Signaling Pathways in Eukaryotic Stress, Aging, and Senescence: Common and Distinct Pathways

  • Ritika Das
  • Amita Pandey
  • Girdhar K. PandeyEmail author


Aging has been often described as a set of intricate changes occurring in an organism leading to a decline in its physiological functions, ultimately promoting disease and death. Senescence is also a term commonly associated with wear and tear of an organism that occurs with age. Aging as a process has long been thought to be a random process without any strict molecular basis. However, discovery of various conserved signaling pathways controlling longevity has provided strong proof for aging to be under the control of a programmed pathway. Multiple signaling cascades such as insulin signaling and TOR (target of rapamycin) pathway have been shown to be critical regulators of lifespan and aging-related processes across species. Improved longevity has also been associated with increased stress resistance suggesting cross talk between longevity and stress signaling pathways. Plant aging and senescence differ from that of other eukaryotes in terms of a broader range of lifespan observed across plant species that could be explained by different modes of nutrient accumulation and means of reproduction. Different signaling cascades such as those involved in sugar sensing and nutrient sensing in general have been found to be playing an important role in plant longevity. Existence of similar homologues of these proteins in animal kingdom that perform similar roles in aging-associated functions suggests some degree of conservation in pathways controlling aging across plant and animal kingdom. TOR pathway is one such signaling pathway, which is a well-known regulator of lifespan in animals and has been recently shown to be important for plant longevity as well. Besides nutrient signaling, different classes of hormones have also been implicated in plant stresses and senescence suggesting the existence of a complex interplay between these different physiological and environmental signals in regulating plant aging. With the advent of functional genomic approaches such as whole genome microarray, proteomics and ChIP-based (chromatin immunoprecipitation) sequencing have been utilized to understand the molecular mechanisms underlying the aging process. In this chapter, we attempt to summarize such findings that are relevant to aging and senescence in different organisms such as animal and plant model system.


Aging Senescence Stress FOXO (forkhead box O) TOR (target of rapamycin) Microarray RNAi 



G.K.P. is thankful to Delhi University, Department of Biotechnology (DBT) and Department of Science and Technology (DST), India, for research support.


  1. Abe M, Naqvi A, Hendriks G-J, Feltzin V, Zhu Y, Grigoriev A, Bonini NM (2014) Impact of age-associated increase in 2′-O-methylation of miRNAs on aging and neurodegeneration in Drosophila. Genes Dev 28:44–57PubMedCentralPubMedGoogle Scholar
  2. Afanas’ev I (2010) Signaling and damaging functions of free radicals in aging―free radical theory, hormesis, and TOR. Aging Dis 1:75–88PubMedCentralPubMedGoogle Scholar
  3. Alcedo J, Flatt T, Pasyukova E (2013) Neuronal inputs and outputs of aging and longevity. Front Genet 4:71. doi: 10.3389/fgene.2013.00071 PubMedCentralPubMedGoogle Scholar
  4. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100:1512–1521PubMedGoogle Scholar
  5. Alonso AN, Stepanova JM (2004) The ethylene signaling pathway. Science 306(5701):1513–1515PubMedGoogle Scholar
  6. Antebi A (2007) Genetics of aging in Caenorhabditis elegans. PLoS Genet 3(9):e129PubMedCentralGoogle Scholar
  7. Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18:3004–3009PubMedCentralPubMedGoogle Scholar
  8. Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136(1):2556–2576PubMedCentralPubMedGoogle Scholar
  9. Baena-Gonzáles E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 2007; 448:938–942Google Scholar
  10. Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dolle ME, Calder RB, Chisholm GB, Pollock BH, Klein CA, Vijg J (2006) Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441:1011–1014PubMedGoogle Scholar
