Skip to main content

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

MaSny chemotaxonomical methods have been suggested since the first chemical tests were used on basidiomycetes and lichens. Effective separation techniques, especially ultra-high performance liquid chromatography (UHPLC), and highly sensitive detection methods have been developed, especially mass spectrometric detection and diode array detection. Significant developments in biomolecular methods have made taxonomy and chemotaxonomy a rapidly developing field of science. Apart from DNA nucleotide sequences, the most studied molecules have been secondary metabolites (small molecule extrolites or natural products), and a large number of chemical studies have been made using profiles of extrolites, often in conjunction with fungal morphology, physiology, and molecular sequencing techniques, in a polyphasic approach to classification and identification. Species of filamentous fungi produce highly specific profiles of secondary metabolites, but the choice of growth and production media is very important to get as many extrolites expressed as possible. Many of these extrolites are promising drug lead candidates, or basis for other industrially usable compounds, making genomics and epigenetics important research fields in order to discover new biotechnological products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frisvad JC, Bridge PD, Arora DK (eds) (1998) Chemical fungal taxonomy. Marcel Dekker, New York, p 398

    Google Scholar 

  2. Andersen B, Frisvad JC (2002) Characterization of Alternaria and Penicillium species from similar substrata based on growth at different temperatures, pH and water activity. Syst Appl Microbiol 25:162–172

    CAS  PubMed  Google Scholar 

  3. Frisvad JC (1985) Profiles of primary and secondary metabolites of value in classification of Penicillium viridicatum and related species. In: Samson RA, Pitt JI (eds) Advances in Penicillium and Aspergillus systematics. Plenum, New York, pp 311–325

    Google Scholar 

  4. Hendriksen HV, Mathiasen TE, Adler-Nissen J, Frisvad JC, Emborg C (1988) Production of mannitol by Penicillium strains. J Chem Technol Biotechnol 43:223–228

    CAS  Google Scholar 

  5. Blomquist GB, Andersson B, Andersson K, Brondz I (1992) Analysis of fatty acids. A new method for characterization of moulds. J Microbiol Meth 16:59–68

    CAS  Google Scholar 

  6. Stahl PD, Klug MJ (1996) Characterization and differentiation of filamentous fungi based on fatty acid composition. Appl Environ Microbiol 62:4136–4146

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Pfyffer GE (1998) Carbohydrates and their impact on fungal taxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 247–261

    Google Scholar 

  8. Kock JLF, Botha A (1998) Fatty acids in fungal taxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 219–246

    Google Scholar 

  9. Croxatto A, Prud’hom G, Greub G (2012) Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36:380–407

    CAS  PubMed  Google Scholar 

  10. Normand A-C, Cassagne C, Ranque S, L’Olliver C, Fourquet P, Roesems S, Hendrickx M, Piarroux R (2013) Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi. BMC Microbiol 13:76

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Seifert KA, Samson RA, deWard JR, Houbraken J, Lévesque A, Moncalvo J-M, Louis-Seize G, Hebert PDN (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci U S A 104:3901–3906

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108

    CAS  PubMed  Google Scholar 

  13. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Lévesque A, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109:6241–6246

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Bidartondo MI, Bruns TD, Blackwell M, Edwards I, Taylor AFS, Horton T, Zhang N, Kõljalg U, May G, Kuyper TW et al (2008) Preserving accuracy in GenBank. Science 319:1616a

    Google Scholar 

  15. Taylor HR, Harris WE (2012) An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Mol Ecol Res 12:377–388

    CAS  Google Scholar 

  16. Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fung Div 26:1–54

    Google Scholar 

  17. Cai L, Giraud T, Zhang N, Begerow D, Cai G, Shivas RG (2011) The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fung Div 50:121–133

    Google Scholar 

  18. Peterson SW (2012) Aspergillus and Penicillium identification using DNA sequences: barcode or MLST? Appl Microbiol Biotechnol 95:339–344

    CAS  PubMed  Google Scholar 

  19. Vandamme P, Pot B, Gillis M, DeVos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–173

    Google Scholar 

  21. Frisvad JC (2011) Rationale for a polyphasic approach in the identification of mycotoxigenic fungi. In: De Saeger S (ed) Determining mycotoxins and mycotoxigenic fungi in food and feed. Woodhead, Oxford, pp 279–297

