Skip to main content

Epidemiology and Genetic Factors in Graves’ Disease and Graves’ Ophthalmopathy

  • Chapter
Graves' Disease

Abstract

Graves’ disease (GD) is an organ-specific autoimmune disease, characterized by the production of antibodies to the TSH receptor that bind to the TSH receptor activating it and resulting in the clinical manifestations of hyperthyroidism. One of the most serious complications of GD is Graves’ ophthalmopathy (GO), a complex chronic autoimmune inflammation affecting the orbital and retro-orbital tissues. Epidemiological studies and sibling and twin studies provide convincing evidence for genetic involvement in the etiology of GD. Earlier genetic studies have primarily focused on the major histocompatibility complex class II as a main genetic factor involved in the development of GD and GO; however, other immune regulatory genes have been shown to be involved in GD. The change of focus on other immune regulatory genes such as CTLA-4, PTPN22, CD40, CD25, and FOXP3 has brought new insights into disease development. Our group and others have further focused on thyroid-specific genes such as TSH receptor and thyroglobulin gene and have shown that they play a major role in GD. Genetic studies in GO, however, did not show consistent results. Since the entire risk for GD is not conveyed by genetic susceptibility alone, it is clear that environmental factors and epigenetic modifications are necessary for the development of GD. Several environmental triggers such as iodine excess, infection, smoking, and medications (e.g., interferon-α) have been clearly shown to contribute to the development of GD, while smoking and radioiodine are the major nongenetic risk factors for GO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM. The thyrotropin (TSH) receptor: interaction with TSH and autoantibodies. Endocr Rev. 1998;19(6):673–716.

    CAS  PubMed  Google Scholar 

  2. Jacobson EM, Huber A, Tomer Y. The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J Autoimmun. 2008;30(1–2):58–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Jacobson EM, Tomer Y. The CD40, CTLA-4, thyroglobulin, TSH receptor, and PTPN22 gene quintet and its contribution to thyroid autoimmunity: back to the future. J Autoimmun. 2007;28:85–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Tomer Y, Concepcion E, Greenberg DA. A C/T single nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid. 2002;12:1129–35.

    CAS  PubMed  Google Scholar 

  5. Stefan M, Jacobson EM, Huber AK, Greenberg DA, Li CW, Skrabanek L, et al. Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon alpha-modulated mechanism. J Biol Chem. 2011;286(36):31168–79.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Acharya SH, Avenell A, Philip S, Burr J, Bevan JS, Abraham P. Radioiodine therapy (RAI) for Graves’ disease (GD) and the effect on ophthalmopathy: a systematic review. Clin Endocrinol (Oxf). 2008;69(6):943–50.

    Google Scholar 

  7. Traisk F, Tallstedt L, Abraham-Nordling M, Andersson T, Berg G, Calissendorff J, et al. Thyroid-associated ophthalmopathy after treatment for Graves’ hyperthyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab. 2009;94(10):3700–7.

    CAS  PubMed  Google Scholar 

  8. Terwee CB, Dekker FW, Prummel MF, Wiersinga WM. Graves’ ophthalmopathy through the eyes of the patient: a state of the art on health-related quality of life assessment. Orbit. 2001;20(4):281–90.

    PubMed  Google Scholar 

  9. Bartley GB. The epidemiologic characteristics and clinical course of ophthalmopathy associated with autoimmune thyroid disease in Olmsted County, Minnesota. Trans Am Ophthalmol Soc. 1994;92:477–588.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Marcocci C, Bartalena L, Bogazzi F, Panicucci M, Pinchera A. Studies on the occurrence of ophthalmopathy in Graves’ disease. Acta Endocrinol (Copenh). 1989;120(4):473–8.

    CAS  Google Scholar 

  11. Lazarus JH. Epidemiology of Graves’ orbitopathy (GO) and relationship with thyroid disease. Best Pract Res Clin Endocrinol Metab. 2012;26(3):273–9.

    PubMed  Google Scholar 

  12. Burch HB, Wartofsky L. Graves’ ophthalmopathy: current concepts regarding pathogenesis and management. Endocr Rev. 1993;14(6):747–93.

    CAS  PubMed  Google Scholar 

  13. Yoshihara A, Yoshimura NJ, Nakachi A, Ohye H, Sato S, Sekiya K, et al. Severe thyroid-associated orbitopathy in Hashimoto’s thyroiditis. Report of 2 cases. Endocr J. 2011; 58(5):343–8.

    CAS  PubMed  Google Scholar 

  14. Wiersinga WM, Smit T, van der Gaag R, Koornneef L. Temporal relationship between onset of Graves’ ophthalmopathy and onset of thyroidal Graves’ disease. J Endocrinol Invest. 1988;11(8):615–9.