  11. Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, Xue GP et al (2011) ORS1, an H(2)O(2)-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant 4(2):346–60PubMedCentralPubMedGoogle Scholar
  12. Bhargava A, Clabaugh I, To JP, Maxwell BB, Chiang YH, Schaller GE, Loraine A, Kieber JJ (2013) Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiol 162:272–294PubMedCentralPubMedGoogle Scholar
  13. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11:35–46PubMedCentralPubMedGoogle Scholar
  14. Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310:1954–1957PubMedGoogle Scholar
  15. Bosch SM (2011) Do perennials really senesce? Trends Plant Sci 13(5):216–220Google Scholar
  16. Boulias K, Horvitz R (2012) The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab 15(4):439–450PubMedCentralPubMedGoogle Scholar
  17. Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S et al (2011) High-resolution temporal profiling of transcripts during arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell 23(3):873–894PubMedCentralPubMedGoogle Scholar
  18. Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A (2011) The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY) 3:108–124Google Scholar
  19. Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585PubMedGoogle Scholar
  20. Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, Carling D, Thompson CB, Jones RG, Berger SL (2010) Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329:1201–1205PubMedCentralPubMedGoogle Scholar
  21. Butterfield DA, Poon HF (2005) The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer’s disease. Exp Gerontol 40(10):774–783PubMedGoogle Scholar
  22. Cai H, Lu Y, Xie W, Zhu T, Lian X (2012) Transcriptome response to nitrogen starvation in rice. J Biosci 37:731–747PubMedGoogle Scholar
  23. Campisi J (2000) Cancer, aging and cellular senescence. In Vivo 14:183–188PubMedGoogle Scholar
  24. Černý M, Kuklová A, Hoehenwarter W, Fragner L, Novák O, Rotková G, Jedelsky PL, Žáková K, Šmehilová M, Strnad M, Weckwerth W, Brzobohaty B (2013) Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. J Exp Bot 64(14):4193–4206. doi: 10.1093/jxb/ert227 PubMedCentralPubMedGoogle Scholar
  25. Černy M, Jedelsky PL, Novak J, Schlosser A, Brzobohatý B (2014) Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant Cell Environ 37(7):1641–1655. doi: 10.1111/pce.12270 PubMedGoogle Scholar
  26. Chen W, Ji J, Xu X, He S, Ru B (2003) Proteomic comparison between human young and old brains by two-dimensional gel electrophoresis and identification of proteins. Int J Dev Neurosci 21(4):209–216PubMedGoogle Scholar
  27. Chico JMC, Raíces M, Téllez-Iñón MT, Ulloa RM (2002) A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol 128:256–270PubMedCentralPubMedGoogle Scholar
  28. Cho YH, Hong JW, Kim E-C, Yoo SD (2012) Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Plant Physiol 158:1955–1964PubMedCentralPubMedGoogle Scholar
  29. Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19:284–295PubMedGoogle Scholar
  30. Choksi KB, Roberts LJ II, DeFord JH, Rabek JP, Papaconstantinou J (2007) Lower levels of F2-isoprostanes in serum and livers of long-lived Ames dwarf mice. Biochem Biophys Res Commun 364:761–764PubMedCentralPubMedGoogle Scholar
  31. Coello P, Hey SJ, Halford NG (2011) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62(3):883–893. doi: 10.1093/jxb/erq331 PubMedGoogle Scholar
  32. Confraria A, Cláudia Martinho C, Elias A, Rubio-Somoza I, Baena-González E (2013) miRNAs mediate SnRK1-dependent energy signaling in Arabidopsis. Front Plant Sci 4:197PubMedCentralPubMedGoogle Scholar
  33. Cornelius E (1972) Increased incidence of lymphomas in thymectomized mice—evidence for an immunological theory of aging. Experientia 28:459PubMedGoogle Scholar
  34. Curran SP, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:e56PubMedCentralPubMedGoogle Scholar
  35. Davies PJ, Gan S (2012) Towards an integrated view of monocarpic plant senescence. Russ J Plant Physiol 59(4):467–478Google Scholar
  36. Desclos M, Etienne P, Coquet L, Jouenne T, Bonnefoy J, Segura R, Reze S, Ourry A, Avice JC (2009) A combined N-15 tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with remobilisation during leaf senescence induced by nitrate limitation or starvation. Proteomics 9(13):3580–3608PubMedGoogle Scholar
