Skip to main content

Signaling Pathways in Eukaryotic Stress, Aging, and Senescence: Common and Distinct Pathways

  • Chapter
Elucidation of Abiotic Stress Signaling in Plants

Abstract

Aging has been often described as a set of intricate changes occurring in an organism leading to a decline in its physiological functions, ultimately promoting disease and death. Senescence is also a term commonly associated with wear and tear of an organism that occurs with age. Aging as a process has long been thought to be a random process without any strict molecular basis. However, discovery of various conserved signaling pathways controlling longevity has provided strong proof for aging to be under the control of a programmed pathway. Multiple signaling cascades such as insulin signaling and TOR (target of rapamycin) pathway have been shown to be critical regulators of lifespan and aging-related processes across species. Improved longevity has also been associated with increased stress resistance suggesting cross talk between longevity and stress signaling pathways. Plant aging and senescence differ from that of other eukaryotes in terms of a broader range of lifespan observed across plant species that could be explained by different modes of nutrient accumulation and means of reproduction. Different signaling cascades such as those involved in sugar sensing and nutrient sensing in general have been found to be playing an important role in plant longevity. Existence of similar homologues of these proteins in animal kingdom that perform similar roles in aging-associated functions suggests some degree of conservation in pathways controlling aging across plant and animal kingdom. TOR pathway is one such signaling pathway, which is a well-known regulator of lifespan in animals and has been recently shown to be important for plant longevity as well. Besides nutrient signaling, different classes of hormones have also been implicated in plant stresses and senescence suggesting the existence of a complex interplay between these different physiological and environmental signals in regulating plant aging. With the advent of functional genomic approaches such as whole genome microarray, proteomics and ChIP-based (chromatin immunoprecipitation) sequencing have been utilized to understand the molecular mechanisms underlying the aging process. In this chapter, we attempt to summarize such findings that are relevant to aging and senescence in different organisms such as animal and plant model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Naqvi A, Hendriks G-J, Feltzin V, Zhu Y, Grigoriev A, Bonini NM (2014) Impact of age-associated increase in 2′-O-methylation of miRNAs on aging and neurodegeneration in Drosophila. Genes Dev 28:44–57

    PubMed Central  CAS  PubMed  Google Scholar 

  • Afanas’ev I (2010) Signaling and damaging functions of free radicals in aging―free radical theory, hormesis, and TOR. Aging Dis 1:75–88

    PubMed Central  PubMed  Google Scholar 

  • Alcedo J, Flatt T, Pasyukova E (2013) Neuronal inputs and outputs of aging and longevity. Front Genet 4:71. doi:10.3389/fgene.2013.00071

    PubMed Central  PubMed  Google Scholar 

  • Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100:1512–1521

    CAS  PubMed  Google Scholar 

  • Alonso AN, Stepanova JM (2004) The ethylene signaling pathway. Science 306(5701):1513–1515

    CAS  PubMed  Google Scholar 

  • Antebi A (2007) Genetics of aging in Caenorhabditis elegans. PLoS Genet 3(9):e129

    PubMed Central  Google Scholar 

  • Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18:3004–3009

    PubMed Central  CAS  PubMed  Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136(1):2556–2576

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baena-Gonzáles E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 2007; 448:938–942

    Google Scholar 

  • Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dolle ME, Calder RB, Chisholm GB, Pollock BH, Klein CA, Vijg J (2006) Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441:1011–1014

    CAS  PubMed  Google Scholar 

  • Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, Xue GP et al (2011) ORS1, an H(2)O(2)-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant 4(2):346–60

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bhargava A, Clabaugh I, To JP, Maxwell BB, Chiang YH, Schaller GE, Loraine A, Kieber JJ (2013) Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiol 162:272–294

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11:35–46

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310:1954–1957

    CAS  PubMed  Google Scholar 

  • Bosch SM (2011) Do perennials really senesce? Trends Plant Sci 13(5):216–220

    Google Scholar 

  • Boulias K, Horvitz R (2012) The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab 15(4):439–450