    CAS  PubMed  Google Scholar 

  15. Bartalena L, Baldeschi L, Dickinson AJ, Eckstein A, Kendall-Taylor P, Marcocci C, et al. Consensus statement of the European group on Graves’ orbitopathy (EUGOGO) on management of Graves’ orbitopathy. Thyroid. 2008;18(3):333–46.

    PubMed  Google Scholar 

  16. Tunbridge WM, Evered DC, Hall R, Appleton D, Brewis M, Clark F, et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol (Oxf). 1977;7(6):481–93.

    CAS  Google Scholar 

  17. Vanderpump MPJ, Tunbridge WMG, French JM, Appleton D, Bates D, Clark F, et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham survey. Clin Endocrinol (Oxf). 1995;43:55–68.

    CAS  Google Scholar 

  18. Laurberg P, Pedersen KM, Hreidarsson A, Sigfusson N, Iversen E, Knudsen PR. Iodine intake and the pattern of thyroid disorders: a comparative epidemiological study of thyroid abnormalities in the elderly in Iceland and in Jutland, Denmark. J Clin Endocrinol Metab. 1998;83(3):765–9.

    CAS  PubMed  Google Scholar 

  19. Bjoro T, Holmen J, Kruger O, Midthjell K, Hunstad K, Schreiner T, et al. Prevalence of thyroid disease, thyroid dysfunction and thyroid peroxidase antibodies in a large, unselected population. The Health Study of Nord-Trondelag (HUNT). Eur J Endocrinol. 2000;143(5):639–47.

    CAS  PubMed  Google Scholar 

  20. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.

    CAS  PubMed  Google Scholar 

  21. Nystrom HF, Jansson S, Berg G. Incidence rate and clinical features of hyperthyroidism in a long-term iodine sufficient area of Sweden (Gothenburg) 2003–2005. Clin Endocrinol (Oxf). 2013;78(5):768–76.

    Google Scholar 

  22. Furszyfer J, Kurland LT, McConahey WM, Elveback LR. Graves’ disease in Olmsted County, Minnesota, 1935 through 1967. Mayo Clin Proc. 1970;45(9):636–44.

    CAS  PubMed  Google Scholar 

  23. Mogensen EF, Green A. The epidemiology of thyrotoxicosis in Denmark. Incidence and geographical variation in the Funen region 1972–1974. Acta Med Scand. 1980;208:183–6.

    CAS  PubMed  Google Scholar 

  24. Berglund J, Christensen SB, Hallengren B. Total and age-specific incidence of Graves’ thyrotoxicosis, toxic nodular goitre and solitary toxic adenoma in Malmo 1970–74. J Intern Med. 1990;227(2):137–41.

    CAS  PubMed  Google Scholar 

  25. Berglund J, Ericsson UB, Hallengren B. Increased incidence of thyrotoxicosis in Malmo during the years 1988–1990 as compared to the years 1970–1974. J Intern Med. 1996;239:57–62.

    CAS  PubMed  Google Scholar 

  26. Lantz M, Abraham-Nordling M, Svensson J, Wallin G, Hallengren B. Immigration and the incidence of Graves’ thyrotoxicosis, thyrotoxic multinodular goiter and solitary toxic adenoma. Eur J Endocrinol. 2009;160(2):201–6.

    CAS  PubMed  Google Scholar 

  27. Abraham-Nordling M, Bystrom K, Torring O, Lantz M, Berg G, Calissendorff J, et al. Incidence of hyperthyroidism in Sweden. Eur J Endocrinol. 2011;165(6):899–905.

    CAS  PubMed  Google Scholar 

  28. Bodansky HJ, Staines A, Stephenson C, Haigh D, Cartwright R. Evidence for an environmental effect in the aetiology of insulin dependent diabetes in a transmigratory population. BMJ. 1992;304(6833):1020–2.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Haraldsson A, Gudmundsson ST, Larusson G, Sigurdsson G. Thyrotoxicosis in Iceland 1980–1982. An epidemiological survey. Acta Med Scand. 1985;217(3):253–8.

    CAS  PubMed  Google Scholar 

  30. Helgason T, Danielsen R, Thorsson AV. Incidence and prevalence of type 1 (insulin-dependent) diabetes mellitus in Icelandic children 1970–1989. Diabetologia. 1992;35(9):880–3.