  37. Dharmasiri N, Estelle M (2004) Auxin signaling and regulated protein degradation. Trends Plant Sci 9:302–307PubMedGoogle Scholar
  38. Dong MQ, Venable JD, Au N, Xu T, Park SK, Cociorva D, Johnson JR, Dillin A, Yates JR III (2007) Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 317:660–663PubMedGoogle Scholar
  39. Edwards MG, Anderson RM, Yuan M, Kendziorski CM, Weindruch R, Prolla TA (2007) Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program. BMC Genomics 8:80PubMedCentralPubMedGoogle Scholar
  40. Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59(7):1615–1624PubMedGoogle Scholar
  41. Finkelstein RR, Srinivas SL, Gampala SSL (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45. doi: 10.1105/tpc.010441 PubMedCentralPubMedGoogle Scholar
  42. Fok WC, Chen Y, Bokov A, Zhang Y, Salmon AB, Diaz V, Javors M, Wood WH III, Zhang Y, Becker KG, Pérez VI, Richardson A (2014) Mice fed rapamycin have an increase in lifespan associated with major changes in the liver transcriptome. PLoS One 9(1):e83988. doi: 10.1371/journal.pone.0083988 PubMedCentralPubMedGoogle Scholar
  43. Girardot F, Lasbleiz C, Monnier V, Tricoire H (2006) Specific age-related signatures in Drosophila body parts transcriptome. BMC Genomics 7:69PubMedCentralPubMedGoogle Scholar
  44. Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134:1555–1573PubMedCentralPubMedGoogle Scholar
  45. Gromov P, Skovgaard GL, Palsdottir H, Gromova I, Østergaard M, Celis JE (2003) Protein profiling of the human epidermis from the elderly reveals up-regulation of a signature of interferon induced polypeptides that includes manganese-superoxide dismutase and the p85 subunit of phosphatidylinositol 3-kinase. Mol Cell Proteomics 2(2):70–84PubMedGoogle Scholar
  46. Guiboileau A, Yoshimoto K, Soulay F, Bataillé MP, Avice JC, Masclaux-Daubresse C (2012) Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol 194(3):732–740PubMedGoogle Scholar
  47. Guo Y (2013) Towards systems biological understanding of leaf senescence Plant Molecular Biology 82:519–528Google Scholar
  48. Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence Plant cell environment 27:521–549Google Scholar
  49. Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19:1544–1555PubMedCentralPubMedGoogle Scholar
  50. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110PubMedGoogle Scholar
  51. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24PubMedCentralPubMedGoogle Scholar
  52. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedGoogle Scholar
  53. Harrison DE, Strong R, Sharp ZD, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395PubMedCentralPubMedGoogle Scholar
  54. He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44(6):903–916PubMedGoogle Scholar
  55. Hebeler R, Oeljeklaus S, Reidegeld KA, Eisenacher M, Stephan C, Sitek B, Stühler K, Meyer HE, Sturre MJ, Dijkwel PP, Warscheid B (2008) Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal 14N/15N labeling and difference gel electrophoresis. Mol Cell Proteomics 7(1):108–20, Epub 2007 Sep 18PubMedGoogle Scholar
  56. Henderson ST, Bonafe M, Johnson TE (2006) daf-16 protects the nematode Caenorhabditis elegans during food deprivation. J Gerontol A Biol Sci Med Sci 61:444–460PubMedGoogle Scholar
  57. Hermans C, Vuylsteke M, Coppens F, Simona M, Cristescu SM, Frans JM, Harren FJM, Dirk Inzé D, Nathalie Verbruggen N (2010) Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytol 187:119–131PubMedGoogle Scholar
  58. Higuchi K, Saito A, Mikami Y, Miwa E (2011) Modulation of macronutrient metabolism in barley leaves under iron-deficient condition. Soil Sci Plant Nutr 57:233–247Google Scholar
  59. Hou K, Wu W, Gan SS (2013) SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiol 161(2):1002–1009PubMedCentralPubMedGoogle Scholar
  60. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196PubMedGoogle Scholar
  61. Huang YC, Chang YL, Hsu JJ, Chuang HW (2008) Transcriptome analysis of auxin-regulated genes of Arabidopsis thaliana. Gene 420(2):118–124PubMedGoogle Scholar