    PubMed Central  CAS  PubMed  Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S et al (2011) High-resolution temporal profiling of transcripts during arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell 23(3):873–894

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A (2011) The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY) 3:108–124

    CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    CAS  PubMed  Google Scholar 

  • Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, Carling D, Thompson CB, Jones RG, Berger SL (2010) Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329:1201–1205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Butterfield DA, Poon HF (2005) The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer’s disease. Exp Gerontol 40(10):774–783

    CAS  PubMed  Google Scholar 

  • Cai H, Lu Y, Xie W, Zhu T, Lian X (2012) Transcriptome response to nitrogen starvation in rice. J Biosci 37:731–747

    CAS  PubMed  Google Scholar 

  • Campisi J (2000) Cancer, aging and cellular senescence. In Vivo 14:183–188

    CAS  PubMed  Google Scholar 

  • Černý M, Kuklová A, Hoehenwarter W, Fragner L, Novák O, Rotková G, Jedelsky PL, Žáková K, Šmehilová M, Strnad M, Weckwerth W, Brzobohaty B (2013) Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. J Exp Bot 64(14):4193–4206. doi:10.1093/jxb/ert227

    PubMed Central  PubMed  Google Scholar 

  • Černy M, Jedelsky PL, Novak J, Schlosser A, Brzobohatý B (2014) Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant Cell Environ 37(7):1641–1655. doi:10.1111/pce.12270

    PubMed  Google Scholar 

  • Chen W, Ji J, Xu X, He S, Ru B (2003) Proteomic comparison between human young and old brains by two-dimensional gel electrophoresis and identification of proteins. Int J Dev Neurosci 21(4):209–216

    CAS  PubMed  Google Scholar 

  • Chico JMC, Raíces M, Téllez-Iñón MT, Ulloa RM (2002) A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol 128:256–270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cho YH, Hong JW, Kim E-C, Yoo SD (2012) Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Plant Physiol 158:1955–1964

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19:284–295

    CAS  PubMed  Google Scholar 

  • Choksi KB, Roberts LJ II, DeFord JH, Rabek JP, Papaconstantinou J (2007) Lower levels of F2-isoprostanes in serum and livers of long-lived Ames dwarf mice. Biochem Biophys Res Commun 364:761–764

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coello P, Hey SJ, Halford NG (2011) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62(3):883–893. doi:10.1093/jxb/erq331

    CAS  PubMed  Google Scholar 

  • Confraria A, Cláudia Martinho C, Elias A, Rubio-Somoza I, Baena-González E (2013) miRNAs mediate SnRK1-dependent energy signaling in Arabidopsis. Front Plant Sci 4:197

    PubMed Central  PubMed  Google Scholar 

  • Cornelius E (1972) Increased incidence of lymphomas in thymectomized mice—evidence for an immunological theory of aging. Experientia 28:459

    CAS  PubMed  Google Scholar 

  • Curran SP, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:e56

    PubMed Central  PubMed  Google Scholar 

  • Davies PJ, Gan S (2012) Towards an integrated view of monocarpic plant senescence. Russ J Plant Physiol 59(4):467–478

    CAS  Google Scholar 

  • Desclos M, Etienne P, Coquet L, Jouenne T, Bonnefoy J, Segura R, Reze S, Ourry A, Avice JC (2009) A combined N-15 tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with remobilisation during leaf senescence induced by nitrate limitation or starvation. Proteomics 9(13):3580–3608

    CAS  PubMed  Google Scholar 

  • Dharmasiri N, Estelle M (2004) Auxin signaling and regulated protein degradation. Trends Plant Sci 9:302–307

    CAS  PubMed  Google Scholar 

  • Dong MQ, Venable JD, Au N, Xu T, Park SK, Cociorva D, Johnson JR, Dillin A, Yates JR III (2007) Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 317:660–663

    CAS  PubMed  Google Scholar 

  • Edwards MG, Anderson RM, Yuan M, Kendziorski CM, Weindruch R, Prolla TA (2007) Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program. BMC Genomics 8:80