    CAS  PubMed  Google Scholar 

  31. Laurberg P, Pedersen KM, Vestergaard H, Sigurdsson G. High incidence of multinodular toxic goitre in the elderly population in a low iodine intake area vs. high incidence of Graves’ disease in the young in a high iodine intake area: comparative surveys of thyrotoxicosis epidemiology in East-Jutland Denmark and Iceland. J Intern Med. 1991;229(5):415–20.

    CAS  PubMed  Google Scholar 

  32. Brownlie BE, Welsh JD. The epidemiology of thyrotoxicosis in New Zealand: incidence and geographical distribution in north Canterbury, 1983–1985. Clin Endocrinol (Oxf). 1990;33:249–59.

    CAS  Google Scholar 

  33. Laurberg P, Berman DC, Bulow PI, Andersen S, Carle A. Incidence and clinical presentation of moderate to severe Graves’ orbitopathy in a Danish population before and after iodine fortification of salt. J Clin Endocrinol Metab. 2012;97(7):2325–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol. 1997;84:223–43.

    CAS  PubMed  Google Scholar 

  35. Kalk WJ, Kalk J. Incidence and causes of hyperthyroidism in blacks. S Afr Med J. 1989;75(3):114–7.

    CAS  PubMed  Google Scholar 

  36. McLeod DS, Caturegli P, Cooper DS, Matos PG, Hutfless S. Variation in rates of autoimmune thyroid disease by race/ethnicity in US military personnel. JAMA. 2014;311(15):1563–5.

    CAS  PubMed  Google Scholar 

  37. Weetman AP, Wiersinga WM. Current management of thyroid-associated ophthalmopathy in Europe. Results of an international survey. Clin Endocrinol (Oxf). 1998;49(1):21–8.

    CAS  Google Scholar 

  38. Enzmann DR, Donaldson SS, Kriss JP. Appearance of Graves’ disease on orbital computed tomography. J Comput Assist Tomogr. 1979;3(6):815–9.

    CAS  PubMed  Google Scholar 

  39. Tsai CC, Kau HC, Kao SC, Hsu WM. Exophthalmos of patients with Graves’ disease in Chinese of Taiwan. Eye (Lond). 2006;20(5):569–73.

    Google Scholar 

  40. Tanda ML, Piantanida E, Liparulo L, Veronesi G, Lai A, Sassi L, et al. Prevalence and natural history of Graves’ orbitopathy in a large series of patients with newly diagnosed Graves’ hyperthyroidism seen at a single center. J Clin Endocrinol Metab. 2013;98(4):1443–9.

    CAS  PubMed  Google Scholar 

  41. Abraham-Nordling M, Torring O, Lantz M, Hallengren B, Ohrling H, Lundell G, et al. Incidence of hyperthyroidism in Stockholm, Sweden, 2003–2005. Eur J Endocrinol. 2008;158(6):823–7.

    CAS  PubMed  Google Scholar 

  42. Perros P, Crombie AL, Matthews JNS, Kendall-Taylor P. Age and gender influence the severity of thyroid-associated ophthalmopathy: a study of 101 patients attending a combined thyroid-eye clinic. Clin Endocrinol (Oxf). 1993;38:367–72.

    CAS  Google Scholar 

  43. Gruters A. Ocular manifestations in children and adolescents with thyrotoxicosis. Exp Clin Endocrinol Diabetes. 1999;107 Suppl 5:S172–4.

    CAS  PubMed  Google Scholar 

  44. Lim SL, Lim AK, Mumtaz M, Hussein E, Wan Bebakar WM, Khir AS. Prevalence, risk factors, and clinical features of thyroid-associated ophthalmopathy in multiethnic Malaysian patients with Graves’ disease. Thyroid. 2008;18(12):1297–301.

    PubMed  Google Scholar 

  45. Okamura K, Nakashima T, Ueda K, Inoue K, Omae T, Fujishima M. Thyroid disorders in the general population of Hisayama Japan, with special reference to prevalence and sex differences. Int J Epidemiol. 1987;16(4):545–9.

    CAS  PubMed  Google Scholar 

  46. Tellez M, Cooper J, Edmonds C. Graves’ ophthalmopathy in relation to cigarette smoking and ethnic origin. Clin Endocrinol (Oxf). 1992;36(3):291–4.

    CAS  Google Scholar 

  47. Chng CL, Seah LL, Khoo DH. Ethnic differences in the clinical presentation of Graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab. 2012;26(3):249–58.

    PubMed  Google Scholar 

  48. Huber A, Menconi F, Corathers S, Jacobson EM, Tomer Y. Joint genetic susceptibility to type 1 diabetes and autoimmune thyroiditis: from epidemiology to mechanisms. Endocr Rev. 2008;29(6):697–725.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Bartels ED. Twin examinations: heredity in Graves’ disease. Copenhagen: Munksgaad; 1941. p. 32–6.