  62. Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213PubMedGoogle Scholar
  63. Hutchison CE, Kieber JJ (2002) Cytokinin signaling in Arabidopsis. Plant Cell 14(Suppl 1):S47–S59PubMedCentralPubMedGoogle Scholar
  64. Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380PubMedGoogle Scholar
  65. Inoki K, Guan KL (2006) Complexity of the TOR signaling network. Trends Cell Biol 16:206–212PubMedGoogle Scholar
  66. Inukai S, Lencastre AD, Turner M, Slack F (2012) Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One 7(7):e40028. doi: 10.1371/journal.pone.0040028 PubMedCentralPubMedGoogle Scholar
  67. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128PubMedGoogle Scholar
  68. Jacobson AK, Yan C, Gao Q, Rincon-Skinner T, Jacobson AK, Yan C, Gao Q, Rincon-Skinner T, Rivera A, Edwards J, Huang A, Kaley G, Sun D (2007) Aging enhances pressure-induced arterial superoxide formation. Am J Physiol Heart Circ Physiol 293:1344–1350Google Scholar
  69. Jiang Y, Liang G, Yang S (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26(1):230–245PubMedCentralPubMedGoogle Scholar
  70. Jin K (2010) Modern biological theories of aging. Aging Dis 1(2):72–74PubMedCentralPubMedGoogle Scholar
  71. John F, Roffler S, Wicker T, Ringli C (2011) Plant TOR signaling components. Plant Signal Behav 6(11):1700–1705PubMedCentralPubMedGoogle Scholar
  72. Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493(7432):338–345PubMedCentralPubMedGoogle Scholar
  73. Jossier M, Bouly JP, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame Hardie D, Thomas M (2009) SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J 59(2):316–328PubMedGoogle Scholar
  74. Jung C, Lyou SH, Yeu S, Kim MA, Rhee S, Kim M, Lee JS, Choi YD, Cheong JJ (2007) Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Rep 26(7):1053–1063PubMedGoogle Scholar
  75. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920):231–7PubMedGoogle Scholar
  76. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580PubMedCentralPubMedGoogle Scholar
  77. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890PubMedCentralPubMedGoogle Scholar
  78. Karres JS, Hilgers V, Carrera I, Treisman J, Cohen SM (2012) The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131(1):136–145Google Scholar
  79. Katewa SD, Kapahi P (2011) Role of TOR signaling in aging and related biological processes in Drosophila melanogaster. Exp Gerontol 46(5):382–390PubMedCentralPubMedGoogle Scholar
  80. Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F (2004) The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta 220(1):97–104PubMedGoogle Scholar
  81. Kelley DR, Estelle M (2012) Ubiquitin-mediated control of plant hormone signaling. Plant Physiol 160:47–55PubMedCentralPubMedGoogle Scholar
  82. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464PubMedGoogle Scholar
  83. Kim CH, Zou Y, Kim DH, Kim ND, Yu BP, Chung HY (2006) Proteomic analysis of nitrated and 4-hydroxy-2-nonenal-modified serum proteins during aging. J Gerontol A Biol Sci Med Sci 61(4):332–338PubMedGoogle Scholar
  84. Kim JI, Murphy AS, Baek D, Lee SW, Yun DJ, Bressan RA, Narasimhan ML (2011) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot 62(11):3981–3992PubMedCentralPubMedGoogle Scholar
  85. Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, et al. (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323, 1053–1057 10.1126/science.1166386Google Scholar
  86. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in C. elegans. Science 277:942–946PubMedGoogle Scholar
  87. Kirby K, Hu J, Hilliker AJ, Phillips JP (2002) RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc Natl Acad Sci U S A 99(25):16162–16167PubMedCentralPubMedGoogle Scholar
  88. Kong X, Luo Z, Dong H, Eneji AE, Li W, Lu H (2013) Gene expression profiles deciphering leaf senescence variation between early- and late-senescence cotton lines. PLoS One 8(7):e69847. doi: 10.1371/journal.pone.0069847 PubMedCentralPubMedGoogle Scholar
  89. Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H, Renou JP, Daniel-Vedele F (2011) Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiol 157(3):1255–1282PubMedCentralPubMedGoogle Scholar