    PubMed Central  PubMed  Google Scholar 

  • Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59(7):1615–1624

    CAS  PubMed  Google Scholar 

  • Finkelstein RR, Srinivas SL, Gampala SSL (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45. doi:10.1105/tpc.010441

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fok WC, Chen Y, Bokov A, Zhang Y, Salmon AB, Diaz V, Javors M, Wood WH III, Zhang Y, Becker KG, Pérez VI, Richardson A (2014) Mice fed rapamycin have an increase in lifespan associated with major changes in the liver transcriptome. PLoS One 9(1):e83988. doi:10.1371/journal.pone.0083988

    PubMed Central  PubMed  Google Scholar 

  • Girardot F, Lasbleiz C, Monnier V, Tricoire H (2006) Specific age-related signatures in Drosophila body parts transcriptome. BMC Genomics 7:69

    PubMed Central  PubMed  Google Scholar 

  • Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134:1555–1573

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gromov P, Skovgaard GL, Palsdottir H, Gromova I, Østergaard M, Celis JE (2003) Protein profiling of the human epidermis from the elderly reveals up-regulation of a signature of interferon induced polypeptides that includes manganese-superoxide dismutase and the p85 subunit of phosphatidylinositol 3-kinase. Mol Cell Proteomics 2(2):70–84

    CAS  PubMed  Google Scholar 

  • Guiboileau A, Yoshimoto K, Soulay F, Bataillé MP, Avice JC, Masclaux-Daubresse C (2012) Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol 194(3):732–740

    CAS  PubMed  Google Scholar 

  • Guo Y (2013) Towards systems biological understanding of leaf senescence Plant Molecular Biology 82:519–528

    Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence Plant cell environment 27:521–549

    Google Scholar 

  • Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19:1544–1555

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110

    CAS  PubMed  Google Scholar 

  • Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24

    PubMed Central  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    PubMed Central  CAS  PubMed  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44(6):903–916

    CAS  PubMed  Google Scholar 

  • Hebeler R, Oeljeklaus S, Reidegeld KA, Eisenacher M, Stephan C, Sitek B, Stühler K, Meyer HE, Sturre MJ, Dijkwel PP, Warscheid B (2008) Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal 14N/15N labeling and difference gel electrophoresis. Mol Cell Proteomics 7(1):108–20, Epub 2007 Sep 18

    CAS  PubMed  Google Scholar 

  • Henderson ST, Bonafe M, Johnson TE (2006) daf-16 protects the nematode Caenorhabditis elegans during food deprivation. J Gerontol A Biol Sci Med Sci 61:444–460

    PubMed  Google Scholar 

  • Hermans C, Vuylsteke M, Coppens F, Simona M, Cristescu SM, Frans JM, Harren FJM, Dirk Inzé D, Nathalie Verbruggen N (2010) Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytol 187:119–131

    CAS  PubMed  Google Scholar 

  • Higuchi K, Saito A, Mikami Y, Miwa E (2011) Modulation of macronutrient metabolism in barley leaves under iron-deficient condition. Soil Sci Plant Nutr 57:233–247

    CAS  Google Scholar 

  • Hou K, Wu W, Gan SS (2013) SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiol 161(2):1002–1009

    PubMed Central  CAS  PubMed  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    CAS  PubMed  Google Scholar 

  • Huang YC, Chang YL, Hsu JJ, Chuang HW (2008) Transcriptome analysis of auxin-regulated genes of Arabidopsis thaliana. Gene 420(2):118–124

    CAS  PubMed  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    CAS  PubMed  Google Scholar 

  • Hutchison CE, Kieber JJ (2002) Cytokinin signaling in Arabidopsis. Plant Cell 14(Suppl 1):S47–S59

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    CAS  PubMed  Google Scholar 

  • Inoki K, Guan KL (2006) Complexity of the TOR signaling network. Trends Cell Biol 16:206–212

