Skip to main content

Designing Climate-Smart Future Crops Employing Signal Transduction Components

  • Chapter
Elucidation of Abiotic Stress Signaling in Plants

Abstract

The explosive increase in world population, along with increasing environmental stresses like salinity, drought, and high and low temperatures, has created two major problems: more mouths to feed and less land to farm. Stress perception and thereafter the transduction of the stress signal are the initial steps of a typical stress response of plants. Therefore, understanding the mechanism(s) of plant stress perception and signal transduction is an imperative for designing climate-smart future crops. Recent studies have shown that abiotic stress signaling in plants comprises many components, for instance, receptor-coupled phosphorelay, phosphoinositol-induced Ca2+ changes, mitogen-activated protein kinase cascades, and transcriptional activation of stress-responsive genes. In addition, adapter or scaffold-mediated protein–protein interactions and protein post-translational modifications play a major role in abiotic stress signal transduction. An improved understanding of the mechanistic details of abiotic stress-associated signaling in plants combined with functional genomics may aid in pushing the productivity of crop plants closer to the optimum theoretical levels via genetic engineering or breeding approaches. In the present chapter, we discuss the recent progress related to the development of crop plants with enhanced stress tolerance by manipulating various components of the plant signal transduction machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlfors R, Macioszek V, Rudd J, Brosche M, Schlichting R, Scheel D, Kangasjärvi J (2004) Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J 40:512–522

    CAS  PubMed  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffman T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Barthou H, Petitprez M, Briere C, Souvre A, Alibert G (1999) RGD-mediated membrane-matrix adhesion triggers agarose-induced embryoid formation in sunflower protoplasts. Protoplasma 206:143–151

    CAS  Google Scholar 

  • BatistiÄŤ O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Biochim Biophys Acta 1820:1283–1293

    PubMed  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    CAS  PubMed  Google Scholar 

  • Beck M, Komis G, Ziemann A, Menzel D, Samaj J (2011) Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in Arabidopsis thaliana. New Phytol 189:1069–1083

    CAS  PubMed  Google Scholar 

  • Bentem SF, Hirt H (2009) Protein tyrosine phosphorylation in plants: more abundant than expected? Trends Plant Sci 14:71–76

    Google Scholar 

  • Bethke G, Pecher P, Eschen-Lippold L, Tsuda K, Katagiri F, Glazebrook J, Scheel D, Lee J (2012) Activation of the Arabidopsis thaliana mitogen-activated protein kinase MPK11 by the flagellin derived elicitor peptide, flg22. Mol Plant Microbe Interact 25:471–480

    CAS  PubMed  Google Scholar 

  • Blackbourn HD, Battey NH (1993) Annexin-mediated secretory vesicle aggregation in plants. Plant Physiol 89:27–32

    CAS  Google Scholar 

  • Bonfini L, Migliaccio E, Pelicci G, Lanfrancone L, Pelicci PG (1996) Not all Shc’s roads lead to Ras. Trends Biochem Sci 21:257–261

    CAS  PubMed  Google Scholar 

  • Boudsocq M, Lauriere C (2005) Osmotic signaling in plants: multiple pathways mediated by emerging kinase families. Plant Physiol 138:1185–1194

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18:30–40

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bourne HR (1997) How receptors talk to trimeric G proteins. Curr Opin Cell Biol 9:134–142

    CAS  PubMed  Google Scholar 

  • Campbell JS, Seger R, Graves JD, Graves LM, Jensen AM, Krebs EG (1995) The MAP kinase cascade. Recent Prog Horm Res 50:131–159

    CAS  PubMed  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101:9909–9914

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll AD, Moyen C, Van Kesteren P, Tooke F, Battey NH, Brownlee C (1998) Ca2+, annexins, and GTP modulate exocytosis from maize root cap protoplasts. Plant Cell 10:1267–1276

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resistance to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    CAS  PubMed  Google Scholar 

  • Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP (2003) A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301:1728–1731

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236

    CAS  PubMed  Google Scholar 

  • Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268:233–239

    CAS  PubMed  Google Scholar 

  • Clark GB, Roux SJ (1999) Isolation and characterization of two different Arabidopsis annexin cDNAs (Accession Nos. AF083913 and AF083914) (PGR99–065). Plant Physiol 120:339–346

    Google Scholar 

  • Clark GB, Dauwalder M, Roux SJ (1992) Purification and immunolocalization of an annexin-like protein in pea seedlings. Planta 187:1–9

    CAS  Google Scholar 

  • Clark GB, Rives AE, Beauchamp LM, Roux SJ (1999) Isolation and characterization of two novel Arabidopsis annexin cDNAs (accession nos. AF188362 and AF188363). Plant Physiol 121:1054–1057

    Google Scholar 

  • Clark GB, Thompson G, Roux SJ (2001a) Signal transduction mechanisms in plants: an overview. Curr Sci 80:170–177

    CAS  PubMed  Google Scholar 

  • Clark GB, Sessions A, Eastburn DJ, Roux SJ (2001b) Differential expression of members of the annexin multigene family in Arabidopsis. Plant Physiol 126:1072–1084

    PubMed Central  CAS  PubMed  Google Scholar 

  • Danquah A, Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52

    CAS  PubMed  Google Scholar 

  • Den Hertog J, Hunter T (1996) Tight association of GRB2 with receptor protein-tyrosine phosphatase K is mediated by the SH2 and C-terminal SH3 domains. EMBO J 15:3016–3027

    Google Scholar 

  • DiĂ©vart A, Clark SE (2004) LRR-containing receptors regulating plant development and defense. Development 131:251–261

    PubMed  Google Scholar 

  • Droillard MJ, Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypo-osmolarity and negative role in hyper-osmolarity tolerance. FEBS Lett 574:42–48

    CAS  PubMed  Google Scholar 

  • Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    CAS  PubMed  Google Scholar 

  • Eschen-Lippold L, Bethke G, Palm-Forster MA, Pecher P, Bauer N, Glazebrook J, Scheel D, Lee J (2012) MPK11- a fourth elicitor-responsive mitogen-activated protein kinase in Arabidopsis thaliana. Plant Signal Behav 7:1203–1205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eyster KM (1998) Introduction to signal transduction: a primer for untangling the web of intracellular messengers. Biochem Pharm 55:1927–1938

    CAS  PubMed  Google Scholar 

  • Fischer EH, Charbonneau H, Tonks NK (1991) Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 253:401–406

    CAS  PubMed  Google Scholar 

  • Ghelis T, Bolbach G, Clodic G, Habricot Y, Miginiac E, Sotta B, Jeannette E (2008) Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells. Plant Physiol 148:1668–1680

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gookin TE, Kim J, Assmann SM (2008) Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling. Genome Biol 9:R120

    PubMed Central  PubMed  Google Scholar 

  • Guan KL (1994) The mitogen activated protein kinase signal transduction pathway: from the cell surface to the nucleus. Cell Signal 6:581–589

    CAS  PubMed  Google Scholar 

  • Gudesblat GE, Iusem ND, Morris PC (2007a) Arabidopsis MPK3, a key signaling intermediate in stomatal function. Plant Signal Behav 2:271–272

    PubMed Central  PubMed  Google Scholar 

  • Gudesblat GE, Iusem ND, Morris PC (2007b) Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol 173:713–721

    CAS  PubMed  Google Scholar 

  • Gupta R, Luan S (2003) Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol 132:1149–1152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heldin CH (1991) SH2 domains: elements that control protein interactions during signal transduction. Trends Biochem Sci 16:450–452

    CAS  PubMed  Google Scholar 

  • Higashi Y, Saito K (2013) Network analysis for gene discovery in plant-specialized metabolism. Plant Cell Environ 36:1597–1606

    CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    CAS  PubMed  Google Scholar 

  • Hooley R (1999) A role for G proteins in plant hormone signaling? Plant Physiol Biochem 37:393–402

    CAS  Google Scholar 

  • Hoyos ME, Zhang S (2000) Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiol 122:1355–1363

    PubMed Central  CAS  PubMed  Google Scholar 

  • Igarashi D, Tsuda K, Katagiri F (2012) The peptide growth factor, phytosulfokine, attenuates pattern triggered immunity. Plant J 71:194–204

    CAS  PubMed  Google Scholar 

  • Ishitani M, Xiong L, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid dependent and abscisic acid-independent pathways. Plant Cell 9:1935–1949

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jaillais Y, Belkhadir Y, BalsemĂŁo-Piresa E, Dangl JL, Chory J (2011a) Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proc Natl Acad Sci U S A 108:8503–8507

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jaillais Y, Hothorn M, Belkhadir Y, Dabi T, Nimchuk ZL, Meyerowitz EM, Chory J (2011b) Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev 25:232–237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Oosten MJV, Bressane RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    CAS  PubMed  Google Scholar 

  • Johnston CA, Taylor JP, Gao Y, Kimple AJ, Grigston JC, Chen JG, Siderovski DP, Jones AM, Willard FS (2007) GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc Natl Acad Sci U S A 104:17317–17322

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jones JC, Duffy JW, Machius M, Temple BRS, Dohlman HG, Jones AM (2011a) The crystal structure of a self-activating G protein a subunit reveals its distinct mechanism of signal initiation. Sci Signal 4:8–14

    Google Scholar 

  • Jones JC, Temple BRS, Jones AM, Dohlman HG (2011b) Functional reconstitution of an atypical G protein heterotrimer and regulator of G protein signaling protein (RGS1) from Arabidopsis thaliana. J Biol Chem 286:13143–13150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jones JC, Jones AM, Temple BRS, Dohlman HG (2012) Differences in intradomain and interdomain motion confer distinct activation properties to structurally similar Gα proteins. Proc Natl Acad Sci U S A 109:7275–7279

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi S, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress inducible rd29A promoter improved drought and low temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    CAS  PubMed  Google Scholar 

  • Kiba A, Sugimoto M, Toyoda K, Ichinose Y, Yamada T, Shiraishi T (1998) Interaction between cell wall and plasma membrane via RGD motif is implicated in plant defense responses. Plant Cell Physiol 39:1245–1249

    CAS  Google Scholar 

  • Kiel C, Serrano L (2012) Challenges ahead in signal transduction: MAPK as an example. Curr Opin Biotechnol 23:305–314

    CAS  PubMed  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    CAS  PubMed  Google Scholar 

  • Kosetsu K, Matsunaga S, Nakagami H, Colcombet J, Sasabe M, Soyano T, Takahashi Y, Hirt H, Machida Y (2010) TheMAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell 22:3778–3790

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kovtun Y, Chiu W-L, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated MAPK cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee H, Chah OK, Sheen J (2011) Stem-cell-triggered immunity through CLV3p-FLS2 signaling. Nature 473:376–379

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Wang XQ, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300–303

    CAS  PubMed  Google Scholar 

  • Liese A, Romeis T (2013) Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochim Biophys Acta 1833:1582–1589

    CAS  PubMed  Google Scholar 

  • Lim WA, Pawson T (2010) Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142:661–667

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu J, Zhu JK (1997) Proline accumulation and salt stress induced gene expression in a salt hypersensitive mutant of Arabidopsis. Plant Physiol 114:591–596

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu XG, Yue YL, Li B, Nie YL, Li W, Wu WH, Ma LG (2007) A G protein coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716

    CAS  PubMed  Google Scholar 

  • Lohmann SM, Vaandrager AB, Smolenski A, Walter U, De Jonge HR (1997) Distinct and specific functions of cAMP dependent protein kinases. Trends Biochem Sci 22:307–312

    CAS  PubMed  Google Scholar 

  • Luo L (2012) Plant cytokine or phytocytokine. Plant Signal Behav 7:1513–1514

    PubMed Central  CAS  PubMed  Google Scholar 

  • Macho AP, Schwessinger B, Ntoukakis V, Brutus A, Segonzac C, Roy S, Kadota Y, Oh MH, Sklenar J, Derbyshire P, Lozano-Durán R, Malinovsky FG, Monaghan J, Menke FL, Huber SC, He SY, Zipfel C (2014) A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. Science 343:1509–1512

    CAS  PubMed  Google Scholar 

  • McAinsh MR, Roberts SK, Dubovskaya LV (2013) Calcium imaging of the cyclic nucleotide response. Chris Gehring (ed.), Cyclic nucleotide signaling in plants: Methods and protocols. Methods Mol Biol 1016:107–119

    CAS  PubMed  Google Scholar 

  • Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Dobrowolska G (2000) Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 12:165–178

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler R, Shulaev V (2013) Functional genomics, challenges and perspectives for the future. Physiol Plant 148:317–321

    CAS  PubMed  Google Scholar 

  • Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497–523

    PubMed Central  CAS  PubMed  Google Scholar 

  • Monks DE, Aghoram K, Courtney PD, DeWald DB, Dewey RE (2001) Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidyl inositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell 13:1205–1219

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moreno-Risueno MA, Busch W, Benfey PN (2010) Omics meet networks—using systems approaches to infer regulatory networks in plants. Curr Opin Plant Biol 13:126–131

    PubMed Central  PubMed  Google Scholar 

  • Moriyama EN, Strope PK, Opiyo SO, Chen Z, Jones AM (2006) Mining the Arabidopsis thaliana genome for highly-divergent seven transmembrane receptors. Genome Biol 7:84–96

    Google Scholar 

  • Murad F (1994) The nitric oxide-cyclic GMP signal transduction system for intracellular and intercellular communication. Recent Prog Horm Res 49:239–248

    CAS  PubMed  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    CAS  PubMed  Google Scholar 

  • Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nongpiur R, Soni P, Karan R, Singla-Pareek SL, Pareek A (2012) Histidine kinases in plants: cross talk between hormone and stress responses. Plant Signal Behav 7:1230–1237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oh MH, Wang X, Kota U, Goshe MB, Clouse SD, Huber SC (2009) Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc Natl Acad Sci U S A 106:658–663

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oh MH, Wang X, Wu X, Zhao Y, Clouse SD, Huber SC (2010) Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proc Natl Acad Sci U S A 107:17827–17832

    PubMed Central  CAS  PubMed  Google Scholar 

  • Palczewski K, Benovic JL (1991) G-protein-coupled receptor kinases. Trends Biochem Sci 16:387–391

    CAS  PubMed  Google Scholar 

  • Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16:1616–1632

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    CAS  PubMed  Google Scholar 

  • Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL (2006) Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol 142:380–397

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park KY, Jung JY, Park J, Hwang JU, Kim YW, Hwang I, Lee Y (2003) A role for phosphatidyl inositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. Plant Physiol 132:92–98

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim WY, Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK (2011) Activation of the plasma membrane Na+/H+ antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci U S A 108:2611–2616

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ramachandra-Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    PubMed  Google Scholar 

  • Sahoo KK, Tripathi AK, Pareek A, Singla-Pareek SL (2013) Taming drought stress in rice through genetic engineering of transcription factors and protein kinases. Plant Stress 7:60–72

    Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold and high-salinity stress conditions. Plant Physiol 136:2734–2746

    PubMed Central  CAS  PubMed  Google Scholar 

  • Samajova O, PlĂ­hal O, Mohamed AY, Hirt H, Samaj J (2013) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv 31:118–128

    CAS  PubMed  Google Scholar 

  • Schenk PW, Snaar-Jagalska BE (1994) Signal perception and transduction: the role of protein kinases. Biochim Biophys Acta 1449:1–24

    Google Scholar 

  • Schindler M, Meiners S, Cheresh DA (1989) RGD-dependent linkage between plant cell wall and plasma membrane: consequences for growth. J Cell Biol 108:1955–1965

    CAS  PubMed  Google Scholar 

  • Schulz P, Herde M, Romeis T (2013) Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol 163:523–530

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular response to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    CAS  PubMed  Google Scholar 

  • Shou H, Bordallo FJ, Yeakley JM, Bibikova M, Wang K (2004) Expression of an active tobacco MAP kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci U S A 101:3298–3303

    PubMed Central  CAS  PubMed  Google Scholar 

  • SmĂ©kalová V, DoskoÄŤilován A, Komis G, Ĺ amaj J (2013) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signaling in plants. Biotechnol Adv 32:2–11

    PubMed  Google Scholar 

  • Soni P, Kumar G, Soda N, Singla-Pareek SL, Pareek A (2013) Salt overly sensitive pathway members are influenced by diurnal rhythm in rice. Plant Signal Behav 8:7–14

    Google Scholar 

  • Stäubert C, Duc DL, Schöneberg T (2014) Examining the dynamic evolution of G protein-coupled receptors. In: Stevens CW (ed) G protein-coupled receptor genetics. Springer, New York, pp 23–43

    Google Scholar 

  • Stone JM, Dixon JE (1994) Protein-tyrosine phosphatases. J Biol Chem 269:31323–31326

    CAS  PubMed  Google Scholar 

  • Swanson RV, Alex LA, Simon MI (1994) Histidine and aspartate phosphorylation: two-component systems and the limits of homology. Trends Biochem Sci 19:485–490

    CAS  PubMed  Google Scholar 

  • Taddese B, Upton GJG, Bailey GR, Jordan SRD, Abdulla NY, Reeves PJ, Reynolds CA (2014) Do plants contain G protein-coupled receptors? Plant Physiol 164:287–307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, DĂłczi R, Ichimura K, Shinozaki K (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    CAS  PubMed  Google Scholar 

  • Torruella M, Casano LM, Vallejos RH (1986) Evidence of the activity of tyrosine kinase(s) and of the presence of phosphotyrosine proteins in pea plantlets. J Biol Chem 261:6651–6653

    CAS  PubMed  Google Scholar 

  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11:1195–1206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ullah H, Chen JG, Young JC, Im KH, Sussman MR, Jones AM (2001) Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science 292:2066–2069

    CAS  PubMed  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes unlock the future. Curr Opin Biotechnol 17:113–122

    CAS  PubMed  Google Scholar 

  • Underwood W, Zhang S, He SY (2007) The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. Plant J 52:658–672

    CAS  PubMed  Google Scholar 

  • Urano D, Jones AM (2013) Round up the usual suspects: a comment on nonexistent plant g protein-coupled receptors. Plant Physiol 161:1097–1102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Urano D, Jones AM (2014) Heterotrimeric G protein–coupled signaling in plants. Annu Rev Plant Biol 65:365–384

    CAS  PubMed  Google Scholar 

  • Vaid N, Pandey PK, Tuteja N (2012) Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. Plant Mol Biol 80:365–388

    CAS  PubMed  Google Scholar 

  • Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM (2014) Calcium-dependent protein kinases in plants: evolution, expression and function. Plant Cell Physiol 55:551–569

    CAS  PubMed  Google Scholar 

  • Van der Geer P, Hunter T, Lindberg RA (1994) Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 10:251–337

    PubMed  Google Scholar 

  • Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide: a putative neural messenger. Science 259:381–384

    CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    CAS  PubMed  Google Scholar 

  • Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19:63–73

    PubMed Central  PubMed  Google Scholar 

  • Wang H, Liu Y, Bruffett K, Lee J, Hause G, Walker JC, Zhang S (2008) Haplo-insufficiency of MPK3 in MPK6 mutant background uncovers a novel function of these two MAPKs in Arabidopsis ovule development. Plant Cell 20:602–613

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xin Z, Browse J (1998) eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci U S A 95:7799–7804

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    CAS  PubMed  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK, Shi J, Singh U, Wyatt SE, Bressan RA, Hasegawa PM, Carpita NC (1993) Enrichment of vitronectin and fibronectin-like proteins in NaCI-adapted plant cells and evidence for their involvement in plasma membrane-cell wall adhesion. Plant J 3:637–646

    CAS  PubMed  Google Scholar 

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis thaliana: evidence of a critical role of potassium nutrition. Plant Cell 10:1181–1192

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zondag GCM, Moolenaar WH (1997) Receptor protein tyrosine phosphatases: involvement in cell-cell interaction and signaling. Biochimie 79:477–483

    CAS  PubMed  Google Scholar 

  • Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL (2009) Abscisic acid and hydrogen peroxide induce a novel maize group CMAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta 229:485–495

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in SLS-P lab is supported by funds from the Department of Biotechnology, Government of India, and internal grants of ICGEB. AKT acknowledges the award of senior research fellowship (PhD) from the Department of Biotechnology, Government of India. RJ acknowledges Young Scientist Award from Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneh L. Singla-Pareek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gupta, B., Tripathi, A.K., Joshi, R., Pareek, A., Singla-Pareek, S.L. (2015). Designing Climate-Smart Future Crops Employing Signal Transduction Components. In: Pandey, G. (eds) Elucidation of Abiotic Stress Signaling in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2540-7_14

Download citation

Publish with us

Policies and ethics