  90. Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, Tavare S, Tower J (2004) Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci U S A 101:7663–7668PubMedCentralPubMedGoogle Scholar
  91. Lanning NJ, Carter-Su C (2006) Recent advances in growth hormone signaling. Rev Endocr Metab Disord 7:225–235PubMedGoogle Scholar
  92. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293PubMedCentralPubMedGoogle Scholar
  93. Lee Y, Samaco RC, Gatchel JR, Thaller C, Orr HT, Zoghbi HY (2008) miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci 11:1137–1139PubMedCentralPubMedGoogle Scholar
  94. Leiser SF, Fletcher M, Begun A, Kaeberlein M (2013) Life-span extension from hypoxia in Caenorhabditis elegans requires both HIF-1 and DAF-16 and is antagonized by SKN-1. J Gerontol A Biol Sci Med Sci 68(10):1135–1144. doi: 10.1093/gerona/glt016 PubMedCentralPubMedGoogle Scholar
  95. Lencastre AD, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ (2010) MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol 20:2159–2168. doi: 10.1016/j.cub.2010.11.015 PubMedCentralPubMedGoogle Scholar
  96. Li D, Sun F, Wang K (2004) Protein profile of aging and its retardation by caloric restriction in neural retina. Biochem Biophys Res Commun 318(1):253–258PubMedGoogle Scholar
  97. Li W, Guo Y (2014) Transcriptome, transcription factors and transcriptional regulation of leaf senescence. J Bioinformatics Comp Genomics 1:e101Google Scholar
  98. Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251PubMedCentralPubMedGoogle Scholar
  99. Li Z, Peng J, Wen X, Guoa H (2013) Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25:3311–3328PubMedCentralPubMedGoogle Scholar
  100. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136PubMedGoogle Scholar
  101. Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61(5):1419–1430PubMedCentralPubMedGoogle Scholar
  102. Liu N, Landreh M, Cao K, Abe M, Hendriks GJ, Kennerdell JR, Zhu Y, Wang LS, Bonini NM (2007) The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482(7386):519–523Google Scholar
  103. Loeb J, Northrop JH (1916) Is there a temperature coefficient for the duration of life? Proc Natl Acad Sci U S A 2:456–457PubMedCentralPubMedGoogle Scholar
  104. Ma TL, Wu WH, Wang Y (2012) Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol 12:161. doi: 10.1186/1471-2229-12-161 PubMedCentralPubMedGoogle Scholar
  105. Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 77:727–754PubMedGoogle Scholar
  106. Mao L, Zabel C, Wacker MA, Nebrich G, Sagi D, Schrade P, Bachmann S, Kowald A, Klose J (2006) Estimation of the mtDNA mutation rate in aging mice by proteome analysis and mathematical modeling. Exp Gerontol 41(1):11–24PubMedGoogle Scholar
  107. Maruyama T, Higuchi K, Yoshiba M, Tadano T (2005) Comparison of iron availability in leaves of barley and rice. Soil Sci Plant Nutr 51:1035–1042Google Scholar
  108. Masclaux-Daubresse C, Chardon F (2011) Exploring nitrogen remobilization for seed filling using natural variation in Arabidopsis thaliana. J Exp Bot 62(6):2131–2142PubMedCentralPubMedGoogle Scholar
  109. McElwee JJ, Schuster E, Blanc E, Thomas JH, Gems D (2004) Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long lived daf-2 mutants implicates detoxification system in longevity assurance. J Biol Chem 279:44533–44543PubMedGoogle Scholar
  110. Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci U S A 99:6422–6427PubMedCentralPubMedGoogle Scholar
  111. Merchante C, Alonso JM, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol 16(5):554–560PubMedGoogle Scholar
  112. Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55(6):853–867PubMedGoogle Scholar
  113. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 66(2):191–201PubMedGoogle Scholar
  114. Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu Y-X, Hwang I, Jones T (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300(5617):332–336PubMedGoogle Scholar
  115. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283PubMedGoogle Scholar
  116. Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135:227–239PubMedCentralPubMedGoogle Scholar
  117. Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348Google Scholar