    CAS  PubMed  Google Scholar 

  • Inukai S, Lencastre AD, Turner M, Slack F (2012) Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One 7(7):e40028. doi:10.1371/journal.pone.0040028

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128

    CAS  PubMed  Google Scholar 

  • Jacobson AK, Yan C, Gao Q, Rincon-Skinner T, Jacobson AK, Yan C, Gao Q, Rincon-Skinner T, Rivera A, Edwards J, Huang A, Kaley G, Sun D (2007) Aging enhances pressure-induced arterial superoxide formation. Am J Physiol Heart Circ Physiol 293:1344–1350

    Google Scholar 

  • Jiang Y, Liang G, Yang S (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26(1):230–245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jin K (2010) Modern biological theories of aging. Aging Dis 1(2):72–74

    PubMed Central  PubMed  Google Scholar 

  • John F, Roffler S, Wicker T, Ringli C (2011) Plant TOR signaling components. Plant Signal Behav 6(11):1700–1705

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493(7432):338–345

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jossier M, Bouly JP, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame Hardie D, Thomas M (2009) SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J 59(2):316–328

    CAS  PubMed  Google Scholar 

  • Jung C, Lyou SH, Yeu S, Kim MA, Rhee S, Kim M, Lee JS, Choi YD, Cheong JJ (2007) Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Rep 26(7):1053–1063

    CAS  PubMed  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920):231–7

    CAS  PubMed  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karres JS, Hilgers V, Carrera I, Treisman J, Cohen SM (2012) The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131(1):136–145

    Google Scholar 

  • Katewa SD, Kapahi P (2011) Role of TOR signaling in aging and related biological processes in Drosophila melanogaster. Exp Gerontol 46(5):382–390

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F (2004) The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta 220(1):97–104

    CAS  PubMed  Google Scholar 

  • Kelley DR, Estelle M (2012) Ubiquitin-mediated control of plant hormone signaling. Plant Physiol 160:47–55

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    CAS  PubMed  Google Scholar 

  • Kim CH, Zou Y, Kim DH, Kim ND, Yu BP, Chung HY (2006) Proteomic analysis of nitrated and 4-hydroxy-2-nonenal-modified serum proteins during aging. J Gerontol A Biol Sci Med Sci 61(4):332–338

    PubMed  Google Scholar 

  • Kim JI, Murphy AS, Baek D, Lee SW, Yun DJ, Bressan RA, Narasimhan ML (2011) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot 62(11):3981–3992

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, et al. (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323, 1053–1057 10.1126/science.1166386

    Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in C. elegans. Science 277:942–946

    CAS  PubMed  Google Scholar 

  • Kirby K, Hu J, Hilliker AJ, Phillips JP (2002) RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc Natl Acad Sci U S A 99(25):16162–16167

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kong X, Luo Z, Dong H, Eneji AE, Li W, Lu H (2013) Gene expression profiles deciphering leaf senescence variation between early- and late-senescence cotton lines. PLoS One 8(7):e69847. doi:10.1371/journal.pone.0069847

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H, Renou JP, Daniel-Vedele F (2011) Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiol 157(3):1255–1282

    PubMed Central  CAS  PubMed  Google Scholar 

  • Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, Tavare S, Tower J (2004) Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci U S A 101:7663–7668

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lanning NJ, Carter-Su C (2006) Recent advances in growth hormone signaling. Rev Endocr Metab Disord 7:225–235

    CAS  PubMed  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee Y, Samaco RC, Gatchel JR, Thaller C, Orr HT, Zoghbi HY (2008) miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci 11:1137–1139

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leiser SF, Fletcher M, Begun A, Kaeberlein M (2013) Life-span extension from hypoxia in Caenorhabditis elegans requires both HIF-1 and DAF-16 and is antagonized by SKN-1. J Gerontol A Biol Sci Med Sci 68(10):1135–1144. doi:10.1093/gerona/glt016

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lencastre AD, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ (2010) MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol 20:2159–2168. doi:10.1016/j.cub.2010.11.015

