 

  • Colmer TD, Flowers TJ (2008) Flooding tolerance in halophytes. New Phytol 179:964–974

    CAS  PubMed  Google Scholar 

  • Colmer TD, Munns R, Flowers TJ (2005) Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric 45:1425–1443

    CAS  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    CAS  PubMed  Google Scholar 

  • Dang ZH, Zheng LL, Wang J, Gao Z, Wu SB, Qi Z, Wang YC (2013) Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genomics 14:29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Das-Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL (2006) Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett 580:3980–3988

    CAS  PubMed  Google Scholar 

  • Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ, Cheeseman JM (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918

    PubMed Central  CAS  PubMed  Google Scholar 

  • Debez A, Saadaoui D, Ramani B, Ouerghi Z, Koyro HW, Huchzermeyer B, Abdelly C (2006) Leaf H+-ATPase activity and photosynthetic capacity of Cakile maritima under increasing salinity. Environ Exp Bot 57:285–295

    CAS  Google Scholar 

  • Diao G, Wang Y, Yang C (2010) Functional characterization of a gluthathione S transferase gene from Limonium bicolor in response to several abiotic stresses. Afr J Biotech 9:5060–5065

    CAS  Google Scholar 

  • Du J, Huang YP, Xi J, Cao MJ, Ni WS, Chen X, Zhu JK, Oliver DJ, Xiang CB (2008) Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J 56:653–664

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dvorak J, Noaman MM, Goyal S, Gorham J (1994) Enhancement of the salt tolerance of Triticum turgidum L. by the Knal locus transferred from the Triticum aestivum L. Chromosome 4D by homoeologous recombination. Theor Appl Genet 88:872–877

    Google Scholar 

  • El-Shaer HM (2003) Potential of halophytes as animal fodder in Egypt. In: Lieth H, Mochtchenko M (eds) Tasks for vegetation science; 38 cash crop halophytes. Kluwer, Dordrecht, pp 111–119

    Google Scholar 

  • Endo N, Yoshida K, Akiyoshi M, Yoshida Y, Hayashi N (2005) Putative UDP-galactose epimerase and metallothioneine of Paspalum vaginalum enhanced the salt tolerance of rice Oryza sativa L. from transplanting to harvest stages. Breeding Sci 55:163–173

    CAS  Google Scholar 

  • Epstein E, Norlyn J, Rush D, Kingsbury R, Kelley D, Cunningham G, Wrona A (1980) Saline culture of crops: a genetic approach. Science 210:399–404

    CAS  PubMed  Google Scholar 

  • Erdei L, Kuiper P (1979) The effect of salinity on growth, cation content, Na+-uptake and translocation in salt-sensitive and salt-tolerant Plantago species. Physiol Plant 47:95–99

    CAS  Google Scholar 

  • Ezawa S, Tada Y (2009) Identification of salt tolerance genes from the mangrove plant Bruguiera gymnorrhiza using Agrobacterium screening. Plant Sci 176:272–278

    CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Yeo A (1995) Breeding for salinity resistance in crops. Where next? Austr J Plant Physiol 22:875–884

    Google Scholar 

  • Flowers T, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol Plant Mol Biol 28:89–121

    CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 6:313–337

    Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Google Scholar 

  • Freitas H, Breckle S (1992) Importance of bladder hairs for salt tolerance of field-grown, Atriplex species from a Portuguese salt marsh. Flora Morphol Geobot Oekophysiol 187:283–297

    Google Scholar 

  • Fricke W, Leigh RA, Tomos AD (1996) The intercellular distribution of vacuolar solutes in the epidermis and mesophyll of barley leaves changes in response to NaCl. J Exp Bot 47:1413–1426

    CAS  Google Scholar 

  • Fu X, Huang Y, Deng S, Zhou R, Yang G, Ni X, Li W, Shi S (2005) Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts. Plant Sci 169:147–154

    CAS  Google Scholar 

  • Gagneul D, Ainouche A, Duhaze C, Lugan R, Lahrer FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao F, Gao Q, Duan XG, Yue G, Yang AF, Zhang JR (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270

    CAS  PubMed  Google Scholar 

  • Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2013) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res doi:10.1093/dnares/dst042

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    CAS  PubMed  Google Scholar 

  • Glenn EP (1987) Relationship between cation accumulation and water content of salt tolerant grasses and a sedge. Plant Cell Environ 10:205–212

    CAS  Google Scholar 

  • Glenn EP, Oleary JW, Watson MC, Thompson TL, Kuehl RO (1991) Salicornia-bigelovii Torr—an oilseed halophyte for seawater irrigation. Science 251:1065–1067

    CAS  PubMed  Google Scholar 

  • Glenn EP, Poster R, Brown JJ, Thompson TL, O’Leary JW (1996) Na and K accumulation and salt tolerance of Atriplex canescens (Chenopodiaceae) genotypes. Am J Bot 83:997–1005

    CAS  Google Scholar 

  • Glenn E, Miyamoto M, Moore D, Brown JJ, Thompson TL, Brown P (1997) Water requirements for cultivating Salicornia bigelovii Torr. with seawater on sand in a coastal desert environment. J Arid Environ 36:711–730

    Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Google Scholar 

  • Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    CAS  PubMed  Google Scholar 

  • Gorham J, Wyn-Jones R (1993) Utilization of Triticeae for improving salt tolerance in wheat. In: Lieth H, Masoom A (eds) Towards the rational use of high salinity tolerant plants, vol 2. Kluwer, Dordrecht, pp 27–34

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol Plant Mol Biol 31:149–190

    CAS  Google Scholar 

  • Grieve CM, Suarez DL (1997) Purslane (Portulaca oleracea L.): a halophytic crop for drainage water reuse systems. PLSOA 192:277–283

    CAS  Google Scholar 

  • Guan B, Hu Y, Zeng Y, Wang Y, Zhang F (2011) Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys caspica. Mol Biol Rep 38:1889–1899

    CAS  PubMed  Google Scholar 

  • Gul B, Ansari R, Khan MA (2009) Salt tolerance of Salicornia utahensis from the great basin desert. Pak J Bot 41:2925–2932

    CAS  Google Scholar 

  • Guo SL, Yin HB, Zhang X, Zhao FY, Li PH, Chen SH, Zhao YX, Zhang H (2006) Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol 60:41–50

    CAS  PubMed  Google Scholar 

  • Guo LQ, Shi DC, Wang DL (2010) The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere. J Agron Crop Sci 196:123–135

    CAS  Google Scholar 

  • Gupta K, Agarwal PK, Reddy MK, Jha B (2010) SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep 29:1131–1137

    CAS  PubMed  Google Scholar 

  • Hajibagheri MA, Yeo AR, Flowers TJ, Collins JC (1989) Salinity resistance in Zea mays: fluxes of potassium, sodium and chloride, cytoplasmic concentrations and microsomal membrane lipids. Plant Cell Environ 12:753–757

    CAS  Google Scholar 

  • Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35–42

    CAS  PubMed  Google Scholar 

  • Han HP, Li YX, Zhou SF (2008) Overexpression of phytoene synthase gene from Salicornia europaea alters response to reactive oxygen species under salt stress in transgenic Arabidopsis. Biotechnol Lett 30:1501–1507

    CAS  PubMed  Google Scholar 

  • Han N, Lan W, He X, Shao Q, Wang B, Zhao Z (2012) Expression of a Suaeda salsa Vacuolar H+/Ca2+ transporter gene in Arabidopsis contributes to physiological changes in salinity. Plant Mol Biol Rep 30:470–477

    CAS  Google Scholar 

  • Harrouni MC, Daoud S, Koyro HW (2003) Effects of seawater irrigation on biomass production and ion composition of seven halophytic species in Morocco. In: Lieth H, Mochtchenko M (eds) Tasks for vegetation science 38 cash crop halophyte. Kluwer, Dordrecht, pp 59–70

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  PubMed  Google Scholar 

  • Hassidim M, Braun Y, Lene H, Reinhold L (1990) Na+/H+ antiport in root membrane vesicles isolated from the halophyte Atriplex and the glycophyte cotton. Plant Physiol 94:1795–1801

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    CAS  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu YZ, Wang Y, Zhang FC (2009) Overexpression of Chenopodium glaucum tonoplast pyrophosphatases for improvement of salt tolerance of Arabidopsis thaliana. Plant Physiol Commun 45:449–454

    CAS  Google Scholar 

  • Hu YZ, Zeng YL, Guan B, Zhang FC (2012) Overexpression of a vacuolar H+-pyrophosphatase and a β subunit of H+-ATPase cloned from the halophyte Halostachys caspica improves salt tolerance in Arabidopsis thaliana. Plant Cell Tiss Org 108:63–71

    CAS  Google Scholar 

  • Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J Exp Bot 59:927–937

    CAS  PubMed  Google Scholar 

  • Inada M, Ueda A, Shi WM, Takabe T (2005) A stress-inducible plasma membrane protein 3 (AcPMP3) in a monocotyledonous halophyte, Aneurolepidium chinense, regulates cellular Na+ and K+ accumulation under salt stress. Planta 220:395–402

    CAS  PubMed  Google Scholar 

  • Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG, Bohnert HJ (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9:537–548

    CAS  PubMed  Google Scholar 

  • Islam S, Malik AI, Islam AKMR, Colmer TD (2007) Salt tolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents. J Exp Bot 58:1219–1229

    CAS  PubMed  Google Scholar 

  • James JJ, Alder NN, Muhling KH, Lauchli AE, Shackel KA, Donovan LA, Richards JH (2006) High apoplastic solute concentrations in leaves alter water relations of the halophytic shrub, Sarcobatus vermicubtus. J Exp Bot 57:139–147

    CAS  PubMed  Google Scholar 

  • James RA, von Caemmerer S, Condon AGT, Zwart AB, Munns R (2008) Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Funct Plant Biol 35:111–123

    CAS  Google Scholar 

  • Jha A, Joshi M, Yadav NS, Agarwal PK, Jha B (2011) Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 38:1965–1973

    CAS  PubMed  Google Scholar 

  • Jha B, Lal S, Tiwari V, Yadav SK, Agarwal PK (2012) The SbASR-1 gene cloned from an extreme halophyte salicornia brachiata enhances salt tolerance in transgenic tobacco. Mar Biotechnol. doi:10.1007/s10126-012-9442-7

  • Jia GX, Zhu ZQ, Chang FQ, Li YX (2002) Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep 21:141–146

    CAS  Google Scholar 

  • Jia J, Cui X, Wu J, Wang J, Wang G (2011) Physiological and biochemical responses of halophyte Kalidium foliatum to salt stress. Afr J Biotechnol 10:11468–11476

    CAS  Google Scholar 

  • Jing LW, Chen SH, Guo XL, Zhang H, Zhao YX (2006) Overexpression of a chloroplast-located peroxiredoxin Q Gene, SsPrxQ, Increases the salt and low-temperature tolerance of Arabidopsis. J Integr Plant Biol 48:1244–1249

    CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85:237–254

    CAS  PubMed  Google Scholar 

  • Joshi R, Ramanarao VM, Baisakh N (2013) Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol Biochem 65:61–66

    CAS  PubMed  Google Scholar 

  • Joshi R, Ramanarao VM, Lee S, Kato N, Baisakh N (2014) Ectopic expression of ADP Ribosylation Factor1 (SaARF1) from smooth cordgrass (Spartina alterniflora) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell Tiss Org Cult 117:17–30

    CAS  Google Scholar 

  • Kafi M, Khan MA (2008) Crop and forage production using saline waters. NAM S and T Centre, Daya Publishing House, New Delhi, India

    Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462

    CAS  PubMed  Google Scholar 

  • Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29:1220–1234

    CAS  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modification content. Plant J 50:967–981

    CAS  PubMed  Google Scholar 

  • Kavitha K, George S, Venkataraman G, Parida A (2010a) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:1321–1329

    CAS  PubMed  Google Scholar 

  • Kavitha K, Usha B, George S, Venkataraman G, Parida A (2010b) Molecular characterization of a salt‐inducible monodehydroascorbate reductase from the halophyte Avicennia marina. Int J Plant Sci 171:457–465

    CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khan MA, Gul B (2006) Halophyte seed germination. In: Khan MA, Weber DJ (eds) Eco-physiology of high salinity tolerant plants. Springer, Dordrecht, pp 11–30

    Google Scholar 

  • Khan MA, Weber DJ (2006) Ecophysiology of high salinity tolerant plants. Springer, Dordrecht

    Google Scholar 

  • Khan MA, Ungar IA, Showalter AM, Dewald HD (1998) NaCl-induced accumulation of glycinebetaine in four subtropical halophytes from Pakistan. Physiol Plant 102:487–492

    CAS  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Ann Bot 85:225–232

    CAS  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2005) Salt stimulation and tolerance in an intertidal stem-succulent halophyte. J Plant Nut 28:1365–1374

    CAS  Google Scholar 

  • Khan MA, Ansari R, Gul B, Qadir M (2006) Crop diversification through halophyte production on salt-prone land resources. CAB Rev 1:48

    Google Scholar 

  • Khatun S, Flowers TJ (1995) Effect of salinity on seed set in rice. Plant Cell Environ 18:61–87

    Google Scholar 

  • Kingsbury RW, Radlow A, Mudie PJ, Rutherford J, Radlow R (1976) Salt responses in Lasthenia glabrata, a winter annual composite endemic to saline soils. Can J Bot 54:1377–1385

    CAS  Google Scholar 

  • Koca M, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    CAS  Google Scholar 

  • Kramer D (1984) Cytological aspects of salt tolerance in higher plants. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 3–15

    Google Scholar 

  • Kuznetsov V, Shorina M, Aronova E, Stetsenko L, Rakitin V, Shevyakova N (2007) NaCl- and ethylene-dependent cadaverine accumulation and its possible protective role in the adaptation of the common ice plant to salt stress. Plant Sci 172:363–370

    CAS  Google Scholar 

  • Le Houérou HN (1996) Forage halophytes in the Mediterranean basin. In: Chakour-Allah R, Malcolm CV, Hamdy A (eds) Halophytes and biosaline agriculture. Marcel Dekker, New York, pp 115–136

    Google Scholar 

  • Leach R, Wheeler K, Flowers T, Yeo A (1990) Molecular markers for ion compartmentation in cells of higher plants. J Exp Bot 41:1089–1094

    CAS  Google Scholar 

  • Lewis MA, Devereux R (2009) Nonnutrient anthropogenic chemicals in seagrass ecosystems: fate and effects. Environ Toxicol Chem 28:644–661

    CAS  PubMed  Google Scholar 

  • Li QL, Gao XR, Yu XH, Wang XZ, Jiaan LJ (2003a) Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol Lett 25:1431–1436

    CAS  PubMed  Google Scholar 

  • Li QL, Liu DW, Gao XR, Su Q, An LJ (2003b) Cloning of cDNA encoding choline monooxygenase from Suaeda liaotungensis and salt tolerance of transgenic tobacco. Acta Bot Sin 45:242–247

    CAS  Google Scholar 

  • Li JY, Jiang GQ, Huang P, Ma J, Zhang FC (2007) Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana. Plant Cell Tiss Org Cult 90:41–48

    CAS  Google Scholar 

  • Li JY, He XW, Xu L, Zhou J, Wu P, Shou HX, Zhang FC (2008) Molecular and functional comparisons of the vacuolar Na+/H+ exchangers originated from glycophytic and halophytic species. J Zhejiang Univ-Sci B 9:132–140

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li W, Zhang Q, Kong X, Wu C, Ma X, Zhang H, Zhao Y (2009) Salt tolerance is conferred in Arabidopsis by overexpression of the vacuolar Na+/H+ antiporter gene SsNHX2, an alternative splicing variant of SsNHX1, from Suaeda salsa. J Plant Biol 52:147–153

    CAS  Google Scholar 

  • Li F, Guo S, Zhao Y, Chen D, Chong K, Xu Y (2010) Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep 29:977–986

    CAS  PubMed  Google Scholar 

  • Li W, Wang D, Jin T, Chang Q, Yin D, Xu S, Liu B, Liu L (2011) The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic Alfalfa (Medicago sativa L.). Plant Mol Biol Rep 29:278–290

    CAS  Google Scholar 

  • Li K, Pang CH, Ding F, Sui N, Feng ZT, Wang BS (2012a) Overexpression of Suaeda salsa stroma ascorbate peroxidase in Arabidopsis chloroplasts enhances salt tolerance of plants. South Afr J Bot 78:235–245

    CAS  Google Scholar 

  • Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J (2012b) HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ 35:1582–1600

    CAS  PubMed  Google Scholar 

  • Lin H, Salus S, Schumaker K (1997) Salt sensitivity and the activities of the H+-ATPases in cotton seedlings. Crop Sci 37:190–197

    CAS  Google Scholar 

  • Lipscshitz N, Shomer-llan A, Eshel A, Waisel Y (1974) Salt glands on leaves of Rhodes grass (Chlorisgayana Kth). Ann Bot 38:459–462

    Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu N, Zhong NQ, Wang GL, Li LJ, Liu XL, He YK, Xia GX (2007) Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta 226:827–838

    CAS  PubMed  Google Scholar 

  • Liu H, Zhang X, Takano T, Liu S (2009) Characterization of a PutCAX1 gene from Puccinellia tenuiflora that confers Ca2+ and Ba2+ tolerance in yeast. Biochem Biophys Res Commun 383:392–396

    CAS  PubMed  Google Scholar 

  • Liu L, Wang Y, Wang N, Dong YY, Fan XD, Liu XM, Yang J, Li HY (2011) Cloning of a Vacuolar H+-pyrophosphatase gene from the Halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis. J Integr Plant Biol 53:731–742

    CAS  PubMed  Google Scholar 

  • Longstreth DJ, Nobel PS (1979) Salinity effects on leaf anatomy. Plant Physiol 63:700–703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lovelock CE, Ball M (2002) Influence of salinity on photosynthesis of halophytes. In: Lauchli A, Liittge U (eds) Salinity: environment-pbnt molecules. Kluwer, Dordrecht, pp 315–339

    Google Scholar 

  • Lu SY, Jing YX, Shen SH, Zhao HY, Ma LQ, Zhou XJ, Ren Q, Li YF (2005) Antiporter gene from Hordum brevisubulatum (Trin.) Link and its overexpression in transgenic tobacco. J Integr Plant Biol 47:343–349

    CAS  Google Scholar 

  • Lv S, Zhang KW, Gao Q, Lian LJ, Song YJ, Zhang JR (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164

    CAS  PubMed  Google Scholar 

  • Ma SS, Gong QQ, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107

    CAS  PubMed  Google Scholar 

  • Maathuis FJM, Flowers TJ, Yeo AR (1992) Sodium chloride compartmentation in leaf vacuoles of the halophyte Suaeda maritima (L.) Dum. and its relation to tonoplast permeability. J Exp Bot 43:1219–1223

    CAS  Google Scholar 

  • Mahalakshmi S, Christopher GSB, Reddy TP, Rao KV, Reddy VD (2006) Isolation of a cDNA clone (PcSrp) encoding serine-rich protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. Planta 224:347–359

    CAS  PubMed  Google Scholar 

  • Marcone MF (2003) Batis maritima (Saltwort/Beachwort): a nutritious, halophytic, seed bearings, perennial shrub for cultivation and recovery of otherwise unproductive agricultural land affected by salinity. Food Res Int 36:123–130

    Google Scholar 

  • Masters DG, Benes SE, Norman HC (2007) Biosaline agriculture for forage and livestock production. Agric Ecosys Environ 119:234–248

    CAS  Google Scholar 

  • Matoh T, Ishikawa T, Takahashi E (1989) Collapse of ATP-induced pH gradient by sodium ions in microsomal membrane vesicles prepared from Atriplex gmelini leaves. Possibility of Na+/H+ antiport. Plant Physiol 29:1133–1140

    Google Scholar 

  • Maurel P (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol Plant Mol Biol 48:399–429

    CAS  PubMed  Google Scholar 

  • Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L (2008) Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci 174:420–431

    CAS  Google Scholar 

  • Mehta PA, Sivaprakash K, Parani M, Venkataraman G, Parida AK (2005) Generation and analysis of expressed sequence tags from the salt tolerant mangrove species Avicennia marina (Forsk) Vierh. Theor Appl Genet 110:416–424

    CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Upregulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    CAS  PubMed  Google Scholar 

  • Miyama M, Tada Y (2011) Expression of Bruguiera gymnorhiza BgARP1 enhances salt tolerance in transgenic Arabidopsis plants. Euphytica 177:383–392

    CAS  Google Scholar 

  • Miyama M, Shimizu H, Sugiyama M, Hanagata N (2006) Sequencing and analysis of 14,842 expressed sequence tags of burma mangrove, Bruguiera gymnorrhiza. Plant Sci 171:241–324

    Google Scholar 

  • Moghaieb REA, Saneoka H, Fujita K (2004) Effects of salinity on osmotic adjustment, dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Sci 166:1345–1349

    CAS  Google Scholar 

  • Moreno-Risueno MA, Busch W, Benfey PN (2010) Omics meet networks—using systems approaches to infer regulatory networks in plants. Curr Opin Plant Biol 13:126–131

    PubMed Central  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance bringing them together. New Phytol 167:645–663

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Physiol Plant Mol Biol 59:651–681

    CAS  Google Scholar 

  • Naidoo G, Rughunanan R (1990) Salt tolerance in the succulent, coastal halophyte, Sarcocornia natalensis. J Exp Bot 41:497–502

    CAS  Google Scholar 

  • Naidu BP (2003) Production of betaine from Australian Melaleuca spp. for use in agriculture to reduce plant stress. Austr J Exp Agric 43:1163–1170

    CAS  Google Scholar 

  • Naidu BP, Paleg LG, Jones GP (2000) Accumulation of proline analogues and adaptation of Mebleuca species to diverse environments in Australia. Austr J Bot 48:611–620

    CAS  Google Scholar 

  • Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K (2003) Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol 44:541–548

    CAS  PubMed  Google Scholar 

  • Niu X, Narasimhan ML, Salzman RA, Bressan RA, Hasegaw PM (1993) NaCl vegetation of plasma membrane (H+)-ATPase gene expression in a glcophyte and engineering of salt and drought tolerance with yeast regulatory genes. J Hortic Sci Biotechnol 78:261–269

    Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    PubMed Central  CAS  PubMed  Google Scholar 

  • O’Leary JW (1995) Adaptive components of salt tolerance. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 577–585

    Google Scholar 

  • Oh DH, Dassanayake M, Haas JS, Kropornika A, Wright C, d’Urzo MP, Hong H, Ali S, Hernandez A, Lambert GM, Inan G, Galbraith DW, Bressan RA, Yun DJ, Zhu JK, Cheeseman JM, Bohnert HJ (2010) Genome structures and halophyte-specific gene expression of the extremophile thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiol 154:1040–1052

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oh DH, Dassanayake M, Bohnert HJ, Cheeseman JM (2012) Life at the extreme: lessons from the genome. Genome Biol 13:241

    PubMed Central  PubMed  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    CAS  PubMed  Google Scholar 

  • Pang CH, Lia K, Wang B (2011) Overexpression of SsCHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana. Physiol Plant 143:355–366

    CAS  PubMed  Google Scholar 

  • Pantoja O, Dainty J, Blumwald E (1992) Cytoplasmic chloride regulates cation channels in the vacuolar membrane of plant cells. J Membr Biol 125:219–229

    CAS  PubMed  Google Scholar 

  • Park J, Choi HJ, Lee S, Lee T, Yang Z, Lee Y (2000) Rac-related GTP-binding protein in elicitor-induced reactive oxygen generation by suspension-cultured soybean cells. Plant Physiol 124(2):725–732

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parks GE, Dietrich MA, Schumaker KS (2002) Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl. J Exp Bot 53:1055–1065

    CAS  PubMed  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants—a review. Plant Soil Environ 54:89–99

    CAS  Google Scholar 

  • Peacock JM, Ferguson ME, Alhadrami GA, McCann IR, Al Hajoj A, Saleh A, Karnik R (2003) Conservation through utilization: a case study of the indigenous forage grasses of the Arabian Peninsula. J Arid Environ 54:15–28

    Google Scholar 

  • Perera L, Silva D, Mansfield T (1997) Avoidance of sodium accumulation by the stomatal guard cells of the halophyte Aster tripolium. J Exp Bot 48:707–711

    CAS  Google Scholar 

  • Pérez-Alfocea F, Ghanem ME, Gómez-Cadenas A, Dodd IC (2011) Omics of root-to-shoot signaling under salt stress and water deficit. Omics 15:893–901

    PubMed  Google Scholar 

  • Pino MT, Skinner JS, Park EJ, Jeknic Z, Hayes PM, Thomashow MF, Chen TH (2007) Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J 5:591–604

    CAS  PubMed  Google Scholar 

  • Pollak G, Waisel Y (1979) Ecophysiology of salt excretion in Aeluropus littoralis (Graminae). Physiol Plant 47:177–184

    CAS  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    CAS  PubMed  Google Scholar 

  • Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degrad Develop 19:429–453

    Google Scholar 

  • Qiao WH, Zhao XY, Li W, Luo Y, Zhang XS (2007) Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Rep 26:1663–1672

    CAS  PubMed  Google Scholar 

  • Qiu NW, Chen M, Guo JR, Bao HY, Ma XL, Wang BS (2007) Coordinate up-regulation of V-H+-ATPase and vacuolar Na+/H+ antiporter as a response to NaCl treatment in a C-3 halophyte Suaeda salsa. Plant Sci 172:1218–1225

    CAS  Google Scholar 

  • Qu GZ, Zang L, Xilin H, Gao C, Zheng T, Li KL (2012) Co-transfer of LEA and bZip Genes from Tamarix confers additive salt and osmotic stress tolerance in transgenic tobacco. Plant Mol Biol Rep 30:512–518

    CAS  Google Scholar 

  • Qureshi RH, Aslam M, Rafiq M (1991) Expansion in the use of forage halophytes in Pakistan. In: ACIAR Proc. ACT, Canberra, pp. 12–16

    Google Scholar 

  • Ramos J, Lopez MJ, Benlloch M (2004) Effect of NaCl and KCl salts on the growth and solute accumulation of the halophyte Atriplex nummularia. Plant and Soil 259:163–168

    CAS  Google Scholar 

  • Rauf M, Shahzad K, Ali R, Ahmad M, Habib I, Mansoor S, Berkowitz GA, Saeed NA (2014) Cloning and characterization of Na+/H+ antiporter (LfNHX1) gene from a halophyte grass Leptochloa fusca for drought and salt tolerance. Mol Biol Rep 41:1669–1682

    CAS  PubMed  Google Scholar 

  • Reddy MP, Shah MT, Patolia JS (2008) Salvadora persica, a potential species for industrial oil production in semiarid saline and alkali soils. Ind Crop Prod 28:273–278

    CAS  Google Scholar 

  • Rengasamy P, Chittleborough D, Helyar K (2003) Root-zone salinity and plant-based solutions for dryland salinity. Plant Soil 257:249–260

    CAS  Google Scholar 

  • Rhodes D, Nadolska-Orczyk A, Rich PJ (2002) Salinity, osmolytes and compatible solutes. In: Lauchli A, Luttge U (eds) Salinity: environment pbnt-molecuks. Kluwer, Dordrecht, pp 181–204

    Google Scholar 

  • Rogers CE, McCarty JP (2000) Climate change and ecosystems of the mid-Atlantic region. Clim Res 14:235–244

    Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/ glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    CAS  PubMed  Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480

    CAS  PubMed  Google Scholar 

  • Rozema J, Zaheer S, Niazi B, Linders H, Broekman R (1993) Salt tolerance of Beta vulgaris L.: a comparison of the growth of seabeet and fodderbeet in response to salinity. In: Lieth H, Masoom A (eds) Towards the rational use of high salinity tolerant plants, vol 2. Kluwer Academic, Dordrecht, pp 193–198

    Google Scholar 

  • Ruan CJ, Li H, Guo YQ, Qin P, Gallagher JL, Seliskar DM, Lutts S, Mahy G (2008) Kosteletzkya virginica, an agroecoengineering halophytic species for alternative agricultural production in China’s east coast: ecological adaptation and benefits, seed yield, oil content, fatty acid and biodiesel properties. Ecol Eng 32:320–328

    Google Scholar 

  • Rubio F, Gassman W, Schroeder J (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    CAS  PubMed  Google Scholar 

  • Saad RB, Zouari N, Ramdhan WB, Azaza J, Meynard D, Guiderdoni E, Hassairi A (2010) Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol 72:171–190

    PubMed  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Aproteomic approach to analyzing drought and salt responsiveness in rice. Field Crops Res 76:199–219

    Google Scholar 

  • Schaeffer HJ, Forstheoefel NR, Cushman C (1995) Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Mol Biol 28:205–218

    CAS  PubMed  Google Scholar 

  • Schroeder JI, Ward JM, Gassmann W (1994) Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct 23:441–471

    CAS  PubMed  Google Scholar 

  • Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229:911–929

    CAS  PubMed  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    PubMed Central  PubMed  Google Scholar 

  • Shabala S, Cuin TA (2007) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Google Scholar 

  • Shabala S, Cuin TA, Pottosin I (2007) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking nonselective cation channels. FEBS Lett 581:1993–1999

    CAS  PubMed  Google Scholar 

  • Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Chen SY (2002) Overexpression of proline transporter gene isolated from halophyte confers salt tolerance in Arabidopsis. Acta Bot Sin 44:956–962

    CAS  Google Scholar 

  • Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY (2003) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 107:155–161

    CAS  PubMed  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211–1219

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shevyakova NI, Rakitin VY, Stetsenko LA, Aronova EE, Kuznetsov W (2006) Oxidative stress and fluctuations of free and conjugated polyamines in the halophyte Mesembryanthemum crystallinum L. under NaCI salinity. Plant Growth Regul 50:69–78

    CAS  Google Scholar 

  • Siew P, Klein CR (1969) The effect of NaCl on some metabolic and fine structural changes during the greening of etiolated leaves. J Cell Biol 37:590–596

    Google Scholar 

  • Singh N, Mishra A, Jha B (2014) Overexpression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Mar Biotechnnol doi:10.1007/s10126-013-9548-6

  • Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S (2010) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. J Proteome Res 9:2882–2897

    CAS  PubMed  Google Scholar 

  • Staal M, Maathuis F, Elzenga T, Overbeek J, Prins H (1991) Na+/H+ antiport activity of the salt tolerant Plantago maritima and the salt-sensitive Plantago media. Physiol Plant 82:179–184

    CAS  Google Scholar 

  • Su H, Balderas E, Vera-Estrella R, Golldack D, Quigley F, Zhao CS, Pantoja O, Bohnert JH (2003) Expression of the cation transporter McHKTl in a halophyte. Plant Mol Biol 52:967–980

    CAS  PubMed  Google Scholar 

  • Su J, Hirji R, Zhang L, He CK, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57:1129–1135

    CAS  PubMed  Google Scholar 

  • Subudhi PK, Baisakh N (2011) Spartina alterniflora Loisel., a halophyte grass model to dissect salt stress tolerance. In Vitro Cell Dev Biol-Plant 47:441–457

    CAS  Google Scholar 

  • Sun ZB, Qi XY, Li PH, Wu CX, Zhao YX, Zhang H, Wang ZL (2008) Overexpression of a Thellungiella halophila CBL9 homolog, ThCBL9, confers salt and osmotic tolerances in transgenic Arabidopsis thaliana. J Plant Biol 51:25–34

    CAS  Google Scholar 

  • Tabuchi T, Kawaguchi Y, Azuma T, Nanmori T, Yasuda T (2005) Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-L methionine synthetase in leaves of the halophyte Atriplex nummularia L. Plant Cell Physiol 46:505–513

    CAS  PubMed  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ resistance and Na+ transport in higher plants. Ann Bot 91:503–527

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomson M, Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Timimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160

    Google Scholar 

  • Tiwari V, Chaturvedi AK, Mishra A, Jha B (2014) The transcriptional regulatory mechanism of the peroxisomal ascorbate peroxidase (pAPX) gene cloned from an extreme halophyte, Salicornia brachiata. Plant Cell Physiol 55:201–217

    CAS  PubMed  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves, vol 21. Cambridge University Press, Cambridge, p 413

    Google Scholar 

  • Touchette BW (2006) Salt tolerance in Juncus roemerianus brackish marsh: spatial variations in plant water relations. J Exp Marine Biol Ecol 337:1–12

    CAS  Google Scholar 

  • Touchette BW (2007) Seagrass-salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea. J Exp Marine Biol Ecol 350:194–215

    Google Scholar 

  • Touchette BW, Smith GA, Rhodes KL, Poole M (2009) Tolerance and avoidance: two contrasting physiological responses to salt stress in mature marsh halophytes Juncus roemerianus Scheele and Spartina alterniflora Loisel. J Exp Marine Biol Ecol 380:106–112

    CAS  Google Scholar 

  • Trotta A, Redondo-Gómez S, Paglianoc C, Clemente MEF, Rasciod N, Roccad NL, Antonaccia A, Andreuccia F, Barbatoa R (2012) Chloroplast ultrastructure and thylakoid polypeptide composition are affected by different salt concentrations in the halophytic plant Arthrocnemum macrostachyum. J Plant Physiol 169:111–116

    CAS  PubMed  Google Scholar 

  • Tyerman SD, Hatcher AE, West RJ, Larkum AWD (1984) Posidonia australis growing in altered salinities: leaf growth, regulation of turgor and the development of osmotic gradients. Aust J Plant Physiol 11:35–47

    Google Scholar 

  • Udawat P, Mishra A, Jha B (2014) Heterologous expression of an uncharacterized universal stress protein gene (SbUSP) from the extreme halophyte, Salicornia brachiata, which confers salt and osmotic tolerance to E. coli. Gene 536:163–170

    CAS  PubMed  Google Scholar 

  • Ungar I (1991) Ecophysiology of vascular halophytes. CRC, Boca Raton

    Google Scholar 

  • Ungar IA (1996) Effect of salinity on seed germination, growth and ion accumulation of Atriplexpatula (Chenopodiaceae). Am J Bot 83:604–607

    Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    CAS  PubMed  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Garcia-Ramirez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol 139:1507–1517

    PubMed Central  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    CAS  PubMed  Google Scholar 

  • Vernon DM, Ostrem JA, Bohnert HJ (1993) Stress perception and response in a facultative halophyte—the regulation of salinity-induced genes in Mesembryanthemum crystallinum. Plant Cell Environ 16:437–444

    CAS  Google Scholar 

  • Viégas RA, Silveira JAG, Junior ARL (2001) Effects of NaCl-salinity on growth and inorganic solute accumulation in young cashew plants. Rev Brasil de Engen Agríc Ambl, Campina Grande 5:216–222

    Google Scholar 

  • Volkmar KM, Hu Y, Steppuhn H (1998) Physiological responses of plants to salinity: a review. Can J Plant Sci 78:19–27

    CAS  Google Scholar 

  • Waisel Y (1972) The biology of halophytes. Academic, London

    Google Scholar 

  • Waisel Y, Eshel A, Agami M (1986) Salt balance of leaves of the mangrove Avicennia marina. Physiol Plant 67:67–72

    CAS  Google Scholar 

  • Wang BS, Luttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52:2355–2365

    CAS  PubMed  Google Scholar 

  • Wang SM, Zhang J, Flowers TJ (2007) Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiol 145:559–571

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Yang R, Wang B, Liu G, Yang C, Cheng Y (2011) Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora). Mol Biol Rep 38:4813–4822

    CAS  PubMed  Google Scholar 

  • Wang LL, Chen AP, Zhong NQ, Liu N, Wu XM, Wang F, Yang CL, Romero MF, Xia GX (2014) The Thellungiella salsuginea tonoplast Aquaporin TsTIP1;2 functions in protection against multiple abiotic stresses. Plant Cell Physiol 55:148–161

    PubMed Central  CAS  PubMed  Google Scholar 

  • Warwick N, Halloran G (1992) Accumulation and excretion of sodium, potassium and chloride from leaves of two accessions of Diplachne fusca (L.) Beuv. New Phytol 121:53–61

    CAS  Google Scholar 

  • Weber DJ (2008) Adaptive mechanisms of halophytes in desert regions. In: Salinity and water stress, Vol. 44. Springer, The Netherlands, pp. 179–185

    Google Scholar 

  • Weiglin C, Winter E (1991) Leaf structures of xerohalophytes from an East Jordanian salt Pan. Flora (Jena) 185:405–424

    Google Scholar 

  • Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA (2008) Breeding for abiotic stresses for sustainable agriculture. Phil Trans Royal Soc Lon Series B, Biol Sci 363:703–716

    CAS  Google Scholar 

  • Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wong YY, Ho CL, Nguyen PD, Teo SS, Harikrishna JA, Abdul RR, Wong MCVL (2007) Isolation of salinity tolerant genes from the mangrove plant, Bruguiera cylindrica by using suppression subtractive hybridization (SSH) and bacterial functional screening. Aquat Bot 86:117–122

    CAS  Google Scholar 

  • Wu W, Su Q, Xia XY, Wang Y, Luan YS, An LJ (2008) The Suaeda liaotungensis kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment. Euphytica 159:17–25

    CAS  Google Scholar 

  • Wu C, Gao X, Kong X, Zhao Y, Zhang H (2009) Molecular cloning and functional analysis of a Na+/H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella halophila. Plant Mol Biol Rep 27:1–12

    CAS  Google Scholar 

  • Wu S, Su Q, An LJ (2010) Isolation of choline monooxygenase (CMO) gene from Salicornia europaea and enhanced salt tolerance of transgenic tobacco with CMO genes. Ind J Biochem Biophys 47:298–305

    CAS  Google Scholar 

  • Wyn-Jones G, Gorham J (2002) Intra- and inter-cellular compartments of ions. In: Lauchli A, Luttge U (eds) Salinity: environment-plant-molecules. Kluwer, Dordrecht, pp 159–180

    Google Scholar 

  • Xianjun P, Xingyong M, Weihong F, Man S, Liqin C, Alam I, Lee BH, Dongmei Q, Shihua S, Gongshe L (2011) Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep 30:1493–1502

    PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    CAS  PubMed  Google Scholar 

  • Xu R, Zhao H, Dinkins RD, Cheng X, Carberry G, Li QQ (2006) The 73 kD subunit of the cleavage and polyadenylation specificity factor (CPSF) complex affects reproductive development in Arabidopsis. Plant Mol Biol 61:799–815

    CAS  PubMed  Google Scholar 

  • Xu SM, Wang XC, Chen J (2007) Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Rep 26:497–506

    CAS  PubMed  Google Scholar 

  • Yamada A, Saitoh T, Mimura T, Ozeki Y (2002) Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant Cell Physiol 43:903–910

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Oguri S, Chiba S, Momonoki YS (2009) Molecular cloning of acetylcholinesterase gene from Salicornia europaea L. Plant Sign Behav 4:361–366

    CAS  Google Scholar 

  • Yao M, Zeng Y, Liu L, Huang Y, Zhao E, Zhang F (2012) Overexpression of the halophyte Kalidium foliatum H+-pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana. Mol Biol Rep 39:7989–7996

    CAS  PubMed  Google Scholar 

  • Yeo A, Flowers T (1986) Ion transport in Suaeda maritima: its relation to growth and implications for the pathway of radial transport of ions across the root. J Exp Bot 37:143–159

    Google Scholar 

  • Yin X, Zhao Y, Luo D, Zhang H (2002) Isolating the promoter of a stress-induced gene encoding betaine aldehyde dehydrogenase from the halophyte Atriplex centralasiatica Iljin. Biochim Biophys Acta 1577:452–456

    CAS  PubMed  Google Scholar 

  • Yu J, Chen S, Zhao Q, Wang T, Yang C, Diaz C, Sun G, Dai S (2011) Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J Proteome Res 10:3852–3870

    CAS  PubMed  Google Scholar 

  • Zhang XN (2002) Cloning of salt tolerance related gene from Dunaliella salina and its function analysis, isolation and identification of the high efficiency promoter. Fudan University, Shanghai

    Google Scholar 

  • Zhang GH, Su Q, An LJ, Wu S (2008a) Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 46:117–126

    CAS  PubMed  Google Scholar 

  • Zhang Y, Lai J, Sun S, Li Y, Liu Y, Liang L, Chen M, Xie Q (2008b) Comparison analysis of transcripts from the halophyte Thellungiella halophila. J Integr Plant Biol 50:1327–1335

    CAS  PubMed  Google Scholar 

  • Zhang Y, Yin H, Li D, Zhu W, Li Q (2008c) Functional analysis of BADH gene promoter from Suaeda liaotungensis K. Plant Cell Rep 27:585–592

    PubMed  Google Scholar 

  • Zhang Y, Li Y, Lai J, Zhang H, Liu Y, Liang L, Xie Q (2012) Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis. Mol Biol Rep 39:4627–4633

    CAS  PubMed  Google Scholar 

  • Zhang JY, Qu SC, Qiao YS, Zhang Z, Guo ZR (2014) Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco. Mol Biol Rep 41:1553–1561

    CAS  PubMed  Google Scholar 

  • Zhao FY, Zhang H (2006a) Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tiss Org Cult 86:349–358

    CAS  Google Scholar 

  • Zhao FY, Zhang H (2006b) Expression of Suaeda salsa glutathione-S-transferase in transgenic rice resulted in a different level of abiotic stress resistance. J Agric Sci 144:547–554

    CAS  Google Scholar 

  • Zhao FY, Wang ZL, Zhang Q, Zhao YX, Zhang H (2006) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J Plant Res 119:95–104

    CAS  PubMed  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    CAS  PubMed  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Clin Rev Plant Sci 16:253–277

    CAS  Google Scholar 

  • Zhu JQ, Zhang JT, Tang RJ, Lv QD, Wang QQ, Yang L, Zhang HX (2009) Molecular characterization of ThIPK2, an inositol polyphosphate kinase gene homolog from Thellungiella halophila, and its heterologous expression to improve abiotic stress tolerance in Brassica napus. Physiol Plant 136:407–425

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Baisakh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Joshi, R. et al. (2015). Salt Adaptation Mechanisms of Halophytes: Improvement of Salt Tolerance in Crop Plants. In: Pandey, G. (eds) Elucidation of Abiotic Stress Signaling in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2540-7_9

Download citation