  118. Oh SA, Lee SY, Chung IK, Lee CH, Nam HG (1996) A senescence associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol Biol 30:739–754PubMedGoogle Scholar
  119. Ohdaira H, Sekiguchi M, Miyata K, Yoshida K (2012) MicroRNA-494 suppresses cell proliferation and induces senescence in A549 lung cancer cells. Cell Prolif 45:32–38PubMedGoogle Scholar
  120. Oka M, Shimoda Y, Sato N, Inoue J, Yamazaki T, Shimomura N, Fujiyama H (2012) Abscisic acid substantially inhibits senescence of cucumber plants (Cucumis sativus) grown under low nitrogen conditions. J Plant Physiol 169(8):789–796PubMedGoogle Scholar
  121. Olsen JE, Junttila O (2002) Far red end-of-day treatment restores wild-type-like plant length in hybrid aspen overexpressing phytochrome A. Physiol Plant 115:448–457PubMedGoogle Scholar
  122. Palgunow D, Klapper M, Döring F (2012) Dietary restriction during development enlarges intestinal and hypodermal lipid droplets in Caenorhabditis elegans. PLoS One 7(11):e46198PubMedCentralPubMedGoogle Scholar
  123. Pamplona R, Portero-Otin M, Ruiz C, Pamplona R, Portero-Otin M, Ruiz C, Gredilla R, Herrero A, Barja G et al (1999) Double bond content of phospholipids and lipid peroxidation negatively correlate with maximum longevity in the heart of mammals. Mech Ageing Dev 112:169–183Google Scholar
  124. Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6(1):111–119PubMedCentralPubMedGoogle Scholar
  125. Paponov IA, Paponov M, Teale W, Menges M, Chakrabortee S, Murray JAH, Palme K (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 1:321–337PubMedGoogle Scholar
  126. Patel PH, Tamanoi F (2006) Increased Rheb-TOR signaling enhances sensitivity of the whole organism to oxidative stress. J Cell Sci 119:4285–4292PubMedGoogle Scholar
  127. Paul A, Belton A, Nag S, Martin I, Grotewiel MS, Duttaroy A (2007) Reduced mitochondrial SOD displays mortality characteristics reminiscent of natural aging. Mech Ageing Dev 128(11–12):706–716PubMedCentralPubMedGoogle Scholar
  128. Peoples MB, Dalling MJ (1988) The interplay between proteolysis and amino acid metabolism during senescence and nitrogen reallocation. In: Nooden LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego, pp 181–217Google Scholar
  129. Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, Partridge L (2002) Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 12(9):712–723PubMedGoogle Scholar
  130. Polge C, Thomas M (2007) SNF1/AMPK/SnRK1kinases, global regulators at the heart of energy control? Trends Plant Sci 12:20–28PubMedGoogle Scholar
  131. Poy MN, Spranger M, Stoffel M (2007) microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab 9:67–73. doi: 10.1111/j.1463-1326.2007.00775.x PubMedGoogle Scholar
  132. Purdom S, Chen QM (2003) Linking oxidative stress and genetics of aging with p66Shc signaling and forkhead transcription factors. Biogerontology 4:181–191PubMedGoogle Scholar
  133. Ramos FJ, Chen SC, Garelick MG, Dai DF, Liao CY, Schreiber KH, MacKay VL, An EH, Strong R, Ladiges WC, Rabinovitch PS, Kaeberlein M, Kennedy BK (2012) Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med 4:144ra103PubMedCentralPubMedGoogle Scholar
  134. Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 276:4666–4681PubMedGoogle Scholar
  135. Ren M, Venglat P, Qiu S, Feng L, Cao Y, Wang E, Xiang D, Wang J, Alexander D, Chalivendr S, Logan D, Mattoo A, Selvaraj G, Datlaa R (2012) Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 24:4850–4874PubMedCentralPubMedGoogle Scholar
  136. Roberts IN, Caputo C, Criado MV, Funk C (2012) Senescence-associated proteases in plants. Physiol Plant 145(1):130–139PubMedGoogle Scholar
  137. Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15:713–724PubMedCentralPubMedGoogle Scholar
  138. Rodriguez-Manas L, El-Assar M, Vallejo SM, Lopez-Doriga P, Solis J, Petidier R, Montes M, Nevado J, Castro M, Gomez-Guerrero C, Peiro C, Sanchez-Ferrer CF (2009) Endothelial dysfunction in aged humans is related with oxidative stress and vascular inflammation. Aging Cell 8:226–238PubMedGoogle Scholar
  139. Rogers AN, Chen D, McColl G, Czerwieniec G, Felkey K, Gibson BW, Alan Hubbard A, Melov S, Lithgow GJ, Kapahi P (2011) Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans. Cell Metab 14(1):55–66PubMedCentralPubMedGoogle Scholar