    Google Scholar 

  50. Martin L. The hereditary and familial aspects of exophthalmic goitre and nodular goitre. Q J Med. 1945;14:207–19.

    CAS  PubMed  Google Scholar 

  51. Villanueva R, Greenberg DA, Davies TF, Tomer Y. Sibling recurrence risk in autoimmune thyroid disease. Thyroid. 2003;13:761–4.

    CAS  PubMed  Google Scholar 

  52. Brix TH, Christensen K, Holm NV, Harvald B, Hegedus L. A population-based study of Graves’ diseases in Danish twins. Clin Endocrinol (Oxf). 1998;48:397–400.

    CAS  Google Scholar 

  53. Brix TH, Kyvik KO, Christensen K, Hegedus L. Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J Clin Endocrinol Metab. 2001;86(2):930–4.

    CAS  PubMed  Google Scholar 

  54. Ringold DA, Nicoloff JT, Kesler M, Davis H, Hamilton A, Mack T. Further evidence for a strong genetic influence on the development of autoimmune thyroid disease: the California twin study. Thyroid. 2002;12:647–53.

    PubMed  Google Scholar 

  55. Brix TH, Hegedus L. Twin studies as a model for exploring the aetiology of autoimmune thyroid disease. Clin Endocrinol (Oxf). 2012;76(4):457–64.

    CAS  Google Scholar 

  56. Campbell RD, Trowsdale J. Map of the human MHC. Immunol Today. 1993;14(7):349–52.

    CAS  PubMed  Google Scholar 

  57. Nelson JL, Hansen JA. Autoimmune diseases and HLA. Crit Rev Immunol. 1990;10(4):307–28.

    CAS  PubMed  Google Scholar 

  58. Faas S, Trucco M. The genes influencing the susceptibility to IDDM in humans. J Endocrinol Invest. 1994;17(7):477–95.

    CAS  PubMed  Google Scholar 

  59. Bech K, Lumholtz B, Nerup J, Thomsen M, Platz P, Ryder LP, et al. HLA antigens in Graves’ disease. Acta Endocrinol (Copenh). 1977;86(3):510–6.

    CAS  Google Scholar 

  60. Jaffiol C, Seignalet J, Baldet L, Robin M, Lapinski H, Mirouze J. [Study of the HL-A system in Basedow’s disease (author’s transl)]. Ann Endocrinol (Paris). 1976;37(2):111–2.

    CAS  Google Scholar 

  61. Dong RP, Kimura A, Okubo R, Shinagawa H, Tamai H, Nishimura Y, et al. HLA-A and DPB1 loci confer susceptibility to Graves’ disease. Hum Immunol. 1992;35(3):165–72.

    CAS  PubMed  Google Scholar 

  62. Ban Y, Davies TF, Greenberg DA, Concepcion ES, Osman R, Oashi T, et al. Arginine at position 74 of the HLA-DRb1 chain is associated with Graves’ disease. Genes Immun. 2004;5:203–8.

    CAS  PubMed  Google Scholar 

  63. Inaba H, Martin W, Ardito M, De Groot AS, De Groot LJ. The role of glutamic or aspartic acid in position four of the epitope binding motif and thyrotropin receptor-extracellular domain epitope selection in Graves’ disease. J Clin Endocrinol Metab. 2010;95(6):2909–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Tomer Y, Barbesino G, Greenberg DA, Concepcion ES, Davies TF. A new Graves disease-susceptibility locus maps to chromosome 20q11.2. Am J Hum Genet. 1998;63:1749–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Heward JM, Simmonds MJ, Carr-Smith J, Foxall H, Franklyn JA, Gough SC. A single nucleotide polymorphism in the CD40 gene on chromosome 20q (GD-2) provides no evidence for susceptibility to Graves’ disease in UK Caucasians. Clin Endocrinol (Oxf). 2004;61(2):269–72.

    CAS  Google Scholar 

  66. Ban Y, Tozaki T, Taniyama M, Tomita M, Ban Y. Association of a C/T single-nucleotide polymorphism in the 5′ untranslated region of the CD40 gene with Graves’ disease in Japanese. Thyroid. 2006;16(5):443–6.

    CAS  PubMed  Google Scholar 

  67. Kim TY, Park YJ, Hwang JK, Song JY, Park KS, Cho BY, et al. A C/T polymorphism in the 5′-untranslated region of the CD40 gene is associated with Graves’ disease in Koreans. Thyroid. 2003;13(10):919–25.

    PubMed  Google Scholar 

  68. Paulie S, Ehlin-Henriksson B, Mellstedt H, Koho H, Ben-Aissa H, Perlmann P. A p50 surface antigen restricted to human urinary bladder carcinomas and B lymphocytes. Cancer Immunol Immunother. 1985;20(1):23–8.

    CAS  PubMed  Google Scholar 

  69. Jacobson EM, Concepcion E, Oashi T, Tomer Y. A Graves’ disease-associated Kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology. 2005;146(6):2684–91.

    CAS  PubMed  Google Scholar 

  70. Huber AK, Finkelman FD, Li CW, Concepcion E, Smith E, Jacobson E, et al. Genetically driven target tissue overexpression of CD40: a novel mechanism in autoimmune disease. J Immunol. 2012;189(6):3043–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Park JH, Chang HS, Park CS, Jang AS, Park BL, Rhim TY, et al. Association analysis of CD40 polymorphisms with asthma and the level of serum total IgE. Am J Respir Crit Care Med. 2007;175(8):775–82.

    CAS  PubMed  Google Scholar 

  72. van der Linden MP, Feitsma AL, le Cessie S, Kern M, Olsson LM, Raychaudhuri S, et al. Association of a single-nucleotide polymorphism in CD40 with the rate of joint destruction in rheumatoid arthritis. Arthritis Rheum. 2009;60(8):2242–7.

    PubMed Central  PubMed  Google Scholar 

  73. Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet. 2009;41(7):824–8.

    Google Scholar 

  74. Baker RL, Mallevaey T, Gapin L, Haskins K. T cells interact with T cells via CD40–CD154 to promote autoimmunity in type 1 diabetes. Eur J Immunol. 2012;42(3):672–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat Immunol. 2001;2(9):816–22.

    CAS  PubMed  Google Scholar 

  76. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27.

    CAS  PubMed  Google Scholar 

  77. Taylor JC, Gough SC, Hunt P, Brix T, Chatterjee NK, Connell J, et al. A genome-wide screen in 1119 relative pairs with autoimmune thyroid disease: evidence for distinct susceptibility loci in Graves’ disease and Hashimoto’s thyroiditis (abstract). Thyroid. 2004;14:672.

    Google Scholar 

  78. Tomer Y, Barbesino G, Greenberg DA, Concepcion ES, Davies TF. Mapping the major susceptibility loci for familial Graves’ and Hashimoto’s diseases: evidence for genetic heterogeneity and gene interactions. J Clin Endocrinol Metab. 1999;84:4656–64.

    CAS  PubMed  Google Scholar 

  79. Bennett CL, Ochs HD. IPEX is a unique X-linked syndrome characterized by immune dysfunction, polyendocrinopathy, enteropathy, and a variety of autoimmune phenomena. Curr Opin Pediatr. 2001;13(6):533–8.

    CAS  PubMed  Google Scholar 

  80. Owen CJ, Eden JA, Jennings CE, Wilson V, Cheetham TD, Pearce SH. Genetic association studies of the FOXP3 gene in Graves’ disease and autoimmune Addison’s disease in the United Kingdom population. J Mol Endocrinol. 2006;37(1):97–104.

    CAS  PubMed  Google Scholar 

  81. Ban Y, Tozaki T, Tobe T, Ban Y, Jacobson EM, Concepcion ES, et al. The regulatory T cell gene FOXP3 and genetic susceptibility to thyroid autoimmunity: an association analysis in Caucasian and Japanese cohorts. J Autoimmun. 2007;28:201–7.

    CAS  PubMed  Google Scholar 

  82. Villano MJ, Huber AK, Greenberg DA, Golden BK, Concepcion E, Tomer Y. Autoimmune thyroiditis and diabetes: dissecting the joint genetic susceptibility in a large cohort of multiplex families. J Clin Endocrinol Metab. 2009;94(4):1458–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Zavattari P, Deidda E, Pitzalis M, Zoa B, Moi L, Lampis R, et al. No association between variation of the FOXP3 gene and common type 1 diabetes in the Sardinian population. Diabetes. 2004;53(7):1911–4.

    CAS  PubMed  Google Scholar 

  84. Bassuny WM, Ihara K, Sasaki Y, Kuromaru R, Kohno H, Matsuura N, et al. A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes. Immunogenetics. 2003;55(3):149–56.

    CAS  PubMed  Google Scholar 

  85. Tomer Y. Unraveling the genetic susceptibility to autoimmune thyroid diseases: CTLA-4 takes the stage. Thyroid. 2001;11:167–9.

    CAS  PubMed  Google Scholar 

  86. Ban Y, Davies TF, Greenberg DA, Kissin A, Marder B, Murphy B, et al. Analysis of the CTLA-4, CD28 and inducible co-stimulator (ICOS) genes in autoimmune thyroid disease. Genes Immun. 2003;4:586–93.

    CAS  PubMed  Google Scholar 

  87. Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT, et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab. 2004;89(11):5862–5.

    CAS  PubMed  Google Scholar 

  88. Brand OJ, Lowe CE, Heward JM, Franklyn JA, Cooper JD, Todd JA, et al. Association of the interleukin-2 receptor alpha (IL-2Ralpha)/CD25 gene region with Graves’ disease using a multilocus test and tag SNPs. Clin Endocrinol (Oxf). 2007;66(4):508–12.

    CAS  Google Scholar 

  89. Hammerstad SS, Jahnsen FL, Tauriainen S, Hyoty H, Paulsen T, Norheim I, et al. Immunological changes and increased expression of myxovirus resistance protein a in thyroid tissue of patients with recent onset and untreated Graves’ disease. Thyroid. 2014;24(3):537–44.

    CAS  PubMed  Google Scholar 

  90. Ogawa T, Sakata S, Nakamura S, Takuno H, Matsui I, Sarui H, et al. Thyroid hormone autoantibodies in patients with Graves’ disease: effect of anti-thyroid drug treatment. Clin Chim Acta. 1994;228(2):113–22.

    CAS  PubMed  Google Scholar 

  91. Tomer Y, Ban Y, Concepcion E, Barbesino G, Villanueva R, Greenberg DA, et al. Common and unique susceptibility loci in Graves and Hashimoto diseases: results of whole-genome screening in a data set of 102 multiplex families. Am J Hum Genet. 2003;73:736–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Brand OJ, Barrett JC, Simmonds MJ, Newby PR, McCabe CJ, Bruce CK, et al. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves’ disease. Hum Mol Genet. 2009;18(9):1704–13.

    CAS  PubMed  Google Scholar 

  93. Tomer Y, Hasham A, Davies TF, Stefan M, Concepcion E, Keddache M, et al. Fine mapping of loci linked to autoimmune thyroid disease identifies novel susceptibility genes. J Clin Endocrinol Metab. 2013;98(1):E144–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Tomer Y, Greenberg DA, Concepcion E, Ban Y, Davies TF. Thyroglobulin is a thyroid specific gene for the familial autoimmune thyroid diseases. J Clin Endocrinol Metab. 2002;87(1):404–7.

    CAS  PubMed  Google Scholar 

  95. Sakai K, Shirasawa S, Ishikawa N, Ito K, Tamai H, Kuma K, et al. Identification of susceptibility loci for autoimmune thyroid disease to 5q31-q33 and Hashimoto’s thyroiditis to 8q23-q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum Mol Genet. 2001;10(13):1379–86.

    CAS  PubMed  Google Scholar 

  96. Tomer Y. Anti-thyroglobulin autoantibodies in autoimmune thyroid diseases: cross-reactive or pathogenic? Clin Immunol Immunopathol. 1997;82(1):3–11.

    CAS  PubMed  Google Scholar 

  97. Collins JE, Heward JM, Franklyn JA, Gough SCL. Association of a rare thyroglobulin gene microsatellite variant with autoimmune thyroid disease in the UK. Thyroid. 2003;13:719.

    Google Scholar 

  98. Collins JE, Heward JM, Howson JM, Foxall H, Carr-Smith J, Franklyn JA, et al. Common allelic variants of exons 10, 12, and 33 of the thyroglobulin gene are not associated with autoimmune thyroid disease in the United Kingdom. J Clin Endocrinol Metab. 2004; 89(12):6336–9.

    CAS  PubMed  Google Scholar 

  99. Ban Y, Tozaki T, Taniyama M, Skrabanek L, Nakano Y, Ban Y, et al. Multiple SNPs in intron 41 of thyroglobulin gene are associated with autoimmune thyroid disease in the Japanese population. PLoS One. 2012;7(5):e37501.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Ban Y, Greenberg DA, Concepcion E, Skrabanek L, Villanueva R, Tomer Y. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci U S A. 2003;100:15119–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Hodge SE, Ban Y, Strug LJ, Greenberg DA, Davies TF, Concepcion ES, et al. Possible interaction between HLA-DRbeta1 and thyroglobulin variants in Graves’ disease. Thyroid. 2006;16(4):351–5.

    CAS  PubMed  Google Scholar 

  102. Weetman AP, So AK, Warner CA, Foroni L, Fells P, Shine B. Immunogenetics of Graves’ ophthalmopathy. Clin Endocrinol (Oxf). 1988;28(6):619–28.

    CAS  Google Scholar 

  103. Farid NR, Stone E, Johnson G. Graves’ disease and HLA: clinical and epidemiologic associations. Clin Endocrinol (Oxf). 1980;13:535–44.

    CAS  Google Scholar 

  104. Frecker M, Stenszky V, Balazs C, Kozma L, Kraszits E, Farid NR. Genetic factors in Graves’ ophthalmopathy. Clin Endocrinol (Oxf). 1986;25:479–85.

    CAS  Google Scholar 

  105. Bednarczuk T, Gopinath B, Ploski R, Wall JR. Susceptibility genes in Graves’ ophthalmopathy: searching for a needle in a haystack? Clin Endocrinol (Oxf). 2007;67(1):3–19.

    CAS  Google Scholar 

  106. Vaidya B, Imrie H, Perros P, Dickinson J, McCarthy MI, Kendall-Taylor P, et al. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphism confers susceptibility to thyroid associated orbitopathy [letter]. Lancet. 1999;354(9180):743–4.

    CAS  PubMed  Google Scholar 

  107. Villanueva RB, Inzerillo AM, Tomer Y, Barbesino G, Meltzer M, Concepcion ES, et al. Limited genetic susceptibility to severe Graves’ ophthalmopathy: no role for ctla-4 and evidence for an environmental etiology. Thyroid. 2000;10:791–8.

    CAS  PubMed  Google Scholar 

  108. Bednarczuk T, Hiromatsu Y, Fukutani T, Jazdzewski K, Miskiewicz P, Osikowska M, et al. Association of cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) gene polymorphism and non-genetic factors with Graves’ ophthalmopathy in European and Japanese populations. Eur J Endocrinol. 2003;148(1):13–8.

    CAS  PubMed  Google Scholar 

  109. Valyasevi RW, Erickson DZ, Harteneck DA, Dutton CM, Heufelder AE, Jyonouchi SC, et al. Differentiation of human orbital preadipocyte fibroblasts induces expression of functional thyrotropin receptor. J Clin Endocrinol Metab. 1999;84(7):2557–62.

    CAS  PubMed  Google Scholar 

  110. Han S, Zhang S, Zhang W, Li R, Li Y, Wang Z, et al. CTLA4 polymorphisms and ophthalmopathy in Graves’ disease patients: association study and meta-analysis. Hum Immunol. 2006;67(8):618–26.

    CAS  PubMed  Google Scholar 

  111. Starkey KJ, Janezic A, Jones G, Jordan N, Baker G, Ludgate M. Adipose thyrotrophin receptor expression is elevated in Graves’ and thyroid eye diseases ex vivo and indicates adipogenesis in progress in vivo. J Mol Endocrinol. 2003;30(3):369–80.

    CAS  PubMed  Google Scholar 

  112. Gillespie EF, Papageorgiou KI, Fernando R, Raychaudhuri N, Cockerham KP, Charara LK, et al. Increased expression of TSH receptor by fibrocytes in thyroid-associated ophthalmopathy leads to chemokine production. J Clin Endocrinol Metab. 2012;97(5):E740–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Yin X, Latif R, Bahn R, Davies TF. Genetic profiling in Graves’ disease: further evidence for lack of a distinct genetic contribution to Graves’ ophthalmopathy. Thyroid. 2012;22(7):730–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Natt N, Bahn RS. Cytokines in the evolution of Graves’ ophthalmopathy. Autoimmunity. 1997;26(2):129–36.

    CAS  PubMed  Google Scholar 

  115. Heufelder AE, Bahn RS. Modulation of Graves’ orbital fibroblast proliferation by cytokines and glucocorticoid receptor agonists. Invest Ophthalmol Vis Sci. 1994;35(1):120–7.

    CAS  PubMed  Google Scholar 

  116. Tan GH, Dutton CM, Bahn RS. Interleukin-1 (IL-1) receptor antagonist and soluble IL-1 receptor inhibit IL-1-induced glycosaminoglycan production in cultured human orbital fibroblasts from patients with Graves’ ophthalmopathy. J Clin Endocrinol Metab. 1996;81(2):449–52.

    CAS  PubMed  Google Scholar 

  117. Liu N, Li X, Liu C, Zhao Y, Cui B, Ning G. The association of interleukin-1alpha and interleukin-1beta polymorphisms with the risk of Graves’ disease in a case-control study and meta-analysis. Hum Immunol. 2010;71(4):397–401.

    CAS  PubMed  Google Scholar 

  118. Liu YH, Chen RH, Wu HH, Liao WL, Chen WC, Tsai Y, et al. Association of interleukin-1beta (IL1B) polymorphisms with Graves’ ophthalmopathy in Taiwan Chinese patients. Invest Ophthalmol Vis Sci. 2010;51(12):6238–46.

    PubMed  Google Scholar 

  119. Lacka K, Paradowska A, Gasinska T, Soszynska J, Wichary H, Kramer L, et al. Interleukin-1beta gene (IL-1beta) polymorphisms (SNP -511 and SNP +3953) in thyroid-associated ophthalmopathy (TAO) among the Polish population. Curr Eye Res. 2009;34(3):215–20.

    CAS  PubMed  Google Scholar 

  120. Huber AK, Jacobson EM, Jazdzewski K, Concepcion ES, Tomer Y. Interleukin (IL)-23 receptor is a major susceptibility gene for Graves’ ophthalmopathy: the IL-23/T-helper 17 axis extends to thyroid autoimmunity. J Clin Endocrinol Metab. 2008;93(3):1077–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Khalilzadeh O, Anvari M, Esteghamati A, Momen-Heravi F, Rashidi A, Amiri HM, et al. Genetic susceptibility to Graves’ ophthalmopathy: the role of polymorphisms in anti-inflammatory cytokine genes. Ophthalmic Genet. 2010;31(4):215–20.

    CAS  PubMed  Google Scholar 

  122. Liao WL, Chen RH, Lin HJ, Liu YH, Chen WC, Tsai Y, et al. Toll-like receptor gene polymorphisms are associated with susceptibility to Graves’ ophthalmopathy in Taiwan males. BMC Med Genet. 2010;11:154.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Kurylowicz A, Hiromatsu Y, Jurecka-Lubieniecka B, Kula D, Kowalska M, Ichimura M, et al. Association of NFKB1 -94ins/del ATTG promoter polymorphism with susceptibility to and phenotype of Graves’ disease. Genes Immun. 2007;8(7):532–8.

    CAS  PubMed  Google Scholar 

  124. Carayanniotis G, Masters SR, Noelle RJ. Suppression of murine thyroiditis via blockade of the CD40-CD40L interaction. Immunology. 1997;90(3):421–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Skorka A, Bednarczuk T, Bar-Andziak E, Nauman J, Ploski R. Lymphoid tyrosine phosphatase (PTPN22/LYP) variant and Graves’ disease in a Polish population: association and gene dose-dependent correlation with age of onset. Clin Endocrinol (Oxf). 2005;62(6):679–82.

    CAS  Google Scholar 

  126. Hiromatsu Y, Fukutani T, Ichimura M, Mukai T, Kaku H, Nakayama H, et al. Interleukin-13 gene polymorphisms confer the susceptibility of Japanese populations to Graves’ disease. J Clin Endocrinol Metab. 2005;90(1):296–301.

    CAS  PubMed  Google Scholar 

  127. Jungel A, Ospelt C, Gay S. What can we learn from epigenetics in the year 2009? Curr Opin Rheumatol. 2010;22(3):284–92.

    PubMed  Google Scholar 

  128. Tomer Y, Huber A. The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun. 2009;32(3–4):231–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Blackard JT, Kong L, Huber AK, Tomer Y. Hepatitis C virus infection of a thyroid cell line: implications for pathogenesis of hepatitis C virus and thyroiditis. Thyroid. 2013;23(7):863–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Akeno N, Blackard JT, Tomer Y. HCV E2 protein binds directly to thyroid cells and induces IL-8 production: a new mechanism for HCV induced thyroid autoimmunity. J Autoimmun. 2008;31(4):339–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Hammerstad SS, Tauriainen S, Hyoty H, Paulsen T, Norheim I, Dahl-Jorgensen K. Detection of enterovirus in the thyroid tissue of patients with Graves’ disease. J Med Virol. 2013;85(3):512–8.

    CAS  PubMed  Google Scholar 

  132. Tomer Y, Davies TF. Infection, thyroid disease and autoimmunity. Endocr Rev. 1993;14:107–20.

    CAS  PubMed  Google Scholar 

  133. Tomer Y, Davies TF. Infections and autoimmune endocrine disease. Baillière’s Clin Endocrinol Metab. 1995;9:47–70.

    CAS  Google Scholar 

Download references

Conflicts of Interest

The authors have no potential conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaron Tomer M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hammerstad, S.S., Tomer, Y. (2015). Epidemiology and Genetic Factors in Graves’ Disease and Graves’ Ophthalmopathy. In: Bahn, R. (eds) Graves' Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2534-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2534-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2533-9

  • Online ISBN: 978-1-4939-2534-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics