Advertisement

Salt Adaptation Mechanisms of Halophytes: Improvement of Salt Tolerance in Crop Plants

  • Rohit Joshi
  • Venkata Ramanarao Mangu
  • Renesh Bedre
  • Luis Sanchez
  • Whitney Pilcher
  • Hana Zandkarimi
  • Niranjan Baisakh

Abstract

Soil salinity is one of the most serious environmental factors that affect crop productivity worldwide. Inevitable global climate change leading to rise in sea water level would exacerbate degradation of irrigation systems and contamination of ground water resources, which render conventional agricultural practices impossible due to the sensitivity of most crops to salinity. Breeding for development of salt-tolerant crop plants has been a major challenge due to the complexity and multigenic control of salt tolerance traits. Halophytes are capable of surviving and thriving under salt at concentrations as high as 5 g/L, by maintaining negative water potential. Physiological and molecular studies have suggested that halophytes, unlike glycophytes, have evolved mechanisms, such as ion homeostasis through ion extrusion and compartmentalization, osmotic adjustments, and antioxidant production for adaptation to salinity. Employment of integrated approaches involving different omics tools would amplify our understanding of the biology of stress response networks in the halophytes. Translation of the knowledge and resources generated from halophyte relatives of crop plants through functional genomics will lead to the development of new breeds of crops that are suitable for saline agriculture.

Keywords

Functional genomics Crop plants Halophyte Salt tolerance Smooth cordgrass 

References

  1. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274PubMedGoogle Scholar
  2. Ahmad I, Larher F, Stewart G (1981) The accumulation of acetylornithine and other solutes in the salt marsh grass Puccinellia maritima. Phytochemistry 20:1501–1504Google Scholar
  3. Albert R, Kinzel H (1973) Unterscheidung von Physiotypen bei Halophyten des Neusied-lerseegebietes (Osterreich). Z Pflanzenphysiol 70:138–157Google Scholar
  4. Albert R, Popp M (1977) Chemical composition of halophytes from the Neusiedler lake region in Austria. Oecologia 27:157–170Google Scholar
  5. Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056PubMedCentralPubMedGoogle Scholar
  6. An Y, Wang Y, Lou L, Zheng T, Qu GZ (2011) A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance. J Plant Res 124:689–697PubMedGoogle Scholar
  7. Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254PubMedGoogle Scholar
  8. Araújo SAM, Silveira JAG, Almeida TD, Rocha IMA, Morais DL, Viégas RA (2006) Salinity tolerance of halophyte Atriplex nummularia L. grown under increasing NaCl levels. Rev Bras Eng Agríc Ambient 10:848–854Google Scholar
  9. Arbona V, Argamasilla R, Gómez-Cadenas A (2010) Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Physiol 167:1342–1350PubMedGoogle Scholar
  10. Ardie SW, Xie LN, Takahashi R, Liu SK, Takano T (2009) Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J Exp Bot 60:3491–3502PubMedCentralPubMedGoogle Scholar
  11. Ardie SW, Liu S, Takano T (2010) Expression of the AKT1-type K (+) channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep 29:865–874PubMedGoogle Scholar
  12. Ardie SW, Nishiuchi S, Liu S, Takano T (2011) Ectopic expression of the K+ channel beta subunits from Puccinellia tenuiflora (KPutB1) and rice (KOB1) alters K+ homeostasis of yeast and Arabidopsis. Mol Biotechnol 48:76–86PubMedGoogle Scholar
  13. Aronson JA (1989) HALOPH a data base of salt tolerant plants of the world. Office of Arid Land Studies, University of Arizona, TucsonGoogle Scholar
  14. Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30Google Scholar
  15. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16Google Scholar
  16. Asins MJ, Breto MP, Cambra M, Carbonell EA (1993) Salt tolerance in Lycopersicon species. I. Character definition and changes in gene expression. Theor Appl Genet 86:737–743PubMedGoogle Scholar
  17. Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6:2542–2554PubMedGoogle Scholar
  18. Aslam R, Bostan N, Amen N, Maria M, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plants Res 5:7108–7118Google Scholar
  19. Ayers RS, Wescott DW (1989) Water quality for agriculture. FAO Irrig Drain 29:737–746Google Scholar
  20. Baisakh N, Subudhi PK, Parami NP (2006) cDNA–AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. Plant Sci 170:1141–1149Google Scholar
  21. Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct Integr Genomics 8:287–300PubMedGoogle Scholar
  22. Baisakh N, Rajasekharan K, Deleon T, Biradar H, Parco A, Singh P, Subudhi PK (2009) Overexpression of Myo-inositol phosphate synthase gene from a halophyte Spartina alterniflora confers salt tolerance in transgenic tobacco and rice. Plant and Animal Genome XVII, San Diego, Jan 10–14 2009, Poster No. 616, Final abstract guide: 117Google Scholar
  23. Baisakh N, RamanaRao MV, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A (2012) Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Loisel. Plant Biotechnol J 10:453–464PubMedGoogle Scholar
  24. Balnokin YV, Kotov AA, Myasoedov NA, Khailova GF, Kurkova EB, Lun’kov RV, Kotova LM (2005) Involvement of long-distance Na+ transport in maintaining water potential gradient in the medium-root-leaf system of a halophyte Suaeda altissima. Rus J Plant Physiol 52:489–496Google Scholar
  25. Barkla B, Zingarelli L, Blumwald L, Smith J (1995) Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum. Plant Physiol 108:549–556Google Scholar
  26. Barkla BJ, Vera-Estrella R, Camacho-Emiterio J, Pantoja O (2002) Na+/H+ exchange in the halophyte Mesembryanthemum crystallinum is associated with cellular sites of Na+ storage. Funct Plant Biol 29:1017–1024Google Scholar
  27. Barrett-Lennard EG (2002) Restoration of saline land through revegetation. Agric Water Manag 53:213–226Google Scholar
  28. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58Google Scholar
  29. Bayat F, Shiran B, Belyaev DV (2011) Overexpression of HvNHX2, a vacuolar Na+/H+ antiporter gene from barley improves salt tolerance in Arabidopsis thaliana. Aust J Crop Sci 5:428–432Google Scholar
  30. Blaha G, Stelzl U, Spahn CMT, Agrawal RK, Frank J, Nierhaus KH (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol 317:292–309PubMedGoogle Scholar
  31. Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochem Biophys Acta 1465:140–151PubMedGoogle Scholar
  32. Boesch DF, Josselyn MN, Mehta AJ, Morris JT, Nuttle WK, Simenstad CA, Swift DJP (1994) Scientific assessment of coastal wetland loss, restoration and management in Louisiana. J Coastal Res 20:11–103Google Scholar
  33. Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97Google Scholar
  34. Bohnert HJ, Shen B (1998) Transformation and compatible solutes. J Hortic Sci Biotechnol 191:41–46Google Scholar
  35. Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hortic 78:237–260Google Scholar
  36. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111PubMedCentralPubMedGoogle Scholar
  37. Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms-getting genomics going. Curr Opin Plant Biol 9:180–188PubMedGoogle Scholar
  38. Boyko H, Boyko E (1959) Seawater irrigation, a new line of research on a bioclimatic plant-soil complex. Int J Bioclim 3:1–17Google Scholar
  39. Breckle SW (2002) Salinity, halophytes and salt affected natural ecosystems. In: Lauchli A, Luttge U (eds) Salinity: environment-plants-molecules. Kluwer Academic, Dordrecht, pp 53–77Google Scholar
  40. Bressan RA, Park HC, Orsini F, Oh D, Dassanayake M, Inan G, Yun DJ, Bohnert HJ, Maggio A (2013) Biotechnology for mechanisms that counteract salt stress in extremophile species: a genome-based view. Plant Biotech Rep 7:27–37Google Scholar
  41. Britto DT, Kronzucker HJ (2006) Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci 11:529–534PubMedGoogle Scholar
  42. Cambrolle J, Redondo-Gomez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Marine Poll Bull 56:2037–2042Google Scholar
  43. Chauhan S, Forsthoefel N, Ran YQ, Quigley F, Nelson DE, Bohnert HJ (2000) Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant J 24:511–522PubMedGoogle Scholar
  44. Cheeseman J (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87:104–108Google Scholar
  45. Chen AP, Wang GL, Qu ZL, Lu CX, Liu N, Wang F, Xia GX (2007) Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Rep 26:237–245PubMedGoogle Scholar
  46. Chen X, Han H, Jiang P, Nie L, Bao X, Fan P, Lv S, Feng J, Li Y (2011) Transformation of β-lycopene cyclase genes from salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco. Plant Cell Physiol 52:909–921PubMedGoogle Scholar
  47. Cheng L, Li X, Huang X, Ma T, Liang Y, Ma X, Peng X, Jia J, Chen S, Chen Y, Deng B, Liu G (2013) Overexpression of sheep grass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis. Plant Physiol Biochem 70:252–260PubMedGoogle Scholar
  48. Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448Google Scholar
  49. Clipson NJW, Flowers TJ (1987) Salt tolerance in the halophyte Suaeda maritima L. Dum. The effect of salinity on the concentration of sodium in the xylem. New Phytol 105:359–366Google Scholar
  50. Colmer TD, Flowers TJ (2008) Flooding tolerance in halophytes. New Phytol 179:964–974PubMedGoogle Scholar
  51. Colmer TD, Munns R, Flowers TJ (2005) Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric 45:1425–1443Google Scholar
  52. Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078PubMedGoogle Scholar
  53. Dang ZH, Zheng LL, Wang J, Gao Z, Wu SB, Qi Z, Wang YC (2013) Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genomics 14:29PubMedCentralPubMedGoogle Scholar
  54. Das-Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL (2006) Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett 580:3980–3988PubMedGoogle Scholar
  55. Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ, Cheeseman JM (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918PubMedCentralPubMedGoogle Scholar
  56. Debez A, Saadaoui D, Ramani B, Ouerghi Z, Koyro HW, Huchzermeyer B, Abdelly C (2006) Leaf H+-ATPase activity and photosynthetic capacity of Cakile maritima under increasing salinity. Environ Exp Bot 57:285–295Google Scholar
  57. Diao G, Wang Y, Yang C (2010) Functional characterization of a gluthathione S transferase gene from Limonium bicolor in response to several abiotic stresses. Afr J Biotech 9:5060–5065Google Scholar
  58. Du J, Huang YP, Xi J, Cao MJ, Ni WS, Chen X, Zhu JK, Oliver DJ, Xiang CB (2008) Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J 56:653–664PubMedCentralPubMedGoogle Scholar
  59. Dvorak J, Noaman MM, Goyal S, Gorham J (1994) Enhancement of the salt tolerance of Triticum turgidum L. by the Knal locus transferred from the Triticum aestivum L. Chromosome 4D by homoeologous recombination. Theor Appl Genet 88:872–877Google Scholar
  60. El-Shaer HM (2003) Potential of halophytes as animal fodder in Egypt. In: Lieth H, Mochtchenko M (eds) Tasks for vegetation science; 38 cash crop halophytes. Kluwer, Dordrecht, pp 111–119Google Scholar
  61. Endo N, Yoshida K, Akiyoshi M, Yoshida Y, Hayashi N (2005) Putative UDP-galactose epimerase and metallothioneine of Paspalum vaginalum enhanced the salt tolerance of rice Oryza sativa L. from transplanting to harvest stages. Breeding Sci 55:163–173Google Scholar
  62. Epstein E, Norlyn J, Rush D, Kingsbury R, Kelley D, Cunningham G, Wrona A (1980) Saline culture of crops: a genetic approach. Science 210:399–404PubMedGoogle Scholar
  63. Erdei L, Kuiper P (1979) The effect of salinity on growth, cation content, Na+-uptake and translocation in salt-sensitive and salt-tolerant Plantago species. Physiol Plant 47:95–99Google Scholar
  64. Ezawa S, Tada Y (2009) Identification of salt tolerance genes from the mangrove plant Bruguiera gymnorrhiza using Agrobacterium screening. Plant Sci 176:272–278Google Scholar
  65. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319PubMedGoogle Scholar
  66. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963PubMedGoogle Scholar
  67. Flowers TJ, Yeo A (1995) Breeding for salinity resistance in crops. Where next? Austr J Plant Physiol 22:875–884Google Scholar
  68. Flowers T, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol Plant Mol Biol 28:89–121Google Scholar
  69. Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 6:313–337Google Scholar
  70. Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612Google Scholar
  71. Freitas H, Breckle S (1992) Importance of bladder hairs for salt tolerance of field-grown, Atriplex species from a Portuguese salt marsh. Flora Morphol Geobot Oekophysiol 187:283–297Google Scholar
  72. Fricke W, Leigh RA, Tomos AD (1996) The intercellular distribution of vacuolar solutes in the epidermis and mesophyll of barley leaves changes in response to NaCl. J Exp Bot 47:1413–1426Google Scholar
  73. Fu X, Huang Y, Deng S, Zhou R, Yang G, Ni X, Li W, Shi S (2005) Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts. Plant Sci 169:147–154Google Scholar
  74. Gagneul D, Ainouche A, Duhaze C, Lugan R, Lahrer FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611PubMedCentralPubMedGoogle Scholar
  75. Gao F, Gao Q, Duan XG, Yue G, Yang AF, Zhang JR (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270PubMedGoogle Scholar
  76. Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2013) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res doi: 10.1093/dnares/dst042
  77. Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214PubMedGoogle Scholar
  78. Glenn EP (1987) Relationship between cation accumulation and water content of salt tolerant grasses and a sedge. Plant Cell Environ 10:205–212Google Scholar
  79. Glenn EP, Oleary JW, Watson MC, Thompson TL, Kuehl RO (1991) Salicornia-bigelovii Torr—an oilseed halophyte for seawater irrigation. Science 251:1065–1067PubMedGoogle Scholar
  80. Glenn EP, Poster R, Brown JJ, Thompson TL, O’Leary JW (1996) Na and K accumulation and salt tolerance of Atriplex canescens (Chenopodiaceae) genotypes. Am J Bot 83:997–1005Google Scholar
  81. Glenn E, Miyamoto M, Moore D, Brown JJ, Thompson TL, Brown P (1997) Water requirements for cultivating Salicornia bigelovii Torr. with seawater on sand in a coastal desert environment. J Arid Environ 36:711–730Google Scholar
  82. Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255Google Scholar
  83. Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839PubMedGoogle Scholar
  84. Gorham J, Wyn-Jones R (1993) Utilization of Triticeae for improving salt tolerance in wheat. In: Lieth H, Masoom A (eds) Towards the rational use of high salinity tolerant plants, vol 2. Kluwer, Dordrecht, pp 27–34Google Scholar
  85. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol Plant Mol Biol 31:149–190Google Scholar
  86. Grieve CM, Suarez DL (1997) Purslane (Portulaca oleracea L.): a halophytic crop for drainage water reuse systems. PLSOA 192:277–283Google Scholar
  87. Guan B, Hu Y, Zeng Y, Wang Y, Zhang F (2011) Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys caspica. Mol Biol Rep 38:1889–1899PubMedGoogle Scholar
  88. Gul B, Ansari R, Khan MA (2009) Salt tolerance of Salicornia utahensis from the great basin desert. Pak J Bot 41:2925–2932Google Scholar
  89. Guo SL, Yin HB, Zhang X, Zhao FY, Li PH, Chen SH, Zhao YX, Zhang H (2006) Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol 60:41–50PubMedGoogle Scholar
  90. Guo LQ, Shi DC, Wang DL (2010) The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere. J Agron Crop Sci 196:123–135Google Scholar
  91. Gupta K, Agarwal PK, Reddy MK, Jha B (2010) SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep 29:1131–1137PubMedGoogle Scholar
  92. Hajibagheri MA, Yeo AR, Flowers TJ, Collins JC (1989) Salinity resistance in Zea mays: fluxes of potassium, sodium and chloride, cytoplasmic concentrations and microsomal membrane lipids. Plant Cell Environ 12:753–757Google Scholar
  93. Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35–42PubMedGoogle Scholar
  94. Han HP, Li YX, Zhou SF (2008) Overexpression of phytoene synthase gene from Salicornia europaea alters response to reactive oxygen species under salt stress in transgenic Arabidopsis. Biotechnol Lett 30:1501–1507PubMedGoogle Scholar
  95. Han N, Lan W, He X, Shao Q, Wang B, Zhao Z (2012) Expression of a Suaeda salsa Vacuolar H+/Ca2+ transporter gene in Arabidopsis contributes to physiological changes in salinity. Plant Mol Biol Rep 30:470–477Google Scholar
  96. Harrouni MC, Daoud S, Koyro HW (2003) Effects of seawater irrigation on biomass production and ion composition of seven halophytic species in Morocco. In: Lieth H, Mochtchenko M (eds) Tasks for vegetation science 38 cash crop halophyte. Kluwer, Dordrecht, pp 59–70Google Scholar
  97. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499PubMedGoogle Scholar
  98. Hassidim M, Braun Y, Lene H, Reinhold L (1990) Na+/H+ antiport in root membrane vesicles isolated from the halophyte Atriplex and the glycophyte cotton. Plant Physiol 94:1795–1801PubMedCentralPubMedGoogle Scholar
  99. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052PubMedGoogle Scholar
  100. Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136PubMedCentralPubMedGoogle Scholar
  101. Hu YZ, Wang Y, Zhang FC (2009) Overexpression of Chenopodium glaucum tonoplast pyrophosphatases for improvement of salt tolerance of Arabidopsis thaliana. Plant Physiol Commun 45:449–454Google Scholar
  102. Hu YZ, Zeng YL, Guan B, Zhang FC (2012) Overexpression of a vacuolar H+-pyrophosphatase and a β subunit of H+-ATPase cloned from the halophyte Halostachys caspica improves salt tolerance in Arabidopsis thaliana. Plant Cell Tiss Org 108:63–71Google Scholar
  103. Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J Exp Bot 59:927–937PubMedGoogle Scholar
  104. Inada M, Ueda A, Shi WM, Takabe T (2005) A stress-inducible plasma membrane protein 3 (AcPMP3) in a monocotyledonous halophyte, Aneurolepidium chinense, regulates cellular Na+ and K+ accumulation under salt stress. Planta 220:395–402PubMedGoogle Scholar
  105. Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG, Bohnert HJ (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9:537–548PubMedGoogle Scholar
  106. Islam S, Malik AI, Islam AKMR, Colmer TD (2007) Salt tolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents. J Exp Bot 58:1219–1229PubMedGoogle Scholar
  107. James JJ, Alder NN, Muhling KH, Lauchli AE, Shackel KA, Donovan LA, Richards JH (2006) High apoplastic solute concentrations in leaves alter water relations of the halophytic shrub, Sarcobatus vermicubtus. J Exp Bot 57:139–147PubMedGoogle Scholar
  108. James RA, von Caemmerer S, Condon AGT, Zwart AB, Munns R (2008) Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Funct Plant Biol 35:111–123Google Scholar
  109. Jha A, Joshi M, Yadav NS, Agarwal PK, Jha B (2011) Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 38:1965–1973PubMedGoogle Scholar
  110. Jha B, Lal S, Tiwari V, Yadav SK, Agarwal PK (2012) The SbASR-1 gene cloned from an extreme halophyte salicornia brachiata enhances salt tolerance in transgenic tobacco. Mar Biotechnol. doi: 10.1007/s10126-012-9442-7
  111. Jia GX, Zhu ZQ, Chang FQ, Li YX (2002) Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep 21:141–146Google Scholar
  112. Jia J, Cui X, Wu J, Wang J, Wang G (2011) Physiological and biochemical responses of halophyte Kalidium foliatum to salt stress. Afr J Biotechnol 10:11468–11476Google Scholar
  113. Jing LW, Chen SH, Guo XL, Zhang H, Zhao YX (2006) Overexpression of a chloroplast-located peroxiredoxin Q Gene, SsPrxQ, Increases the salt and low-temperature tolerance of Arabidopsis. J Integr Plant Biol 48:1244–1249Google Scholar
  114. Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85:237–254PubMedGoogle Scholar
  115. Joshi R, Ramanarao VM, Baisakh N (2013) Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol Biochem 65:61–66PubMedGoogle Scholar
  116. Joshi R, Ramanarao VM, Lee S, Kato N, Baisakh N (2014) Ectopic expression of ADP Ribosylation Factor1 (SaARF1) from smooth cordgrass (Spartina alterniflora) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell Tiss Org Cult 117:17–30Google Scholar
  117. Kafi M, Khan MA (2008) Crop and forage production using saline waters. NAM S and T Centre, Daya Publishing House, New Delhi, IndiaGoogle Scholar
  118. Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462PubMedGoogle Scholar
  119. Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29:1220–1234PubMedGoogle Scholar
  120. Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modification content. Plant J 50:967–981PubMedGoogle Scholar
  121. Kavitha K, George S, Venkataraman G, Parida A (2010a) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:1321–1329PubMedGoogle Scholar
  122. Kavitha K, Usha B, George S, Venkataraman G, Parida A (2010b) Molecular characterization of a salt‐inducible monodehydroascorbate reductase from the halophyte Avicennia marina. Int J Plant Sci 171:457–465Google Scholar
  123. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905PubMedCentralPubMedGoogle Scholar
  124. Khan MA, Gul B (2006) Halophyte seed germination. In: Khan MA, Weber DJ (eds) Eco-physiology of high salinity tolerant plants. Springer, Dordrecht, pp 11–30Google Scholar
  125. Khan MA, Weber DJ (2006) Ecophysiology of high salinity tolerant plants. Springer, DordrechtGoogle Scholar
  126. Khan MA, Ungar IA, Showalter AM, Dewald HD (1998) NaCl-induced accumulation of glycinebetaine in four subtropical halophytes from Pakistan. Physiol Plant 102:487–492Google Scholar
  127. Khan MA, Ungar IA, Showalter AM (2000) Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Ann Bot 85:225–232Google Scholar
  128. Khan MA, Ungar IA, Showalter AM (2005) Salt stimulation and tolerance in an intertidal stem-succulent halophyte. J Plant Nut 28:1365–1374Google Scholar
  129. Khan MA, Ansari R, Gul B, Qadir M (2006) Crop diversification through halophyte production on salt-prone land resources. CAB Rev 1:48Google Scholar
  130. Khatun S, Flowers TJ (1995) Effect of salinity on seed set in rice. Plant Cell Environ 18:61–87Google Scholar
  131. Kingsbury RW, Radlow A, Mudie PJ, Rutherford J, Radlow R (1976) Salt responses in Lasthenia glabrata, a winter annual composite endemic to saline soils. Can J Bot 54:1377–1385Google Scholar
  132. Koca M, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351Google Scholar
  133. Kramer D (1984) Cytological aspects of salt tolerance in higher plants. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 3–15Google Scholar
  134. Kuznetsov V, Shorina M, Aronova E, Stetsenko L, Rakitin V, Shevyakova N (2007) NaCl- and ethylene-dependent cadaverine accumulation and its possible protective role in the adaptation of the common ice plant to salt stress. Plant Sci 172:363–370Google Scholar
  135. Le Houérou HN (1996) Forage halophytes in the Mediterranean basin. In: Chakour-Allah R, Malcolm CV, Hamdy A (eds) Halophytes and biosaline agriculture. Marcel Dekker, New York, pp 115–136Google Scholar
  136. Leach R, Wheeler K, Flowers T, Yeo A (1990) Molecular markers for ion compartmentation in cells of higher plants. J Exp Bot 41:1089–1094Google Scholar
  137. Lewis MA, Devereux R (2009) Nonnutrient anthropogenic chemicals in seagrass ecosystems: fate and effects. Environ Toxicol Chem 28:644–661PubMedGoogle Scholar
  138. Li QL, Gao XR, Yu XH, Wang XZ, Jiaan LJ (2003a) Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol Lett 25:1431–1436PubMedGoogle Scholar
  139. Li QL, Liu DW, Gao XR, Su Q, An LJ (2003b) Cloning of cDNA encoding choline monooxygenase from Suaeda liaotungensis and salt tolerance of transgenic tobacco. Acta Bot Sin 45:242–247Google Scholar
  140. Li JY, Jiang GQ, Huang P, Ma J, Zhang FC (2007) Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana. Plant Cell Tiss Org Cult 90:41–48Google Scholar
  141. Li JY, He XW, Xu L, Zhou J, Wu P, Shou HX, Zhang FC (2008) Molecular and functional comparisons of the vacuolar Na+/H+ exchangers originated from glycophytic and halophytic species. J Zhejiang Univ-Sci B 9:132–140PubMedCentralPubMedGoogle Scholar
  142. Li W, Zhang Q, Kong X, Wu C, Ma X, Zhang H, Zhao Y (2009) Salt tolerance is conferred in Arabidopsis by overexpression of the vacuolar Na+/H+ antiporter gene SsNHX2, an alternative splicing variant of SsNHX1, from Suaeda salsa. J Plant Biol 52:147–153Google Scholar
  143. Li F, Guo S, Zhao Y, Chen D, Chong K, Xu Y (2010) Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep 29:977–986PubMedGoogle Scholar
  144. Li W, Wang D, Jin T, Chang Q, Yin D, Xu S, Liu B, Liu L (2011) The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic Alfalfa (Medicago sativa L.). Plant Mol Biol Rep 29:278–290Google Scholar
  145. Li K, Pang CH, Ding F, Sui N, Feng ZT, Wang BS (2012a) Overexpression of Suaeda salsa stroma ascorbate peroxidase in Arabidopsis chloroplasts enhances salt tolerance of plants. South Afr J Bot 78:235–245Google Scholar
  146. Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J (2012b) HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ 35:1582–1600PubMedGoogle Scholar
  147. Lin H, Salus S, Schumaker K (1997) Salt sensitivity and the activities of the H+-ATPases in cotton seedlings. Crop Sci 37:190–197Google Scholar
  148. Lipscshitz N, Shomer-llan A, Eshel A, Waisel Y (1974) Salt glands on leaves of Rhodes grass (Chlorisgayana Kth). Ann Bot 38:459–462Google Scholar
  149. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedCentralPubMedGoogle Scholar
  150. Liu N, Zhong NQ, Wang GL, Li LJ, Liu XL, He YK, Xia GX (2007) Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta 226:827–838PubMedGoogle Scholar
  151. Liu H, Zhang X, Takano T, Liu S (2009) Characterization of a PutCAX1 gene from Puccinellia tenuiflora that confers Ca2+ and Ba2+ tolerance in yeast. Biochem Biophys Res Commun 383:392–396PubMedGoogle Scholar
  152. Liu L, Wang Y, Wang N, Dong YY, Fan XD, Liu XM, Yang J, Li HY (2011) Cloning of a Vacuolar H+-pyrophosphatase gene from the Halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis. J Integr Plant Biol 53:731–742PubMedGoogle Scholar
  153. Longstreth DJ, Nobel PS (1979) Salinity effects on leaf anatomy. Plant Physiol 63:700–703PubMedCentralPubMedGoogle Scholar
  154. Lovelock CE, Ball M (2002) Influence of salinity on photosynthesis of halophytes. In: Lauchli A, Liittge U (eds) Salinity: environment-pbnt molecules. Kluwer, Dordrecht, pp 315–339Google Scholar
  155. Lu SY, Jing YX, Shen SH, Zhao HY, Ma LQ, Zhou XJ, Ren Q, Li YF (2005) Antiporter gene from Hordum brevisubulatum (Trin.) Link and its overexpression in transgenic tobacco. J Integr Plant Biol 47:343–349Google Scholar
  156. Lv S, Zhang KW, Gao Q, Lian LJ, Song YJ, Zhang JR (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164PubMedGoogle Scholar
  157. Ma SS, Gong QQ, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107PubMedGoogle Scholar
  158. Maathuis FJM, Flowers TJ, Yeo AR (1992) Sodium chloride compartmentation in leaf vacuoles of the halophyte Suaeda maritima (L.) Dum. and its relation to tonoplast permeability. J Exp Bot 43:1219–1223Google Scholar
  159. Mahalakshmi S, Christopher GSB, Reddy TP, Rao KV, Reddy VD (2006) Isolation of a cDNA clone (PcSrp) encoding serine-rich protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. Planta 224:347–359PubMedGoogle Scholar
  160. Marcone MF (2003) Batis maritima (Saltwort/Beachwort): a nutritious, halophytic, seed bearings, perennial shrub for cultivation and recovery of otherwise unproductive agricultural land affected by salinity. Food Res Int 36:123–130Google Scholar
  161. Masters DG, Benes SE, Norman HC (2007) Biosaline agriculture for forage and livestock production. Agric Ecosys Environ 119:234–248Google Scholar
  162. Matoh T, Ishikawa T, Takahashi E (1989) Collapse of ATP-induced pH gradient by sodium ions in microsomal membrane vesicles prepared from Atriplex gmelini leaves. Possibility of Na+/H+ antiport. Plant Physiol 29:1133–1140Google Scholar
  163. Maurel P (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol Plant Mol Biol 48:399–429PubMedGoogle Scholar
  164. Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L (2008) Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci 174:420–431Google Scholar
  165. Mehta PA, Sivaprakash K, Parani M, Venkataraman G, Parida AK (2005) Generation and analysis of expressed sequence tags from the salt tolerant mangrove species Avicennia marina (Forsk) Vierh. Theor Appl Genet 110:416–424PubMedGoogle Scholar
  166. Mittova V, Tal M, Volokita M, Guy M (2003) Upregulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856PubMedGoogle Scholar
  167. Miyama M, Tada Y (2011) Expression of Bruguiera gymnorhiza BgARP1 enhances salt tolerance in transgenic Arabidopsis plants. Euphytica 177:383–392Google Scholar
  168. Miyama M, Shimizu H, Sugiyama M, Hanagata N (2006) Sequencing and analysis of 14,842 expressed sequence tags of burma mangrove, Bruguiera gymnorrhiza. Plant Sci 171:241–324Google Scholar
  169. Moghaieb REA, Saneoka H, Fujita K (2004) Effects of salinity on osmotic adjustment, dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Sci 166:1345–1349Google Scholar
  170. Moreno-Risueno MA, Busch W, Benfey PN (2010) Omics meet networks—using systems approaches to infer regulatory networks in plants. Curr Opin Plant Biol 13:126–131PubMedCentralPubMedGoogle Scholar
  171. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250PubMedGoogle Scholar
  172. Munns R (2005) Genes and salt tolerance bringing them together. New Phytol 167:645–663PubMedGoogle Scholar
  173. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Physiol Plant Mol Biol 59:651–681Google Scholar
  174. Naidoo G, Rughunanan R (1990) Salt tolerance in the succulent, coastal halophyte, Sarcocornia natalensis. J Exp Bot 41:497–502Google Scholar
  175. Naidu BP (2003) Production of betaine from Australian Melaleuca spp. for use in agriculture to reduce plant stress. Austr J Exp Agric 43:1163–1170Google Scholar
  176. Naidu BP, Paleg LG, Jones GP (2000) Accumulation of proline analogues and adaptation of Mebleuca species to diverse environments in Australia. Austr J Bot 48:611–620Google Scholar
  177. Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K (2003) Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol 44:541–548PubMedGoogle Scholar
  178. Niu X, Narasimhan ML, Salzman RA, Bressan RA, Hasegaw PM (1993) NaCl vegetation of plasma membrane (H+)-ATPase gene expression in a glcophyte and engineering of salt and drought tolerance with yeast regulatory genes. J Hortic Sci Biotechnol 78:261–269Google Scholar
  179. Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742PubMedCentralPubMedGoogle Scholar
  180. O’Leary JW (1995) Adaptive components of salt tolerance. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 577–585Google Scholar
  181. Oh DH, Dassanayake M, Haas JS, Kropornika A, Wright C, d’Urzo MP, Hong H, Ali S, Hernandez A, Lambert GM, Inan G, Galbraith DW, Bressan RA, Yun DJ, Zhu JK, Cheeseman JM, Bohnert HJ (2010) Genome structures and halophyte-specific gene expression of the extremophile thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiol 154:1040–1052PubMedCentralPubMedGoogle Scholar
  182. Oh DH, Dassanayake M, Bohnert HJ, Cheeseman JM (2012) Life at the extreme: lessons from the genome. Genome Biol 13:241PubMedCentralPubMedGoogle Scholar
  183. Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282PubMedGoogle Scholar
  184. Pang CH, Lia K, Wang B (2011) Overexpression of SsCHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana. Physiol Plant 143:355–366PubMedGoogle Scholar
  185. Pantoja O, Dainty J, Blumwald E (1992) Cytoplasmic chloride regulates cation channels in the vacuolar membrane of plant cells. J Membr Biol 125:219–229PubMedGoogle Scholar
  186. Park J, Choi HJ, Lee S, Lee T, Yang Z, Lee Y (2000) Rac-related GTP-binding protein in elicitor-induced reactive oxygen generation by suspension-cultured soybean cells. Plant Physiol 124(2):725–732PubMedCentralPubMedGoogle Scholar
  187. Parks GE, Dietrich MA, Schumaker KS (2002) Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl. J Exp Bot 53:1055–1065PubMedGoogle Scholar
  188. Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants—a review. Plant Soil Environ 54:89–99Google Scholar
  189. Peacock JM, Ferguson ME, Alhadrami GA, McCann IR, Al Hajoj A, Saleh A, Karnik R (2003) Conservation through utilization: a case study of the indigenous forage grasses of the Arabian Peninsula. J Arid Environ 54:15–28Google Scholar
  190. Perera L, Silva D, Mansfield T (1997) Avoidance of sodium accumulation by the stomatal guard cells of the halophyte Aster tripolium. J Exp Bot 48:707–711Google Scholar
  191. Pérez-Alfocea F, Ghanem ME, Gómez-Cadenas A, Dodd IC (2011) Omics of root-to-shoot signaling under salt stress and water deficit. Omics 15:893–901PubMedGoogle Scholar
  192. Pino MT, Skinner JS, Park EJ, Jeknic Z, Hayes PM, Thomashow MF, Chen TH (2007) Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J 5:591–604PubMedGoogle Scholar
  193. Pollak G, Waisel Y (1979) Ecophysiology of salt excretion in Aeluropus littoralis (Graminae). Physiol Plant 47:177–184Google Scholar
  194. Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291PubMedGoogle Scholar
  195. Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degrad Develop 19:429–453Google Scholar
  196. Qiao WH, Zhao XY, Li W, Luo Y, Zhang XS (2007) Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Rep 26:1663–1672PubMedGoogle Scholar
  197. Qiu NW, Chen M, Guo JR, Bao HY, Ma XL, Wang BS (2007) Coordinate up-regulation of V-H+-ATPase and vacuolar Na+/H+ antiporter as a response to NaCl treatment in a C-3 halophyte Suaeda salsa. Plant Sci 172:1218–1225Google Scholar
  198. Qu GZ, Zang L, Xilin H, Gao C, Zheng T, Li KL (2012) Co-transfer of LEA and bZip Genes from Tamarix confers additive salt and osmotic stress tolerance in transgenic tobacco. Plant Mol Biol Rep 30:512–518Google Scholar
  199. Qureshi RH, Aslam M, Rafiq M (1991) Expansion in the use of forage halophytes in Pakistan. In: ACIAR Proc. ACT, Canberra, pp. 12–16Google Scholar
  200. Ramos J, Lopez MJ, Benlloch M (2004) Effect of NaCl and KCl salts on the growth and solute accumulation of the halophyte Atriplex nummularia. Plant and Soil 259:163–168Google Scholar
  201. Rauf M, Shahzad K, Ali R, Ahmad M, Habib I, Mansoor S, Berkowitz GA, Saeed NA (2014) Cloning and characterization of Na+/H+ antiporter (LfNHX1) gene from a halophyte grass Leptochloa fusca for drought and salt tolerance. Mol Biol Rep 41:1669–1682PubMedGoogle Scholar
  202. Reddy MP, Shah MT, Patolia JS (2008) Salvadora persica, a potential species for industrial oil production in semiarid saline and alkali soils. Ind Crop Prod 28:273–278Google Scholar
  203. Rengasamy P, Chittleborough D, Helyar K (2003) Root-zone salinity and plant-based solutions for dryland salinity. Plant Soil 257:249–260Google Scholar
  204. Rhodes D, Nadolska-Orczyk A, Rich PJ (2002) Salinity, osmolytes and compatible solutes. In: Lauchli A, Luttge U (eds) Salinity: environment pbnt-molecuks. Kluwer, Dordrecht, pp 181–204Google Scholar
  205. Rogers CE, McCarty JP (2000) Climate change and ecosystems of the mid-Atlantic region. Clim Res 14:235–244Google Scholar
  206. Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/ glutathione peroxidase. Plant Cell Physiol 41:1229–1234PubMedGoogle Scholar
  207. Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480PubMedGoogle Scholar
  208. Rozema J, Zaheer S, Niazi B, Linders H, Broekman R (1993) Salt tolerance of Beta vulgaris L.: a comparison of the growth of seabeet and fodderbeet in response to salinity. In: Lieth H, Masoom A (eds) Towards the rational use of high salinity tolerant plants, vol 2. Kluwer Academic, Dordrecht, pp 193–198Google Scholar
  209. Ruan CJ, Li H, Guo YQ, Qin P, Gallagher JL, Seliskar DM, Lutts S, Mahy G (2008) Kosteletzkya virginica, an agroecoengineering halophytic species for alternative agricultural production in China’s east coast: ecological adaptation and benefits, seed yield, oil content, fatty acid and biodiesel properties. Ecol Eng 32:320–328Google Scholar
  210. Rubio F, Gassman W, Schroeder J (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663PubMedGoogle Scholar
  211. Saad RB, Zouari N, Ramdhan WB, Azaza J, Meynard D, Guiderdoni E, Hassairi A (2010) Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol 72:171–190PubMedGoogle Scholar
  212. Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421Google Scholar
  213. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Aproteomic approach to analyzing drought and salt responsiveness in rice. Field Crops Res 76:199–219Google Scholar
  214. Schaeffer HJ, Forstheoefel NR, Cushman C (1995) Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Mol Biol 28:205–218PubMedGoogle Scholar
  215. Schroeder JI, Ward JM, Gassmann W (1994) Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct 23:441–471PubMedGoogle Scholar
  216. Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229:911–929PubMedGoogle Scholar
  217. Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221PubMedCentralPubMedGoogle Scholar
  218. Shabala S, Cuin TA (2007) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669Google Scholar
  219. Shabala S, Cuin TA, Pottosin I (2007) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking nonselective cation channels. FEBS Lett 581:1993–1999PubMedGoogle Scholar
  220. Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Chen SY (2002) Overexpression of proline transporter gene isolated from halophyte confers salt tolerance in Arabidopsis. Acta Bot Sin 44:956–962Google Scholar
  221. Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY (2003) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 107:155–161PubMedGoogle Scholar
  222. Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211–1219PubMedCentralPubMedGoogle Scholar
  223. Shevyakova NI, Rakitin VY, Stetsenko LA, Aronova EE, Kuznetsov W (2006) Oxidative stress and fluctuations of free and conjugated polyamines in the halophyte Mesembryanthemum crystallinum L. under NaCI salinity. Plant Growth Regul 50:69–78Google Scholar
  224. Siew P, Klein CR (1969) The effect of NaCl on some metabolic and fine structural changes during the greening of etiolated leaves. J Cell Biol 37:590–596Google Scholar
  225. Singh N, Mishra A, Jha B (2014) Overexpression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Mar Biotechnnol doi: 10.1007/s10126-013-9548-6
  226. Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S (2010) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. J Proteome Res 9:2882–2897PubMedGoogle Scholar
  227. Staal M, Maathuis F, Elzenga T, Overbeek J, Prins H (1991) Na+/H+ antiport activity of the salt tolerant Plantago maritima and the salt-sensitive Plantago media. Physiol Plant 82:179–184Google Scholar
  228. Su H, Balderas E, Vera-Estrella R, Golldack D, Quigley F, Zhao CS, Pantoja O, Bohnert JH (2003) Expression of the cation transporter McHKTl in a halophyte. Plant Mol Biol 52:967–980PubMedGoogle Scholar
  229. Su J, Hirji R, Zhang L, He CK, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57:1129–1135PubMedGoogle Scholar
  230. Subudhi PK, Baisakh N (2011) Spartina alterniflora Loisel., a halophyte grass model to dissect salt stress tolerance. In Vitro Cell Dev Biol-Plant 47:441–457Google Scholar
  231. Sun ZB, Qi XY, Li PH, Wu CX, Zhao YX, Zhang H, Wang ZL (2008) Overexpression of a Thellungiella halophila CBL9 homolog, ThCBL9, confers salt and osmotic tolerances in transgenic Arabidopsis thaliana. J Plant Biol 51:25–34Google Scholar
  232. Tabuchi T, Kawaguchi Y, Azuma T, Nanmori T, Yasuda T (2005) Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-L methionine synthetase in leaves of the halophyte Atriplex nummularia L. Plant Cell Physiol 46:505–513PubMedGoogle Scholar
  233. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709PubMedCentralPubMedGoogle Scholar
  234. Tester M, Davenport R (2003) Na+ resistance and Na+ transport in higher plants. Ann Bot 91:503–527PubMedCentralPubMedGoogle Scholar
  235. Thomson M, Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Timimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160Google Scholar
  236. Tiwari V, Chaturvedi AK, Mishra A, Jha B (2014) The transcriptional regulatory mechanism of the peroxisomal ascorbate peroxidase (pAPX) gene cloned from an extreme halophyte, Salicornia brachiata. Plant Cell Physiol 55:201–217PubMedGoogle Scholar
  237. Tomlinson PB (1986) The botany of mangroves, vol 21. Cambridge University Press, Cambridge, p 413Google Scholar
  238. Touchette BW (2006) Salt tolerance in Juncus roemerianus brackish marsh: spatial variations in plant water relations. J Exp Marine Biol Ecol 337:1–12Google Scholar
  239. Touchette BW (2007) Seagrass-salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea. J Exp Marine Biol Ecol 350:194–215Google Scholar
  240. Touchette BW, Smith GA, Rhodes KL, Poole M (2009) Tolerance and avoidance: two contrasting physiological responses to salt stress in mature marsh halophytes Juncus roemerianus Scheele and Spartina alterniflora Loisel. J Exp Marine Biol Ecol 380:106–112Google Scholar
  241. Trotta A, Redondo-Gómez S, Paglianoc C, Clemente MEF, Rasciod N, Roccad NL, Antonaccia A, Andreuccia F, Barbatoa R (2012) Chloroplast ultrastructure and thylakoid polypeptide composition are affected by different salt concentrations in the halophytic plant Arthrocnemum macrostachyum. J Plant Physiol 169:111–116PubMedGoogle Scholar
  242. Tyerman SD, Hatcher AE, West RJ, Larkum AWD (1984) Posidonia australis growing in altered salinities: leaf growth, regulation of turgor and the development of osmotic gradients. Aust J Plant Physiol 11:35–47Google Scholar
  243. Udawat P, Mishra A, Jha B (2014) Heterologous expression of an uncharacterized universal stress protein gene (SbUSP) from the extreme halophyte, Salicornia brachiata, which confers salt and osmotic tolerance to E. coli. Gene 536:163–170PubMedGoogle Scholar
  244. Ungar I (1991) Ecophysiology of vascular halophytes. CRC, Boca RatonGoogle Scholar
  245. Ungar IA (1996) Effect of salinity on seed germination, growth and ion accumulation of Atriplexpatula (Chenopodiaceae). Am J Bot 83:604–607Google Scholar
  246. Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138PubMedGoogle Scholar
  247. Vera-Estrella R, Barkla BJ, Garcia-Ramirez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol 139:1507–1517PubMedCentralPubMedGoogle Scholar
  248. Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759PubMedGoogle Scholar
  249. Vernon DM, Ostrem JA, Bohnert HJ (1993) Stress perception and response in a facultative halophyte—the regulation of salinity-induced genes in Mesembryanthemum crystallinum. Plant Cell Environ 16:437–444Google Scholar
  250. Viégas RA, Silveira JAG, Junior ARL (2001) Effects of NaCl-salinity on growth and inorganic solute accumulation in young cashew plants. Rev Brasil de Engen Agríc Ambl, Campina Grande 5:216–222Google Scholar
  251. Volkmar KM, Hu Y, Steppuhn H (1998) Physiological responses of plants to salinity: a review. Can J Plant Sci 78:19–27Google Scholar
  252. Waisel Y (1972) The biology of halophytes. Academic, LondonGoogle Scholar
  253. Waisel Y, Eshel A, Agami M (1986) Salt balance of leaves of the mangrove Avicennia marina. Physiol Plant 67:67–72Google Scholar
  254. Wang BS, Luttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52:2355–2365PubMedGoogle Scholar
  255. Wang SM, Zhang J, Flowers TJ (2007) Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiol 145:559–571PubMedCentralPubMedGoogle Scholar
  256. Wang X, Yang R, Wang B, Liu G, Yang C, Cheng Y (2011) Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora). Mol Biol Rep 38:4813–4822PubMedGoogle Scholar
  257. Wang LL, Chen AP, Zhong NQ, Liu N, Wu XM, Wang F, Yang CL, Romero MF, Xia GX (2014) The Thellungiella salsuginea tonoplast Aquaporin TsTIP1;2 functions in protection against multiple abiotic stresses. Plant Cell Physiol 55:148–161PubMedCentralPubMedGoogle Scholar
  258. Warwick N, Halloran G (1992) Accumulation and excretion of sodium, potassium and chloride from leaves of two accessions of Diplachne fusca (L.) Beuv. New Phytol 121:53–61Google Scholar
  259. Weber DJ (2008) Adaptive mechanisms of halophytes in desert regions. In: Salinity and water stress, Vol. 44. Springer, The Netherlands, pp. 179–185Google Scholar
  260. Weiglin C, Winter E (1991) Leaf structures of xerohalophytes from an East Jordanian salt Pan. Flora (Jena) 185:405–424Google Scholar
  261. Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA (2008) Breeding for abiotic stresses for sustainable agriculture. Phil Trans Royal Soc Lon Series B, Biol Sci 363:703–716Google Scholar
  262. Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450PubMedCentralPubMedGoogle Scholar
  263. Wong YY, Ho CL, Nguyen PD, Teo SS, Harikrishna JA, Abdul RR, Wong MCVL (2007) Isolation of salinity tolerant genes from the mangrove plant, Bruguiera cylindrica by using suppression subtractive hybridization (SSH) and bacterial functional screening. Aquat Bot 86:117–122Google Scholar
  264. Wu W, Su Q, Xia XY, Wang Y, Luan YS, An LJ (2008) The Suaeda liaotungensis kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment. Euphytica 159:17–25Google Scholar
  265. Wu C, Gao X, Kong X, Zhao Y, Zhang H (2009) Molecular cloning and functional analysis of a Na+/H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella halophila. Plant Mol Biol Rep 27:1–12Google Scholar
  266. Wu S, Su Q, An LJ (2010) Isolation of choline monooxygenase (CMO) gene from Salicornia europaea and enhanced salt tolerance of transgenic tobacco with CMO genes. Ind J Biochem Biophys 47:298–305Google Scholar
  267. Wyn-Jones G, Gorham J (2002) Intra- and inter-cellular compartments of ions. In: Lauchli A, Luttge U (eds) Salinity: environment-plant-molecules. Kluwer, Dordrecht, pp 159–180Google Scholar
  268. Xianjun P, Xingyong M, Weihong F, Man S, Liqin C, Alam I, Lee BH, Dongmei Q, Shihua S, Gongshe L (2011) Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep 30:1493–1502PubMedGoogle Scholar
  269. Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139PubMedGoogle Scholar
  270. Xu R, Zhao H, Dinkins RD, Cheng X, Carberry G, Li QQ (2006) The 73 kD subunit of the cleavage and polyadenylation specificity factor (CPSF) complex affects reproductive development in Arabidopsis. Plant Mol Biol 61:799–815PubMedGoogle Scholar
  271. Xu SM, Wang XC, Chen J (2007) Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Rep 26:497–506PubMedGoogle Scholar
  272. Yamada A, Saitoh T, Mimura T, Ozeki Y (2002) Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant Cell Physiol 43:903–910PubMedGoogle Scholar
  273. Yamamoto K, Oguri S, Chiba S, Momonoki YS (2009) Molecular cloning of acetylcholinesterase gene from Salicornia europaea L. Plant Sign Behav 4:361–366Google Scholar
  274. Yao M, Zeng Y, Liu L, Huang Y, Zhao E, Zhang F (2012) Overexpression of the halophyte Kalidium foliatum H+-pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana. Mol Biol Rep 39:7989–7996PubMedGoogle Scholar
  275. Yeo A, Flowers T (1986) Ion transport in Suaeda maritima: its relation to growth and implications for the pathway of radial transport of ions across the root. J Exp Bot 37:143–159Google Scholar
  276. Yin X, Zhao Y, Luo D, Zhang H (2002) Isolating the promoter of a stress-induced gene encoding betaine aldehyde dehydrogenase from the halophyte Atriplex centralasiatica Iljin. Biochim Biophys Acta 1577:452–456PubMedGoogle Scholar
  277. Yu J, Chen S, Zhao Q, Wang T, Yang C, Diaz C, Sun G, Dai S (2011) Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J Proteome Res 10:3852–3870PubMedGoogle Scholar
  278. Zhang XN (2002) Cloning of salt tolerance related gene from Dunaliella salina and its function analysis, isolation and identification of the high efficiency promoter. Fudan University, ShanghaiGoogle Scholar
  279. Zhang GH, Su Q, An LJ, Wu S (2008a) Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 46:117–126PubMedGoogle Scholar
  280. Zhang Y, Lai J, Sun S, Li Y, Liu Y, Liang L, Chen M, Xie Q (2008b) Comparison analysis of transcripts from the halophyte Thellungiella halophila. J Integr Plant Biol 50:1327–1335PubMedGoogle Scholar
  281. Zhang Y, Yin H, Li D, Zhu W, Li Q (2008c) Functional analysis of BADH gene promoter from Suaeda liaotungensis K. Plant Cell Rep 27:585–592PubMedGoogle Scholar
  282. Zhang Y, Li Y, Lai J, Zhang H, Liu Y, Liang L, Xie Q (2012) Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis. Mol Biol Rep 39:4627–4633PubMedGoogle Scholar
  283. Zhang JY, Qu SC, Qiao YS, Zhang Z, Guo ZR (2014) Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco. Mol Biol Rep 41:1553–1561PubMedGoogle Scholar
  284. Zhao FY, Zhang H (2006a) Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tiss Org Cult 86:349–358Google Scholar
  285. Zhao FY, Zhang H (2006b) Expression of Suaeda salsa glutathione-S-transferase in transgenic rice resulted in a different level of abiotic stress resistance. J Agric Sci 144:547–554Google Scholar
  286. Zhao FY, Wang ZL, Zhang Q, Zhao YX, Zhang H (2006) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J Plant Res 119:95–104PubMedGoogle Scholar
  287. Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948PubMedCentralPubMedGoogle Scholar
  288. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71PubMedGoogle Scholar
  289. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445PubMedGoogle Scholar
  290. Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Clin Rev Plant Sci 16:253–277Google Scholar
  291. Zhu JQ, Zhang JT, Tang RJ, Lv QD, Wang QQ, Yang L, Zhang HX (2009) Molecular characterization of ThIPK2, an inositol polyphosphate kinase gene homolog from Thellungiella halophila, and its heterologous expression to improve abiotic stress tolerance in Brassica napus. Physiol Plant 136:407–425PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rohit Joshi
    • 1
  • Venkata Ramanarao Mangu
    • 2
  • Renesh Bedre
    • 2
  • Luis Sanchez
    • 2
  • Whitney Pilcher
    • 2
  • Hana Zandkarimi
    • 2
  • Niranjan Baisakh
    • 2
  1. 1.Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
  2. 2.School of Plant, Environmental, and Soil SciencesLouisiana State University Agricultural CenterBaton RougeUSA

Personalised recommendations