  140. Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101:15998–16003PubMedCentralPubMedGoogle Scholar
  141. Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223PubMedGoogle Scholar
  142. Rollo CD (2010) Aging and the Mammalian regulatory triumvirate. Aging Dis 1:105–138PubMedCentralPubMedGoogle Scholar
  143. Rozemuller AJ, van Gool WA, Eikelenboom P (2005) The neuroinflammatory response in plaques and amyloid angiopathy in Alzheimer’s disease: therapeutic implications. Curr Drug Targets CNS Neurol Disord 4:223–233PubMedGoogle Scholar
  144. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15(5):247–58PubMedGoogle Scholar
  145. Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603PubMedGoogle Scholar
  146. Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, Woods A, Robinson IC, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJ, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336Google Scholar
  147. Shankar A, Singh A, Kanwar P, Srivastava AK, Pandey A, Suprasanna P, Kapoor SK, Pandey GK (2013) Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components. PLoS One 8(7):e70321. doi: 10.1371/journal.pone.0070321 PubMedCentralPubMedGoogle Scholar
  148. Sharov VS, Schöneich C (2007) Proteomic approach to aging research. Proteomics 4(2):309–321PubMedGoogle Scholar
  149. Shen Y, Wollam J, Magner D, Karalay O, Antebi A (2012) A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science 338(6113):1472–1476. doi: 10.1126/science.1228967 PubMedCentralPubMedGoogle Scholar
  150. Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S (2003) Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107:1664–1670PubMedGoogle Scholar
  151. Shore DE, Carr CE, Ruvkun G (2012) Induction of cytoprotective pathways is central to the extension of lifespan conferred by multiple longevity pathways. PLoS Genet 8(7):e1002792PubMedCentralPubMedGoogle Scholar
  152. Sidler C, Wóycicki R, Ilnytskyy Y, Metz G, Kovalchuk I, Kovalchuk O (2013) Immunosenescence is associated with altered gene expression and epigenetic regulation in primary and secondary immune organs. Front Genet 4:21Google Scholar
  153. Sormani R, Yao L, Menand B, Ennar N, Lecampion C, Meyer C, Robaglia C (2007) Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility. BMC Plant Biol 7:26PubMedCentralPubMedGoogle Scholar
  154. Sparla F, Tedeschi G, Pupillo P, Trost P. (1999) Cloning and heterologous expression of NAD(P H:quinone reductase of Arabidopsis thaliana, a functional homologue of animal DT-diaphorase.FEBS Lett. 1999 Dec 17;463(3):382–6Google Scholar
  155. Speakman JR, van Acker A, Harper EJ (2003) Age-related changes in metabolism and body composition of three dog breeds and their relationship to life expectancy. Aging Cell 2:265–275PubMedGoogle Scholar
  156. Speakman JR, Talbot DA, Selman C, Snart S, McLaren JS, Redman P, Krol E, Jackson DM, Johnson MS, Brand MD (2004) Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 3:87–95PubMedGoogle Scholar
  157. Spilman P, Podlutskaya N, Hart M, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One 5:e9979PubMedCentralPubMedGoogle Scholar
  158. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230PubMedGoogle Scholar
  159. Stout GJ, Stigter EC, Essers PB, Mulder KW, Kolkman A, Snijders DS, van den Broek NJ, Betist MC, Korswagen HC, Macinnes AW, Brenkman AB (2013) Insulin/IGF-1-mediated longevity is marked by reduced protein metabolism. Mol Syst Biol 9:679PubMedCentralPubMedGoogle Scholar
  160. Takahashi Y, Daitoku H, Hirota K, Tamiya H, Yokoyama A, Kako K, Nagashima Y, Nakamura A, Shimada T, Watanabe S, Yamagata K, Yasuda K, Ishii N, Fukamizu A (2011) Asymmetric arginine dimethylation determines life span in C. elegans by regulating forkhead transcription factor DAF-16. Cell Metab 13:505–516PubMedGoogle Scholar
  161. Takehisa H, Sato Y, Antonio BA, Nagamura Y (2013) Global transcriptome profile of rice root in response to essential macronutrient deficiency. Plant Signal Behav 8(6):e24409PubMedCentralPubMedGoogle Scholar
  162. Tettweiler G, Miron M, Jenkins M, Sonenberg N, Lasko PF (2005) Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes Dev 19:1840–1843PubMedCentralPubMedGoogle Scholar
  163. Thelander M, Olsson T, Ronne H (2004) Snf1‐related protein kinase 1 is needed for growth in a normal day–night light cycle. EMBO J 23:1900–1910PubMedCentralPubMedGoogle Scholar
  164. Thomas H (2003) Do green plants age, and if so, how? Top Curr Genet 3:145–171Google Scholar
  165. Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197(3):696–711PubMedGoogle Scholar
  166. Thomas H, Ougham H, Canter P, Donnison I (2002) What stay-green mutants tell us about nitrogen remobilisation in leaf senescence. J Exp Bot 53:801–808PubMedGoogle Scholar
  167. Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in C. elegans. Nature 410:227–230PubMedGoogle Scholar
  168. Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402PubMedGoogle Scholar
  169. van Heemst D (2010) Insulin, IGF-1 and longevity. Aging Dis 1:147–157PubMedCentralPubMedGoogle Scholar
  170. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620PubMedGoogle Scholar
  171. Viswanathan M, Kim SK, Berdichevsky A, Guarente L (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9:605–615PubMedGoogle Scholar
  172. Waditee-Sirisattha R, Shibato J, Rakwal R, Sirisattha S, Hattori A, Nakano T, Takabe T, Tsujimoto M (2011) The Arabidopsis aminopeptidase LAP2 regulates plant growth, leaf longevity and stress response. New Phytol 191(4):958–969PubMedGoogle Scholar
  173. Wang J, Kim SK (2003) Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130(8):1621–1634PubMedGoogle Scholar
  174. Wang G, van der Walt JM, Li YJ, Züchner S, Scott WK, Martin ER, Vance JM (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of α-synuclein. Am J Hum Genet 82(2):283–289PubMedCentralPubMedGoogle Scholar
  175. Wang IF, Guo BS, Liu YC, Wu CC, Yang CH, Tsai KJ, Shen CK (2012) Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci U S A 109:15024–15029PubMedCentralPubMedGoogle Scholar
  176. Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469PubMedGoogle Scholar
  177. Wu P, Ma L, Hou X, Mingyi Wang M, Yungrong Wu Y, Feiyan Liu F, Den XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132(3):1260–1271PubMedCentralPubMedGoogle Scholar
  178. Xiao S, Gao W, Chen QF, Chan SW, Zheng SX, Ma J, Wang M, Welti R, Chye ML (2010) Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22(5):1463–1482PubMedCentralPubMedGoogle Scholar
  179. Xing M, Xue H (2012) A proteomics study of auxin effects in Arabidopsis thaliana. Acta Biochim Biophys Sin 44(9):783–796PubMedGoogle Scholar
  180. Xu F, Meng T, Li P, Yu Y, Cui Y, Wang Y, Gong Q, Wang NN (2011) A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene. Plant Physiol 157(4):2131–2153PubMedCentralPubMedGoogle Scholar
  181. Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, Miyoshi M, Ogawa Y, Castrillon DH, Rosenblatt KP, Kuro-o M (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 280:38029–38034PubMedCentralPubMedGoogle Scholar
  182. Zahn JM, Kim S (2007) Systems biology of aging in four species. Curr Opin Biotechnol 18:355–359PubMedCentralPubMedGoogle Scholar
  183. Zahn JM, Sonu R, Vogel H, Crane E, Mazan-Mamczarz K, Rabkin R, Davis RW, Becker KG, Owen AB, Kim SK (2006) Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2(7):e115PubMedCentralPubMedGoogle Scholar
  184. Zhang X, Azhar G, Wei JY (2012) The expression of microRNA and microRNA clusters in the aging heart. PLoS One 7(4):e34688. doi: 10.1371/journal.pone.0034688 PubMedCentralPubMedGoogle Scholar
  185. Zhong M, Niu W, Lu ZJ, Sarov M, Murray JI, Janette J, Raha D, Sheaffer KL, Lam HY, Preston E, Slightham C, Hillier LW, Brock T, Agarwal A, Auerbach R, Hyman AA, Gerstein M, Mango SE, Kim SK, Waterston RH, Reinke V, Snyder M (2010) Genome-wide identification of binding sites defines distinct functions for Caenorhabditis elegans PHA-4/FOXA in development and environmental response. PLoS Genet 6(2):e1000848PubMedCentralPubMedGoogle Scholar
  186. Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, Benzer S, Kapahi P (2009) 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139:149–160PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BiologyUniversity of RochesterRochesterUSA
  2. 2.Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations