Skip to main content

Fungal Secondary Metabolism in the Light of Animal–Fungus Interactions: From Mechanism to Ecological Function

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Animal grazing is a pervasive ecological factor threatening fungal fitness. This review summarizes the different approaches that have been used to test whether secondary metabolites serve as anti-fungivore defense agents. Assuming that secondary metabolites at least in part have evolved to mediate resistance against fungivores, this review evaluates the pros and cons of (1) using long-standing toxicity assays, (2) considering natural variation in fungal secondary metabolite formation, and (3) experiments with transgenic mutant fungi. Connecting inducible changes in fungal, molecular, genetic, biochemical, and morphological properties with fungivore behavioral and fitness assays is a new approach to investigate the functional relationship between secondary metabolite regulation and resistance against fungivores. Strengthening this dynamic view on fungus–fungivore interactions will certainly pave the way for a deeper understanding of how known (and still unknown) regulatory mechanisms act in concert with the biosynthesis of anti-fungivore compounds and the extent to which both constitutive and inducible variations in fungal chemical diversity represent an adaptation to animal grazing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    CAS  PubMed  Google Scholar 

  2. Magan N, Aldred D (2007) Post-harvest control strategies: minimizing mycotoxins in the food chain. Int J Food Microbiol 119:131–139

    CAS  PubMed  Google Scholar 

  3. Nielsen ML, Nielsen JB, Rank C, Klejnstrup ML, Holm DK, Brogaard KH et al (2011) A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiol Lett 321:157–166

    CAS  PubMed  Google Scholar 

  4. Sanchez JF, Somoza AD, Keller NP, Wang CCC (2012) Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep 29:351–371

    CAS  PubMed  Google Scholar 

  5. Sarkar A, Funk AN, Scherlach K, Horn F, Schroeckh V, Chankhamjon P et al (2012) Differential expression of silent polyketide biosynthesis gene clusters in chemostat cultures of Aspergillus nidulans. J Biotechnol 160:64–71

    CAS  PubMed  Google Scholar 

  6. Winter JM, Behnken S, Hertweck C (2011) Genomics-inspired discovery of natural products. Curr Opin Chem Biol 15:22–31

    CAS  PubMed  Google Scholar 

  7. Deacon J (2006) Fungal biology. 4th ed. Blackwell, Oxford

    Google Scholar 

  8. Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487

    CAS  PubMed  Google Scholar 

  9. Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610

    CAS  PubMed  Google Scholar 

  10. Bayram Ö Braus GH Fischer R Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47:900–908

    CAS  PubMed  Google Scholar 

  11. Bayram Ö, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins FEMS Microbiol Rev 36:1–24

    CAS  PubMed  Google Scholar 

  12. Bayram Ö, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O et al (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    CAS  PubMed  Google Scholar 

  13. Atoui A, Kastner C, Larey CM, Thokala R, Etxebeste O, Espeso EA et al (2010) Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. Fungal Genet Biol. 47:962–972

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Schmidt-Heydt M, Rüfer C, Raupp F, Bruchmann A, Perrone G, Geisen R (2011) Influence of light on food relevant fungi with emphasis on ochratoxin producing species. Int J Food Microbiol 145:229–237

    CAS  PubMed  Google Scholar 

  15. Chanda A, Roze LV, Kang S, Artymovich KA, Hicks GR, Raikhel NV et al (2009) A key role for vesicles in fungal secondary metabolism. Proc Natl Acad Sci U S A 106:19533–19538

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Schmidt-Heydt M, Magan N, Geisen R (2008) Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiol Lett 284:142–149

    CAS  PubMed  Google Scholar 

  17. Schmidt-Heydt M, Rüfer CE, Abdel-Hadi A, Magan N, Geisen R (2010) The production of aflatoxin B1 or G1 by Aspergillus parasiticus at various combinations of temperature and water activity is related to the ratio of aflS to aflR expression. Mycotoxin Res 26:241–246

    CAS  PubMed  Google Scholar 

  18. Karlovsky P (2008) Secondary metabolites in soil ecology. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Springer, Berlin Heidelberg, pp 1–22

    Google Scholar 

  19. Scherlach K, Graupner K, Hertweck C (2013) Molecular bacterial-fungal interactions with impact on the environment, food and medicine. Annu Rev Microbiol 67:375–397

    CAS  PubMed  Google Scholar 

  20. Schroeckh V, Scherlach K, Nützmann H-W, Shelest E, Schmidt-Heck W, Schuemann J et al (2009) Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A 106:14558–14563

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Nützmann H-W, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A et al (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci U S A 108:14282–14287

    PubMed Central  PubMed  Google Scholar 

  22. Schoustra S, Rundle HD, Dali R, Kassen R (2010) Fitness-associated sexual reproduction in a filamentous fungus. Curr Biol 20:1350–1355

    CAS  PubMed  Google Scholar 

  23. Sarikaya Bayram Ö, Bayram Ö, Valerius O, Park HS, Irniger S, Gerke J et al (2010) LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PloS Genet. 6:e1001226

    PubMed Central  PubMed  Google Scholar 

  24. Illig J, Norton RA, Scheu S, Maraun M (2010) Density and community structure of soil- and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest. Exp Appl Acarol 52:49–62

    PubMed Central  PubMed  Google Scholar 

  25. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    PubMed  Google Scholar 

  26. Demain AL, Fang A (2000) The natural function of secondary metabolites. In: Sheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 1–39

    Google Scholar 

  27. Dowd PF (1992) Detoxification of mycotoxins by insects. In: Mullin CA, Scrott JG (eds) Molecular mechanisms of insecticide resistance. American Chemical Society, Washington, pp 264–275

    Google Scholar 

  28. Gloer JB (1995a) The chemistry of fungal antagonism and defense. Can J Bot 73:1265–1274

    Google Scholar 

  29. Janzen DH (1977) Why fruits rot, seeds mold and meat spoils. Am Nat 111:691–713

    CAS  Google Scholar 

  30. Marmeisse R, Nehls U, Öpik M, Selosse M-A, Pringle A (2013) Bridging mycorrhizal genomics, metagenomics and forest ecology. New Phytol 198:343–346

    PubMed  Google Scholar 

  31. Rohlfs M, Churchill ACL (2011) Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet Biol 48:23–34

    CAS  PubMed  Google Scholar 

  32. Sherratt TN, Wilkinson DM, Bain RS (2005) Explaining dioscorides’ “double difference”: why are some mushrooms poisonous, and do they signal their unprofitability? Am Nat 166:767–775

    PubMed  Google Scholar 

  33. Spiteller P (2008) Chemical defence strategies of higher fungi. Chem A Eur J 14:9100–9110

    CAS  Google Scholar 

  34. Castillo M-A, Moya P, Cantín A, Miranda MA, Primo J, Hernández E et al (1999) Insecticidal, anti-juvenile hormone, and fungicial activities of organic extracts from different Penicillium species and their isolated active components. J Agric Food Chem 47:2120–2124

    CAS  PubMed  Google Scholar 

  35. Dowd PF, Miller JD, Greenhalgh R (1989) Toxicity and interactions of some Fusarium graminearum metabolites to caterpillars. Mycologia 81:646–650

    CAS  Google Scholar 

  36. Gloer JB, Rinderknecht B, Wicklow DT, Dowd PF (1989) Nominine: a new insecticidal indole diterpene from the sclerotia of Aspergillus nomius. J Org Chem 54:2530–2532

    CAS  Google Scholar 

  37. Grove JF, Pople M (1981) The insecticidal activity of some fungal dihydroisocoumarins. Mycopathologia 76:65–67

    CAS  Google Scholar 

  38. Ondeyka JG, Dombrowski AW, Polishook JP, Felcetto T, Shoop WL, Guan Z et al (2003) Isolation and insecticidal activity of mellamide from Aspergillus melleus. J Ind Microbiol Biotechnol 30:220–224

    CAS  PubMed  Google Scholar 

  39. Paz Z, Bilkis I, Gerson U, Kerem Z, Sztejnberg A (2011) Argovin, a novel natural product secreted by the fungus Meira argovae, is antagonistic to mites. Entomol Exp Appl 140:247–253

    CAS  Google Scholar 

  40. Paterson RRM, Simmonds MSJ, Blaney WM (1987) Mycopesticidal effects of characterized extracts of Penicillium isolates and purified secondary metabolites (including mycotoxins) on Drosophila melanogaster and Spodoptora littoralis. J Invertebr Pathol 50:124–133

    Google Scholar 

  41. Reiss J (1975) Insecticidal and larvicidal activities of the mycotoxins aflatoxin B1, rubratoxin B, patulin and diacetoxyscirpenol towards Drosophila melanogaster. Chem Biol Interact 10:339–342

    CAS  PubMed  Google Scholar 

  42. Wicklow DT, Dowd PF, Gloer JB (1994) Antiisectan effects of Aspergillus metabolites. In: Powell KA, Renwick A, Peberdy JF (eds) The genus Aspergillus: from taxonomy and genetics to industrial applications. FEMS Symposium Series, vol 69. Plenum, New York, pp 93–114

    Google Scholar 

  43. Obana H, Kumeda Y, Nishimune T, Usami Y (1994) Direct detection using the Drosophila DNA-repair test and isolation of a DNA-damaging mycotoxin, 5,6-dihydropenicillic acid, in fungal culture. Food Chem Toxicol 32:37–43

    CAS  PubMed  Google Scholar 

  44. Stark AA (1980) Mutagenicity and carcinogenicity of mycotoxins: DNA binding as a possible mode of action. Annu Rev Microbiol 34:235–262

    CAS  PubMed  Google Scholar 

  45. Dowd PF (1988) Synergism of aflatoxin B1 toxicity with the co-occurring fungal metabolite kojic acid to two caterpillars. Entomol Exp Appl. 47:69–71

    CAS  Google Scholar 

  46. Chinnici JP, Gunst K, Llewellyn GC (1983) Effects of mycotoxin pretreatment on aflatoxin B1 post-treatment toxicity in Drosophila melanogaster (Diptera). J Invertebr Pathol 41:321–327

    CAS  PubMed  Google Scholar 

  47. Brodhun F, Schneider S, Gobel C, Hornung E, Feussner I (2010) PpoC from Aspergillus nidulans is a fusion protein with only one active haem. Biochem J 425:553–565

    CAS  PubMed  Google Scholar 

  48. Combet E, Eastwood DC, Burton KS, Henderson J (2006) Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47:317–326

    CAS  Google Scholar 

  49. Sawahata T, Shimano S, Suzuki M (2008) Tricholoma matsutake 1-octen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta). Mycorrhiza 18:111–114

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Inamdar AA, Masurekar P, Bennett JW (2010) Neurotoxicity of fungal volatiles organic compounds in Drosophila melanogaster. Toxicol Sci 117:418–426

    CAS  PubMed  Google Scholar 

  51. Nakamori T, Suzuki A (2006) Repellency of injured ascomata of Ciborinia camelliae and Spathularia flavida to fungivorous collembolans. Mycoscience 47:290–292

    Google Scholar 

  52. Bengtsson G, Hedlund K, Rundgren S (1991) Selective odor perception in the soil Collembola Onychirus armatus. J Chem Ecol 17:2113–2125

    CAS  PubMed  Google Scholar 

  53. Hedlund K, Bengtsson G, Rundgren S (1995) Fungal odour discrimination in two sympatric species of fungivorous collembolans. Funct Ecol 9:869–875

    Google Scholar 

  54. Pierce AM, Pierce HD Jr, Borden JH, Oehlschlager AC (1991) Fungal volatiles: semiochemicals for stored-product beetles (Coleoptera: Cucujidae). J Chem Ecol 17:581–597

    CAS  PubMed  Google Scholar 

  55. Wood WF, Archer CL, Largent DL (2001) 1-Octen-3-ol, a banana slug antifeedant from mushrooms. Biochem Syst Ecol 29:531–533

    CAS  PubMed  Google Scholar 

  56. Stensmyr MC, Dweck HKM, Farhan A, Ibba I, Strutz A, Mukunda L et al (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357

    CAS  PubMed  Google Scholar 

  57. Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host-fungal communication signals. Trend Microbiol 15:109–118

    CAS  Google Scholar 

  58. Wright VF, Casas ED LAS, Harein PK (1980a) Evaluation of Penicillium mycotoxins for activity in stored-product Coleoptera. Environ Entomol 9:217–221

    Google Scholar 

  59. Tsai W-T, Mason LJ, Woloshuk CP (2007) Effect of three stored-grain fungi on the development of Typhaea stercorea. J Stored Prod Res 43:129–133

    Google Scholar 

  60. Niu G, Wen Z, Rupasinghe SG, Zeng RS, Berenbaum MR, Schuler MA (2008) Aflatoxin B1 detoxification by CYP321A1 in Helicoverpa zea. Arch Insect Biochem Physiol 69:32–45

    CAS  PubMed  Google Scholar 

  61. Zeng RS, Wen Z, Niu G, Schuler MA, Berenbaum MR (2007) Allelochemical induction of cytochrome P450 monooxygenases and amelioration of xenobiotic toxicity in Helicoverpa zea. J Chem Ecol 33:449–461

    CAS  PubMed  Google Scholar 

  62. Jaenike J, Grimaldi DA, Sluder AE, Greenleaf AL (1983) α-Amanitin tolerance in mycophagous Drosophila. Science 221:165–167

    CAS  PubMed  Google Scholar 

  63. Stump AD, Jablonski SE, Bouton L, Wilder JA (2011) Distribution and mechanism of α-amanitin tolerance in mycophagous Drosophila (Diptera: Drosophilidae). Environ Entomol 40:1604–1612

    CAS  PubMed  Google Scholar 

  64. Trienens M, Rohlfs M (2011) Experimental evolution of defense against a competitive mold confers reduced sensitivity to fungal toxins but no increased resistance in Drosophila larvae. BMC Evol Biol 11:206

    PubMed Central  PubMed  Google Scholar 

  65. Wicklow DT, Dowd PF (1989) Entomotoxigenic potential of wild and domesticated yellow-green Aspergilli: toxicity to corn earworm and fall armyworm larvae. Mycologia 81:561–566

    Google Scholar 

  66. Payne GA, Nierman WC, Wortman JR, Pritchard BL, Brown D, Dean RA et al (2006) Whole genome comparison of Aspergillus flavus and A. oryzae. Med Mycol 44:9–11

    Google Scholar 

  67. Shaw PJA (1988) A consistent hierarchy in the fungal feeding preference of the Collembola Onychiurus armatus. Pedobiologia 39:179–187

    Google Scholar 

  68. Wright VF, Harein PK, Collins NA (1980b) Preference of the confused flour beetle for certain Penicillium isolates. Environ Entomol 9:4

    Google Scholar 

  69. Belofsky GN, Gloer JB, Wicklow DT, Dowd PF (1995) Antiinsectan alkaloids: shearinines A-C and a new paxilline derivative from the ascostromata of Eupenicillium shearii. Tetrahedron 51:3959–3968

    CAS  Google Scholar 

  70. Gloer JB (1995b) Antiisectan natural products from fungal sclerotia. Acc Chem Res 28:343–350

    CAS  Google Scholar 

  71. Wang H, Gloer J, Wicklow D, Dowd P (1995) Aflavinines and other antiinsectan metabolites from the ascostromata of Eupenicillium crustaceum and related species. Appl Environ Microbiol 61:4429–4435

    CAS  Google Scholar 

  72. Whyte AC, Gloer JB (1996) Sclerotiamide: a new member of the paraherquamide class with potent antiisectan activity from the sclerotia of Aspergillus sclerotiorum. J Nat Prod 59:1093–1095

    CAS  PubMed  Google Scholar 

  73. Wicklow DT, Shotwell OL (1983) Intrafungal distribution of aflatoxins among conidia and sclerotia of Aspergillus flavus and Aspergillus parasiticus. Can J Microbiol 29:1–5

    CAS  PubMed  Google Scholar 

  74. Wicklow DT, Dowd PF, Alfatafta AA, Gloer JB (1996) Ochratoxin A: an antiinsectan metabolite from the sclerotia of Aspergillus carbonarius NRRL 369. Can J Microbiol 42:1100–1103

    CAS  PubMed  Google Scholar 

  75. Wicklow DT, Dowd PF, Tepaske MR, Gloer JB (1988) Sclerotial metabolites of Aspergillus flavus toxic to a detritivorous maize insect (Carpophilus hemipterus, Nitidulidae). Trans Br Mycol Soc 91:433–438

    CAS  Google Scholar 

  76. Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores—their interaction with secondary plant metabolites. Academic, New York, pp. 3–54

    Google Scholar 

  77. Cary JW, Harris-Coward PY, Ehrlich KC, Di Mavungu JD, Malysheva SV, De Saeger S et al (2014) Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment. Fung Genet Biol 64:25–35

    CAS  Google Scholar 

  78. Caballero Ortiz S Trienens M Rohlfs M (2013) Induced fungal resistance to insect grazing: reciprocal fitness consequences and fungal gene expression in the Drosophila-Aspergillus model system. PLoS One 8:e74951

    PubMed Central  PubMed  Google Scholar 

  79. Janssens TKS, Staaden S, Scheu S, Mariën J, Ylstra B, Roelofs D (2010) Transcriptional responses of Folsomia candida upon exposure to Aspergillus nidulans secondary metabolites in single and mixed diets. Pedobiologia 54:45–52

    CAS  Google Scholar 

  80. Rohlfs M, Albert M, Keller NP, Kempken F (2007) Secondary chemicals protect mould from fungivory. Biol Lett 3:523–525

    PubMed Central  PubMed  Google Scholar 

  81. Staaden S, Milcu A, Rohlfs M, Scheu S (2011) Olfactory cues associated with fungal grazing intensity and secondary metabolite pathway modulate Collembola foraging behaviour. Soil Biol Biochem 43:1411–1416

    CAS  Google Scholar 

  82. Stötefeld L, Scheu S, Rohlfs M (2012) Fungal chemical defense alters density-dependent foraging ehaviour and success in a fungivorous soil arthropod. Ecol Entomol 37:323–329

    Google Scholar 

  83. Trienens M, Keller NP, Rohlfs M (2010) Fruit, flies and filamentous fungi—experimental analysis of animal-microbe competition using Drosophila melanogaster and Aspergillus as a model system. Oikos 119:1765–1775

    Google Scholar 

  84. Trienens M, Rohlfs M (2012) Insect-fungus interference competition—the potential role of global secondary metabolite regulation, pathway-specific mycotoxin expression and formation of oxylipins. Fungal Ecol 5:191–199

    Google Scholar 

  85. Yin W-B, Amaike S, Wohlbach DJ, Gasch AP, Chiang Y-M, Wang CCC et al (2012) An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR. Mol Microbiol 83:1024–1034

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Scheu S, Folger M (2004) Single and mixed diets in Collembola: effects on reproduction and stable isotope fractionation. Funct Ecol 18:94–102

    Google Scholar 

  87. Scheu S, Simmerling F (2004) Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin and mixed diets. Oecologia 139:347–353

    PubMed  Google Scholar 

  88. Balogh J, Tunlid A, Rosén S (2003) Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungus Arthrobotrys oligospora. Fung Genet Biol 39:128–135

    CAS  Google Scholar 

  89. Palmer JM, Keller NP (2010) Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 13:431–436

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3:527–535

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Kale SP, Milde L, Trapp MK, Frisvad JC, Keller NP, Bok JW (2008) Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genet Biol 45:1422–1429

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Karimi-Aghcheh R, Bok JW, Phatale PA, Smith KM, Baker SE, Lichius A et al (2013) Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. G3 3:369–378

    Google Scholar 

  93. Kim H-K, Lee S, Jo S-M, McCormick SP, Butchko RAE, Proctor RH et al (2013) Functional roles of FgLaeA in controlling secondary metabolism, sexual development, and virulence in Fusarium graminearum. PLoS One 8:e68441

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Kosalková K, García-Estrada C, Ullán R V, Godio RP, Feltrer R, Teijeira F et al (2009) The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91:214–225

    PubMed  Google Scholar 

  95. Perrin RM, Fedorova ND, Bok JW, Cramer RA Jr, Wortman JR, Kim HS et al (2007) Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 3:e50

    PubMed Central  PubMed  Google Scholar 

  96. Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf H-U et al (2010) FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 77:972–994

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Wu D, Oide S, Zhang N, Choi MY, Turgeon BG (2012) ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus. PLoS Pathog 8:e1002542

    PubMed Central  PubMed  Google Scholar 

  98. Albert M (2007) Der Einfluss des Sekundärmetabolismus von Aspergillus nidulans auf Reproduktion, Überleben und Nahrungswahl pilzfressender Collembolen. Christian-Albrechts Universität Kiel. p. 43

    Google Scholar 

  99. Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050

    CAS  PubMed  Google Scholar 

  100. Duhamel M, Pel R, Ooms A, Bücking H, Jansa J, Ellers J et al (2013) Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae? Ecology 94:2019–2029

    PubMed  Google Scholar 

  101. Crowther TW, Boddy L, Jones TH (2011a) Species-specific effects of soil fauna on fungal foraging and decomposition. Oecologia 167:535–545

    PubMed  Google Scholar 

  102. Crowther TW, Jones TH, Boddy L, Baldrian P (2011b) Invertebrate grazing determines enzyme production by basidiomycete fungi. Soil Biol Biochem 43:2060–2068

    CAS  Google Scholar 

  103. Hedlund K, Boddy L, Preston CM (1991) Mycelial responses of the soil fungus, Mortierella isabellina, to grazing by Onychiurus armatus (Collembola). Soil Biol Biochem 23:361–366

    Google Scholar 

  104. Kampichler C, Rolschewski J, Donnelly DP, Boddy L (2004) Collembolan grazing affects the growth strategy of the cord-forming fungus Hypholoma fasciculare. Soil Biol Biochem 36:591–599

    CAS  Google Scholar 

  105. Bretherton S, Tordoff GM, Jones TH, Lynne Boddy (2006) Compensatory growth of Phanerochaete velutina ehavio systems grazed by Folsomia candida (Collembola). FEMS Microbiol Ecol 58:33–40

    CAS  PubMed  Google Scholar 

  106. Bleuler-Martínez S, Butschi A, Garbani M, Wälti MA, Wohlschlager T, Potthoff E et al (2011) A lectin-mediated resistance of higher fungi against predators and parasites. Mol Ecol 20:3056–3070

    PubMed  Google Scholar 

  107. Vasconcelos IM, Oliveira JTA (2004) Antinutritional properties of plant lectins. Toxicon 44:385–403

    CAS  PubMed  Google Scholar 

  108. Lakkireddy KKR, Navarro-González M, Velagapudi R, Kües U (2011) Proteins expressed during hyphal aggregation for fruiting body formation in basidiomycetes. In: Savoie J-M, Foulongne-Oriol M, Largeteau M, Barroso G (eds) Proceedings of the 7th international conference on mushroom biology and mushroom products; 4–7 Oct 2011, Arcachon, France. INRA, Bordeaux, pp. 82–94

    Google Scholar 

  109. May GS. Mitogen-activated protein kinase pathways in Aspergilli. In Goldman GH, Osmani SA (eds) The Aspergilli—genomics, medical aspects, biotechnology, and research methods. Taylor & Francis, Boca Raton, 2007. pp. 121–128

    Google Scholar 

  110. Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    CAS  PubMed  Google Scholar 

  111. Nielsen MT, Klejnstrup M, Rohlfs M, Anyaogu DC, Nielsen JB, Gotfredsen CH et al (2013) Aspergillus nidulans synthesize insect juvenile hormones upon expression of a heterologous regulatory protein and in response to grazing by Drosophila melanogaster larvae. PLoS One 8:e73369

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Jindra M, Palli SR, Riddiford LM (2013) The juvenile hormone behaviour pathway in insect development. Ann Rev Entomol 58:181–204

    CAS  Google Scholar 

  113. Döll K, Chatterjee S, Scheu S, Karlovsky P, Rohlfs M (2013) Fungal metabolic plasticity and sexual development mediate induced resistance to arthropod fungivory. Proc R Soc B Biol Sci 280:20131219

    Google Scholar 

  114. Chiang Y-M, Szewczyk E, Nayak T, Davidson AD, Sanchez JF, Lo H-C et al (2008) Molecular genetic mining of the Aspergillus secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chem Biol 15:527–532

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Lo H-C, Entwistle R, Guo C-J, Ahuja M, Szewczyk E, Hung J-H et al (2012) Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans. J Am Chem Soc 134:4709–44720

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work of M. R. is funded by the German Research Foundation (DFG), grant numbers RO3523/3-1, 3-2 and by the Georg-August-University of Göttingen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Rohlfs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rohlfs, M. (2015). Fungal Secondary Metabolism in the Light of Animal–Fungus Interactions: From Mechanism to Ecological Function. In: Zeilinger, S., Martín, JF., García-Estrada, C. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Volume 2. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2531-5_9

Download citation

Publish with us

Policies and ethics