    PubMed Central  PubMed  Google Scholar 

  • Li D, Sun F, Wang K (2004) Protein profile of aging and its retardation by caloric restriction in neural retina. Biochem Biophys Res Commun 318(1):253–258

    CAS  PubMed  Google Scholar 

  • Li W, Guo Y (2014) Transcriptome, transcription factors and transcriptional regulation of leaf senescence. J Bioinformatics Comp Genomics 1:e101

    Google Scholar 

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li Z, Peng J, Wen X, Guoa H (2013) Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25:3311–3328

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    CAS  PubMed  Google Scholar 

  • Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61(5):1419–1430

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu N, Landreh M, Cao K, Abe M, Hendriks GJ, Kennerdell JR, Zhu Y, Wang LS, Bonini NM (2007) The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482(7386):519–523

    Google Scholar 

  • Loeb J, Northrop JH (1916) Is there a temperature coefficient for the duration of life? Proc Natl Acad Sci U S A 2:456–457

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma TL, Wu WH, Wang Y (2012) Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol 12:161. doi:10.1186/1471-2229-12-161

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 77:727–754

    CAS  PubMed  Google Scholar 

  • Mao L, Zabel C, Wacker MA, Nebrich G, Sagi D, Schrade P, Bachmann S, Kowald A, Klose J (2006) Estimation of the mtDNA mutation rate in aging mice by proteome analysis and mathematical modeling. Exp Gerontol 41(1):11–24

    CAS  PubMed  Google Scholar 

  • Maruyama T, Higuchi K, Yoshiba M, Tadano T (2005) Comparison of iron availability in leaves of barley and rice. Soil Sci Plant Nutr 51:1035–1042

    CAS  Google Scholar 

  • Masclaux-Daubresse C, Chardon F (2011) Exploring nitrogen remobilization for seed filling using natural variation in Arabidopsis thaliana. J Exp Bot 62(6):2131–2142

    PubMed Central  CAS  PubMed  Google Scholar 

  • McElwee JJ, Schuster E, Blanc E, Thomas JH, Gems D (2004) Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long lived daf-2 mutants implicates detoxification system in longevity assurance. J Biol Chem 279:44533–44543

    CAS  PubMed  Google Scholar 

  • Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci U S A 99:6422–6427

    PubMed Central  CAS  PubMed  Google Scholar 

  • Merchante C, Alonso JM, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol 16(5):554–560

    CAS  PubMed  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55(6):853–867

    CAS  PubMed  Google Scholar 

  • Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 66(2):191–201

    PubMed  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu Y-X, Hwang I, Jones T (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300(5617):332–336

    CAS  PubMed  Google Scholar 

  • Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283

    CAS  PubMed  Google Scholar 

  • Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135:227–239

    PubMed Central  CAS  PubMed  Google Scholar 

  • Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348

    Google Scholar 

  • Oh SA, Lee SY, Chung IK, Lee CH, Nam HG (1996) A senescence associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol Biol 30:739–754

    CAS  PubMed  Google Scholar 

  • Ohdaira H, Sekiguchi M, Miyata K, Yoshida K (2012) MicroRNA-494 suppresses cell proliferation and induces senescence in A549 lung cancer cells. Cell Prolif 45:32–38

    CAS  PubMed  Google Scholar 

  • Oka M, Shimoda Y, Sato N, Inoue J, Yamazaki T, Shimomura N, Fujiyama H (2012) Abscisic acid substantially inhibits senescence of cucumber plants (Cucumis sativus) grown under low nitrogen conditions. J Plant Physiol 169(8):789–796

    CAS  PubMed  Google Scholar 

  • Olsen JE, Junttila O (2002) Far red end-of-day treatment restores wild-type-like plant length in hybrid aspen overexpressing phytochrome A. Physiol Plant 115:448–457

    CAS  PubMed  Google Scholar 

  • Palgunow D, Klapper M, Döring F (2012) Dietary restriction during development enlarges intestinal and hypodermal lipid droplets in Caenorhabditis elegans. PLoS One 7(11):e46198

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pamplona R, Portero-Otin M, Ruiz C, Pamplona R, Portero-Otin M, Ruiz C, Gredilla R, Herrero A, Barja G et al (1999) Double bond content of phospholipids and lipid peroxidation negatively correlate with maximum longevity in the heart of mammals. Mech Ageing Dev 112:169–183

    Google Scholar 

  • Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6(1):111–119

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paponov IA, Paponov M, Teale W, Menges M, Chakrabortee S, Murray JAH, Palme K (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 1:321–337

    CAS  PubMed  Google Scholar 

  • Patel PH, Tamanoi F (2006) Increased Rheb-TOR signaling enhances sensitivity of the whole organism to oxidative stress. J Cell Sci 119:4285–4292

    CAS  PubMed  Google Scholar 

  • Paul A, Belton A, Nag S, Martin I, Grotewiel MS, Duttaroy A (2007) Reduced mitochondrial SOD displays mortality characteristics reminiscent of natural aging. Mech Ageing Dev 128(11–12):706–716

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peoples MB, Dalling MJ (1988) The interplay between proteolysis and amino acid metabolism during senescence and nitrogen reallocation. In: Nooden LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego, pp 181–217

    Google Scholar 

  • Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, Partridge L (2002) Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 12(9):712–723

    CAS  PubMed  Google Scholar 

  • Polge C, Thomas M (2007) SNF1/AMPK/SnRK1kinases, global regulators at the heart of energy control? Trends Plant Sci 12:20–28

    CAS  PubMed  Google Scholar 

  • Poy MN, Spranger M, Stoffel M (2007) microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab 9:67–73. doi:10.1111/j.1463-1326.2007.00775.x

    CAS  PubMed  Google Scholar 

  • Purdom S, Chen QM (2003) Linking oxidative stress and genetics of aging with p66Shc signaling and forkhead transcription factors. Biogerontology 4:181–191

    CAS  PubMed  Google Scholar 

  • Ramos FJ, Chen SC, Garelick MG, Dai DF, Liao CY, Schreiber KH, MacKay VL, An EH, Strong R, Ladiges WC, Rabinovitch PS, Kaeberlein M, Kennedy BK (2012) Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med 4:144ra103

    PubMed Central  PubMed  Google Scholar 

  • Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 276:4666–4681

    CAS  PubMed  Google Scholar 

  • Ren M, Venglat P, Qiu S, Feng L, Cao Y, Wang E, Xiang D, Wang J, Alexander D, Chalivendr S, Logan D, Mattoo A, Selvaraj G, Datlaa R (2012) Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 24:4850–4874

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roberts IN, Caputo C, Criado MV, Funk C (2012) Senescence-associated proteases in plants. Physiol Plant 145(1):130–139

    CAS  PubMed  Google Scholar 

  • Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15:713–724

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez-Manas L, El-Assar M, Vallejo SM, Lopez-Doriga P, Solis J, Petidier R, Montes M, Nevado J, Castro M, Gomez-Guerrero C, Peiro C, Sanchez-Ferrer CF (2009) Endothelial dysfunction in aged humans is related with oxidative stress and vascular inflammation. Aging Cell 8:226–238

    CAS  PubMed  Google Scholar 

  • Rogers AN, Chen D, McColl G, Czerwieniec G, Felkey K, Gibson BW, Alan Hubbard A, Melov S, Lithgow GJ, Kapahi P (2011) Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans. Cell Metab 14(1):55–66

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101:15998–16003

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    CAS  PubMed  Google Scholar 

  • Rollo CD (2010) Aging and the Mammalian regulatory triumvirate. Aging Dis 1:105–138

    PubMed Central  PubMed  Google Scholar 

  • Rozemuller AJ, van Gool WA, Eikelenboom P (2005) The neuroinflammatory response in plaques and amyloid angiopathy in Alzheimer’s disease: therapeutic implications. Curr Drug Targets CNS Neurol Disord 4:223–233

    CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15(5):247–58

    CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603

    CAS  PubMed  Google Scholar 

  • Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, Woods A, Robinson IC, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJ, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Google Scholar 

  • Shankar A, Singh A, Kanwar P, Srivastava AK, Pandey A, Suprasanna P, Kapoor SK, Pandey GK (2013) Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components. PLoS One 8(7):e70321. doi:10.1371/journal.pone.0070321

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharov VS, Schöneich C (2007) Proteomic approach to aging research. Proteomics 4(2):309–321

    CAS  PubMed  Google Scholar 

  • Shen Y, Wollam J, Magner D, Karalay O, Antebi A (2012) A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science 338(6113):1472–1476. doi:10.1126/science.1228967

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S (2003) Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107:1664–1670

    CAS  PubMed  Google Scholar 

  • Shore DE, Carr CE, Ruvkun G (2012) Induction of cytoprotective pathways is central to the extension of lifespan conferred by multiple longevity pathways. PLoS Genet 8(7):e1002792

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sidler C, Wóycicki R, Ilnytskyy Y, Metz G, Kovalchuk I, Kovalchuk O (2013) Immunosenescence is associated with altered gene expression and epigenetic regulation in primary and secondary immune organs. Front Genet 4:21

    Google Scholar 

  • Sormani R, Yao L, Menand B, Ennar N, Lecampion C, Meyer C, Robaglia C (2007) Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility. BMC Plant Biol 7:26

    PubMed Central  PubMed  Google Scholar 

  • Sparla F, Tedeschi G, Pupillo P, Trost P. (1999) Cloning and heterologous expression of NAD(P H:quinone reductase of Arabidopsis thaliana, a functional homologue of animal DT-diaphorase.FEBS Lett. 1999 Dec 17;463(3):382–6

    Google Scholar 

  • Speakman JR, van Acker A, Harper EJ (2003) Age-related changes in metabolism and body composition of three dog breeds and their relationship to life expectancy. Aging Cell 2:265–275

    CAS  PubMed  Google Scholar 

  • Speakman JR, Talbot DA, Selman C, Snart S, McLaren JS, Redman P, Krol E, Jackson DM, Johnson MS, Brand MD (2004) Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 3:87–95

    CAS  PubMed  Google Scholar 

  • Spilman P, Podlutskaya N, Hart M, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One 5:e9979

    PubMed Central  PubMed  Google Scholar 

  • Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    CAS  PubMed  Google Scholar 

  • Stout GJ, Stigter EC, Essers PB, Mulder KW, Kolkman A, Snijders DS, van den Broek NJ, Betist MC, Korswagen HC, Macinnes AW, Brenkman AB (2013) Insulin/IGF-1-mediated longevity is marked by reduced protein metabolism. Mol Syst Biol 9:679

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi Y, Daitoku H, Hirota K, Tamiya H, Yokoyama A, Kako K, Nagashima Y, Nakamura A, Shimada T, Watanabe S, Yamagata K, Yasuda K, Ishii N, Fukamizu A (2011) Asymmetric arginine dimethylation determines life span in C. elegans by regulating forkhead transcription factor DAF-16. Cell Metab 13:505–516

    CAS  PubMed  Google Scholar 

  • Takehisa H, Sato Y, Antonio BA, Nagamura Y (2013) Global transcriptome profile of rice root in response to essential macronutrient deficiency. Plant Signal Behav 8(6):e24409

    PubMed Central  PubMed  Google Scholar 

  • Tettweiler G, Miron M, Jenkins M, Sonenberg N, Lasko PF (2005) Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes Dev 19:1840–1843

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thelander M, Olsson T, Ronne H (2004) Snf1‐related protein kinase 1 is needed for growth in a normal day–night light cycle. EMBO J 23:1900–1910

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas H (2003) Do green plants age, and if so, how? Top Curr Genet 3:145–171

    Google Scholar 

  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197(3):696–711

    PubMed  Google Scholar 

  • Thomas H, Ougham H, Canter P, Donnison I (2002) What stay-green mutants tell us about nitrogen remobilisation in leaf senescence. J Exp Bot 53:801–808

    CAS  PubMed  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in C. elegans. Nature 410:227–230

    CAS  PubMed  Google Scholar 

  • Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402

    CAS  PubMed  Google Scholar 

  • van Heemst D (2010) Insulin, IGF-1 and longevity. Aging Dis 1:147–157

    PubMed Central  PubMed  Google Scholar 

  • Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620

    CAS  PubMed  Google Scholar 

  • Viswanathan M, Kim SK, Berdichevsky A, Guarente L (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9:605–615

    CAS  PubMed  Google Scholar 

  • Waditee-Sirisattha R, Shibato J, Rakwal R, Sirisattha S, Hattori A, Nakano T, Takabe T, Tsujimoto M (2011) The Arabidopsis aminopeptidase LAP2 regulates plant growth, leaf longevity and stress response. New Phytol 191(4):958–969

    CAS  PubMed  Google Scholar 

  • Wang J, Kim SK (2003) Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130(8):1621–1634

    CAS  PubMed  Google Scholar 

  • Wang G, van der Walt JM, Li YJ, Züchner S, Scott WK, Martin ER, Vance JM (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of α-synuclein. Am J Hum Genet 82(2):283–289

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang IF, Guo BS, Liu YC, Wu CC, Yang CH, Tsai KJ, Shen CK (2012) Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci U S A 109:15024–15029

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469

    CAS  PubMed  Google Scholar 

  • Wu P, Ma L, Hou X, Mingyi Wang M, Yungrong Wu Y, Feiyan Liu F, Den XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132(3):1260–1271

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao S, Gao W, Chen QF, Chan SW, Zheng SX, Ma J, Wang M, Welti R, Chye ML (2010) Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22(5):1463–1482

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xing M, Xue H (2012) A proteomics study of auxin effects in Arabidopsis thaliana. Acta Biochim Biophys Sin 44(9):783–796

    CAS  PubMed  Google Scholar 

  • Xu F, Meng T, Li P, Yu Y, Cui Y, Wang Y, Gong Q, Wang NN (2011) A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene. Plant Physiol 157(4):2131–2153

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, Miyoshi M, Ogawa Y, Castrillon DH, Rosenblatt KP, Kuro-o M (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 280:38029–38034

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zahn JM, Kim S (2007) Systems biology of aging in four species. Curr Opin Biotechnol 18:355–359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zahn JM, Sonu R, Vogel H, Crane E, Mazan-Mamczarz K, Rabkin R, Davis RW, Becker KG, Owen AB, Kim SK (2006) Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2(7):e115

    PubMed Central  PubMed  Google Scholar 

  • Zhang X, Azhar G, Wei JY (2012) The expression of microRNA and microRNA clusters in the aging heart. PLoS One 7(4):e34688. doi:10.1371/journal.pone.0034688

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong M, Niu W, Lu ZJ, Sarov M, Murray JI, Janette J, Raha D, Sheaffer KL, Lam HY, Preston E, Slightham C, Hillier LW, Brock T, Agarwal A, Auerbach R, Hyman AA, Gerstein M, Mango SE, Kim SK, Waterston RH, Reinke V, Snyder M (2010) Genome-wide identification of binding sites defines distinct functions for Caenorhabditis elegans PHA-4/FOXA in development and environmental response. PLoS Genet 6(2):e1000848

    PubMed Central  PubMed  Google Scholar 

  • Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, Benzer S, Kapahi P (2009) 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139:149–160

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

G.K.P. is thankful to Delhi University, Department of Biotechnology (DBT) and Department of Science and Technology (DST), India, for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girdhar K. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Das, R., Pandey, A., Pandey, G.K. (2015). Signaling Pathways in Eukaryotic Stress, Aging, and Senescence: Common and Distinct Pathways. In: Pandey, G. (eds) Elucidation of Abiotic Stress Signaling in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2540-7_13

Download citation

Publish with us

Policies and ethics