    Google Scholar 

  22. Leal JA, Bernabé M (1998) Taxonomic applications of polysaccharides. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 153–181

    Google Scholar 

  23. Paterson RRM (1998) Chemotaxonomy of fungi by unsaponifiable lipids. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 183–217

    Google Scholar 

  24. Hennebert GL, Vancanneyt M (1998) Proteins in fungal taxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 77–106

    Google Scholar 

  25. Rosendahl S, Banke S (2008) Use of isozymes in fungal taxonomy and population studies. In: Frisvad JC, Bridge PD, Arora DK (eds) 1998. Chemical fungal taxonomy. Marcel Dekker, New York, pp 107–120

    Google Scholar 

  26. Notermans SHW, Cousin MA, De Ruiter GA, Rombouts FM (1998) Fungal immunotaxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 121–152

    Google Scholar 

  27. Brun S, Madrid H, van den Ende BG, Andersen B, Marinach_Patrice C, Mazier D, de Hoog GS (2013) Multilocus phylogeny and MALDI-TOF analysis of the plant pathogenic species Alternaria dauci and relatives. Fung Biol 117:32–40

    CAS  Google Scholar 

  28. Tyrrell D (1969) Biochemical systematics and fungi. Bot Rev 35:305–316

    CAS  Google Scholar 

  29. Benedict RG (1970) Chemotaxonomic relationships among basidiomycetes. Adv Appl Microbiol 13:1–23

    Google Scholar 

  30. Hawksworth DL (1976) Lichen chemotaxonomy. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: problems and prospects. Academic Press, London, pp 139–184

    Google Scholar 

  31. Frisvad JC, Filtenborg O (1983) Classification of terverticillate Penicillia based on profiles of mycotoxins and other secondary metabolites. Appl Environ Microbiol 46:1301–1310

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Moser M 1985. The relevance of chemical characters for the taxonomy of the Agaricales. Proc Indian Acad Sci (Plant Sci) 94:381–386.

    Google Scholar 

  33. Frisvad JC (1989) The use of high-performance liquid chromatography and diode array detection in fungal chemotaxonomy based on profiles of secondary metabolites. Bot J Lin Soc 99:81–95

    Google Scholar 

  34. Frisvad JC, Filtenborg O (1989) Terverticillate penicillia: chemotaxonomy and mycotoxin production. Mycologia 81:836–861

    Google Scholar 

  35. Frisvad JC (1994a) Classification of organisms by secondary metabolites. In: Hawksworth DL (ed) The identification and characterization of pest organisms. CAB International, Wallingford, pp 303–320

    Google Scholar 

  36. Whalley AJS, Edwards RL. 1995. Secondary metabolites and systematic arrangement within the Xylariaceae. Can J Bot 73:S802–S810

    CAS  Google Scholar 

  37. Frisvad JC, Thrane U, Filtenborg O (1998) Role and use of secondary metabolites in fungal taxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 289–319

    Google Scholar 

  38. Frisvad JC, Larsen TO, de Vries R, Meijer M, Houbraken J, Cabañes FJ, Ehrlich K, Samson RA (2007) Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins. Stud Mycol 59:31–37

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in fungal taxonomy. Mycol Res 112:231–240

    CAS  PubMed  Google Scholar 

  40. Andersen B, Dongo A, Pryor BM (2008) Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani and A. tomatophila. Mycol Res 112:241–250

    CAS  PubMed  Google Scholar 

  41. Nielsen KF, Smedsgaard J, Larsen TO, Lund F, Thrane U, Frisvad JC. (2004) Chemical identification of fungi—metabolite profiling and metabolomics. In: Arora DK (ed) Fungal biotechnology in agricultural, food and environmental applications. Marcel Dekker, New York, pp. 19–35

    Google Scholar 

  42. Stadler M, Hellwig V (2004) PCR-based data and secondary metabolites as chemotaxonomic markers in high-throughput screening for bioactive compounds from fungi. In: An Z (ed) Handbook of industrial mycology. Marcel Dekker, New York, pp 269–307

    Google Scholar 

  43. Andersen B, Sørensen JL, Nielsen KF, van den Ende BG, de Hoog S (2009) A polyphasic apporach to the taxonomy of the Alternaria infectoria species-group. Fung Genet Biol 46:642–656

    CAS  Google Scholar 

  44. Rank C, Larsen TO, Frisvad JC (2010) Functional systems biology of Aspergillus. In: Machida M, Gomi K (eds) Aspergillus. Molecular biology and genomics. Caister Academic Press, Norfolk, pp. 173–198

    Google Scholar 

  45. Polizzotto R, Andersen B, Martini M, Grisan S, Assante G, Musetti R (2012) A polyphasic approach for the characterization of endophytic Alternaria strains isolated from grapevines. J Microbiol Meth 88:162–171

    Google Scholar 

  46. Bennett JW, Bentley R (1989) What’s in a name—Microbial secondary metabolism. Adv Appl Microbiol 34:1–28

    CAS  Google Scholar 

  47. Davies J (2013) Specialized microbial metabolites: functions and origins. J Antibiot 66:361–364

    CAS  PubMed  Google Scholar 

  48. Raistrick H (1940) Biochemistry of the fungi. Annu Rev Biochem 9:571–592

    CAS  Google Scholar 

  49. Meinwald J (2009) The chemistry of biotic interactions in pespective: small molecules take center stage. J Org Chem 74:1813–1825

    CAS  PubMed  Google Scholar 

  50. Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837

    CAS  PubMed  Google Scholar 

  51. Walker JB (1974) Biosynthesis of the monoguanidinated inositol moiety of bluensomycin, a possible evolutionary precursor of streptomycin. J Biol Chem 249:2397–2404

    CAS  PubMed  Google Scholar 

  52. Samson RA, Frisvad JC (2004) Penicillium subgenus Penicillium: new taxonomic schemes and mycotoxins and other extrolites. Stud Mycol 49:1–251

    Google Scholar 

  53. Davies J, Ryan KS (2012) Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol 7:252–259

    CAS  PubMed  Google Scholar 

  54. Thrane U, Andersen B, Frisvad JC, Smedsgaard J (2007) The exo-metabolome of filamentous fungi. In: Jewitt M, Nielsen J (eds) Metabolomics. A powerful tool in systems biology (Topics in current chemistry 276). Springer, Berlin, pp 235–252

    Google Scholar 

  55. Terabayashi Y, Sano M, Yamane N, Marui J, Tamano K, Sagara J, Dohmoto M, Oda K, Ohshima E, Tachibana K, Higa Y, Ohashi S, Koike H, Machida M (2010) Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae. Fung Genet Biol 47:953–961

    CAS  Google Scholar 

  56. Li A, van Luijk N, ter Brek M, Caspers M, Punt P, van der Werf M (2011) A clone-based transriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fung Genet Biol 48:601–611

    Google Scholar 

  57. Liu J, Gao Q, Xu N, Liu L (2013) Genome-scale reconstruction and in silico analysis of Aspergillus terreus metabolism. Mol Biosyst 9:1939–1948

    CAS  PubMed  Google Scholar 

  58. Poulsen L, Andersen MR, Lantz AE, Thykaer J (2012) Identification of a transcription factor controlling pH-dependent organic acid response in Aspergillus niger. PLoS ONE 7:e50596

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897

    CAS  PubMed  Google Scholar 

  60. Stone MJ, Williams DH (1992) On the evolution of functional secondary metabolites (natural products). Mol Microbiol 6:29–34

    CAS  PubMed  Google Scholar 

  61. Chadwick DJ, Wheelan J (eds) (1992). Secondary metabolites: their function and evolution (Ciba Foundation Symposium 171). Wiley, Chichester, p 318

    Google Scholar 

  62. Christophersen C (1996) Theory of the origin, function, and evolution of secondary metabolites. In: Atta-ur-Rahman (ed) Studies in natural products chemistry 18. Stereoselective synthesis (part K). Elseveir, Amsterdam, pp 677–737

    Google Scholar 

  63. Firn RD, Jones CG (2000) The evolution of secondary metabolism—a unifying model. Mol Microbiol 37:989–994

    CAS  PubMed  Google Scholar 

  64. Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng/Biotechnol 69:1–39

    CAS  Google Scholar 

  65. Lineares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Nat Acad Sci U S A 103:19484–19489

    Google Scholar 

  66. Price-Wheelan A, Dietrich LEP, Newman DK (2006) Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78

    Google Scholar 

  67. Fischbach MA, Walsh CT, Clardy J (2008) The evolution of gene collectives: how natural selection drives chemical innovation. Proc Nat Acad Sci U S A 105:4601–4608

    CAS  Google Scholar 

  68. Clardy J, Fischbach M, Currie C (2009) The natural history of antibiotics. Curr Biol 19:R437–R441

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Meinwald J (2011) Natural products as molecular messengers. J Nat Prod 74:305–309

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Stevens AM, Schuster M, Rumbaugh KP (2012) Working together for the common good: cell-cell communication in bacteria. J Bacteriol 194:2131–2141

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology (SGM) 151:1325–1340

    CAS  PubMed  Google Scholar 

  72. Villa F, Villa S, Gelain A, Cappitelli F (2013) Sub-lethal activity of small molecules from natural sources and their synthetoic derivatives against biofilm forming nosocomial pathogens. Curr Top Med Chem 13:3184–3204

    CAS  PubMed  Google Scholar 

  73. Bradley D (1996) Beating superbugs with the Gulliver effect. Drug Discov Today 1:361

    Google Scholar 

  74. Dowd P (1988) Synergism of aflatoxin B1 toxicity with the co-occurring fungal metabolite kojic acid to 2 caterpillars. Entomol Exper Appl 47:69–71

    CAS  Google Scholar 

  75. Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Bladt TT, Frisvad JC, Knudsen PB, Larsen TO (2013) Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules 18:11338–11376

    CAS  PubMed  Google Scholar 

  77. De Jesus AE, Steyn PS, van Heerden FR, Vleggaar R, Wessels PL (1983) Tremorgenic mycotoxins from Penicillium crustosum: Isolation of penitrems A-F and the structure elucidation and absolute configuration of penitrem A. J Chem Soc Perkin Trans 1:1847–1856

    Google Scholar 

  78. González MC, Lull C, Moya P, Ayala I, Primo J, Yúfera EP (2003) Insecticidal activity of penitrems, including penitrem G, a new member of the family isolated from Penicillium crustosum. J Agric Food Chem 51:2156–2160

    PubMed  Google Scholar 

  79. Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  80. Sonjak S, Frisvad JC, Gunde-Cimerman N (2005) Comparison of secondary metabolite production by Penicillium crustosum strains, isolated from Arctic and other various ecological niches. FEMS Microbiol Ecol 53:51–60

    CAS  PubMed  Google Scholar 

  81. Sonjak S, Frisvad JC, Gunde-Cimerman N (2007) Genetic variation among Penicillium crustosum isolates from arctic and other ecological niches. Microbial Ecol 54:298–305

    CAS  Google Scholar 

  82. Wu G, Ma H, Zhu T, Li J, Gu Q, Li D (2012) Penilactones A and B, two novel polyketides from Antarctic deep-sea derived fungus Penicillium crustosum PRB-2. Tetrahedron 68:9745–9749

    CAS  Google Scholar 

  83. Da Silva JV, Fill TP, Da Silva BF, Rodrigues-Fo E (2013) Diclavatol and tetronic acids from Penicillium griseoroseum. Nat Prod Res 27:9–16

    PubMed  Google Scholar 

  84. Birkinshaw JH, Raistrick H (1936) Studies in the biochemistry of micro-organisms. LII. Isolation, properties and constitution of terrestric acid (ethylcarolic acid), a metabolic product of Penicillium terrestre. Biochem J 30:2194–2200

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Birkinshaw JH, Samant MS (1960) Studies in the biochemistry of micro-organisms. 107. Metabolites of Penicillium viridicatum Westling: viridicatic acid (ethyl carlosic acid). Biochem J 74:369–373

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Wang J, Liu P, Wang Y, Wang H, Li J, Zhuang Y, Zhu W (2012) Antimicrobial aromatic polyketides from gorgonean-associated fungus Penicillium commune 518. Chin J Chem 30:1326–1342

    Google Scholar 

  87. Yan H-J, Gao S-S, Li C-S, Li X-M, Wanf B-G (2010) Chemical constituents of a marine-derived endophytic fungus Penicillium commune G2M. Molecules 15:3270–3275

    CAS  PubMed  Google Scholar 

  88. Roncal T, Cordobës S, Ugalde U, He Y, Sterner O (2002) Novel diterpenes with potent conidiation inducing activity. Tetrahedron Lett 43:6799–6802

    CAS  Google Scholar 

  89. Dulaney EL, Gray RA (1962) Penicillia that make (N-formyl)-hydroxyaminoacetic acid, a new fungal product. Mycologia 54:476–480

    CAS  Google Scholar 

  90. Kyriakidis N, Waight ES, Day JB, Mantle PG (1981) Novel metabolites from Penicillium crustosum, including penitrem E, a tremorgenic mycotoxin. Appl Environ Microbiol 42:61–62

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Wagener RE, Davis ND, Diener UL (1980) Penitrem A and roquefortine production by Penicillium commune. Appl Environ Microbiol 39:882–887

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Wells JM, Payne JA (1976) Toxigenic species of Penicillium, Fusarium and Aspergillus from weevil-damaged pecans. Can J Microbiol 22:281–285

    CAS  PubMed  Google Scholar 

  93. Musuku A, Selala MI, de Bruyne T, Clayes M, Schepens PJC (1994) Isolation and structure determination of a new roquefortine-related mycotoxin from Penicillium verrucosum var. cyclopium isolated from cassava. J Nat Prod 57:983–987

    CAS  Google Scholar 

  94. Trimble LA, Sumarah MW, Blackwell BA, Wrona MD, Miller JD (2012) Characterization of (16R) and (16S)-hydroxyroquefortine C; diastereomeric metabolites from Penicillium crustosum DAOM 215343. Tetrahedron Lett 53:956–958

    CAS  Google Scholar 

  95. Kozlovskii AG, Reshetilova TA, Sakharovskii VG, Adanin VM, Zyakun AM (1989) Metabolites of the alkaloids roquefortine and 3,12-dihydroroquefortine in the fungus Penicillium farinosum. Appl Biochem Microbiol 24:533–537

    Google Scholar 

  96. Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankermeier T, Bovenburg RAL, Vreeken RJ, Driessen AJM (2013) A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum. PLoS ONE 8:e65328

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Wells JM, Payne JA (1977) Production of penitrem A and of an unidentified toxin from Penicillium lanosocoeruleum isolated from weevil-damaged pecans. Phytopathology 67:779–782

    CAS  Google Scholar 

  98. Moldes-Anaya A, Rundberget T, Uhlig S, Rise F, Wilkins AL (2011) Isolation and structure elucidation of secopenitrem D, an indole alkaloid from Penicillium crustosum Thom. Toxicon 57:259–265

    CAS  PubMed  Google Scholar 

  99. Rundberget T, Wilkins AL (2002) Thomitrems A and E, two indole-alkaloid isoprenoids from Penicillium crustosum Thom. Phytochemistry 61:979–985

    CAS  PubMed  Google Scholar 

  100. Hosoe T, Nozawa K, Udagawa S, Nakajima S, Kawai K (1990) Structures of new indoloterpenes, possible biosynthetic precursors of the tremorgenic mycotoxins, penitrems, from Penicillium crustosum. Chem Pharm Bull 38:3473–3475

    CAS  Google Scholar 

  101. Sallam AA, Houssen WE, Gissendanner CR, Orabi KY, Foudah AI, El Sayed KA (2013) Bioguided discovery and pharmacophore modeling of the mycotoxic indole diterpene alkaloids penitrems as breast cancer proliferation, migration, and invasion inhibitors. MedChemComm 4:1360–1369

    CAS  Google Scholar 

  102. Mantle PG, Perrera PWC, Maishman NJ, Mundy GR (1983) Biosynthesis of penitrems and roquefortine by Penicillium crustosum. Appl Environ Micorbiol 45:1486–1490

    CAS  Google Scholar 

  103. Taneguchi M, Satomura Y (1970) Isolation of viridicatin from Penicillium crustosum, and physiological activity of viridicatin sand its 3-carboxymethylene derivative on microorganisms and plants. Agric Biol Chem 34:506–509

    Google Scholar 

  104. Cunningham KG, Freeman GG (1953) The isolation and some chemical properties of viridicatin, a metabolic product of Penicillium viridicatum Westling. Biochem J 53:328–332

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Guimarães DO, Borges WS, Vieira NJ, de Oliveira LF, da Silva CHTP, Lopes NP, Dias LG, Durán-Patrón R, Collado IG, Pupo MT (2010) Diketopiperazines produced by endophytic fungi found in association with two Asteraceae species. Phytochemistry 71:1423–1429

    PubMed  Google Scholar 

  106. Larsen TO, Frisvad JC (1995) Characterization of volatile metabolites from 47 Penicillium taxa. Mycol Res 99:1153–1166

    CAS  Google Scholar 

  107. Fischer G, Schwalbe R, Möller M, Ostrowski R, Dott W (1999) Species-specific production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere 39:795–810

    CAS  PubMed  Google Scholar 

  108. Riley RF, Miller DK (1948) The isolation and identification of an antibiotic substance present in the mycelium of Penicillium crustosum (Thom). Arch Biochem 18:13–26

    CAS  PubMed  Google Scholar 

  109. Fischbach MA, Clardy J (2007) One pathway, many products. Nat Chem Biol 3:353–355

    CAS  PubMed  Google Scholar 

  110. Houbraken J, Frisvad JC, Samson RA (2011a) Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2:87–95

    PubMed Central  PubMed  Google Scholar 

  111. Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DE, Valdez JG, Samson RA (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29:78–100

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Procopio S, Qian F, Becker T (2011) Function and regulation of yeast genes involved in higher alcohol and ester metabolism during beverage fermentation. Eur Food Res Technol 233:721–729

    CAS  Google Scholar 

  113. Surmacz L, Swiezewska E (2011) Polyisoprenoids—secondary metabolites or physiologically important superlipids? Biochem Biophys Res Commun 407:627–632

    CAS  PubMed  Google Scholar 

  114. Ells R, Kock JFL, Albertyn J, Pohl CH (2012) Arachidonic acid metabolites in pathogenic yeasts. Lip Health Dis 11:100

    CAS  Google Scholar 

  115. Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063

    CAS  PubMed  Google Scholar 

  116. Turner WB (1971) Fungal metabolites. Academic Press, London, pp 446

    Google Scholar 

  117. Turner WB, Aldridge DC (1983) Fungal metabolites II. Academic, London, pp 631

    Google Scholar 

  118. Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    CAS  PubMed  Google Scholar 

  119. Zac JC, Wildman HG (2004) Fungi in stressful environments. In: Mueller GM, Bills GF, Forster MS (eds) Biodiversity of fungi. Elsevier, Amsterdam, pp 303–315

    Google Scholar 

  120. Schiewe HJ, Zeeck A (1999) Cineromycins, gamma-butyrolactones and ansamycins by analysis of the secondary metabolite pattern created by a single strain of Streptomyces. J Antibiot 52:635–642

    CAS  PubMed  Google Scholar 

  121. Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627

    CAS  PubMed  Google Scholar 

  122. Bills G, Platas G, Fillola A, Jiménez MR, Bur-Zimmerman J, Tormo JR, Peláez F (2008) Enhenacement of antibiotic and secondary metabolite detection from filamentous fungi by growth on nutritional arrays. J Appl Bacteriol 104:1644–1658

    CAS  Google Scholar 

  123. Scherlach K, Schuemann J, Dahse H-M, Hertweck C (2010) Aspernidine A and B, prenylated isoindolino alkaloids from the model fungus Aspergillus nidulans. J Antibiot 63:375–377

    CAS  PubMed  Google Scholar 

  124. Kjer J, Debbab A, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary metabolites. Nat Protoc 5:479–490

    CAS  PubMed  Google Scholar 

  125. Nielsen ML, Nielsen JB, Rank C, Klejnstrup ML, Holm DMK, Brogaard KH, Hansen BG, Frisvad JC, Larsen TO, Mortensen UH (2011a) A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiol Lett 321:157–166

    CAS  PubMed  Google Scholar 

  126. Tormo JR, Asensio FJ, Bills GF (2012) Manipulating filamentous fungus chemical phenotypes by growth on nutritional arrays. In: Keller NP, Turner G (eds) Fungal secondary metabolism: methods and protocols (Methods in molecular biology 944). Humana, New York, pp 59–78

    Google Scholar 

  127. Frisvad JC (2010) Metabolomics for the discovery of novel compounds. In: Baltz RH, Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology, 3rd edn. ASM, Washington, DC, pp 73–77

    Google Scholar 

  128. Frisvad JC (2012) Media and growth conditions for induction of secondary metabolites. In: Keller NP, Turner G (eds) Fungal secondary metabolism: methods and protocols (Methods in Molecular Biology 944: 47–58). Humana, New York

    Google Scholar 

  129. Malmstrøm J, Christophersen C, Frisvad JC (2000) Secondary metabolites characteristic of marine and terrestrial isolates of Penicillium citrinum, P. steckii and related species. Phytochemistry 54:301–309

    PubMed  Google Scholar 

  130. Houbraken J, Frisvad JC, Samson RA (2011b) Taxonomy of Penicillium section Citrina. Stud Mycol 70:53–138

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Lai D, Brötz-Oesterhelt H, Müller WEG, Wray V, Proksch P (2013) Bioactive polyketides and alkaloids from Penicillium citrinum, a fungal endophyte isolated from Ocimum tenuiflorum. Fitoterapia 91:100–106

    CAS  PubMed  Google Scholar 

  132. Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP (2006) Genomic mining for Aspergillus natural products. Chem Biol 13:31–37

    CAS  PubMed  Google Scholar 

  133. Schwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664

    Google Scholar 

  134. Henrikson JC, Hoover AR, Joyner PM, Cichewicz RH (2009) A chemical epigenetics approach for engineering the in situ biosynthesis of cryptic natural products from Aspergillus niger. Org Biomol Chem 7:435–438

    CAS  PubMed  Google Scholar 

  135. Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. ChemBioChem 10:625–633

    CAS  PubMed  Google Scholar 

  136. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fung Genet Biol 48:15–22

    CAS  Google Scholar 

  137. Chiang Y-M, Chang S-L-, Oakley BR, Wang CCC (2011) Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol 15:137–143

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Davies J (2011) How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 15:5–10

    CAS  PubMed  Google Scholar 

  139. Umemura M, Koike H, Nagano N, Ishii T, Kawano J, Yamane N, Kozone I, Horimoto JK, Shin-ya K, Asai K, Yu J, Bennett JW, Machida M (2013) MIDDAS: Motif-independent de novo detection of secondary metabolite gene clusters through the integration of genome and transcriptome data. PLoS ONE 8:e84028

    PubMed Central  PubMed  Google Scholar 

  140. Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M, Espino JJ, Huss K, Michielse CB, Albermann S, Wagner D, Bergner SV, Conolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfileld BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf H-U, Güldener U, Tudzynski B (2013) Deciphering the cryptic genome: Genome-wide analyses of the rice pathogen Fusarium fujikuroi revel complex regulation of secondary metabolism and novel metabolites. PLoS Path 9:e1003475

    CAS  Google Scholar 

  141. Fisch KM, Gillaspy AF, Gipson M, Henrikson JC, Hoover AR, Jackson L, Najar FZ, Wägele H, Cichewicz RH (2009) Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J Ind Microbiol Biotechnol 36:1199–1213

    CAS  PubMed  Google Scholar 

  142. Henrikson JC, Ellis TK, King JB, Cichewicz RH (2011) Reappraising the structures and distribution of metabolites from black Aspergilli containing uncommon 2-benzyl-4H-pyran-4-one and 2-benzylpyridin-4(1H)-one systems. J Nat Prod 74:1959–1964

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC (2009) Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal Bioanal Chem 395:1225–1246

    CAS  PubMed  Google Scholar 

  144. Wachtmeister C (1956) Identification of lichen acids by paper chromatography. Bot Nor 109:313–324

    CAS  Google Scholar 

  145. Culberson CF, Kristinsson H-D (1970) A standardized method for the identification of lichen products. J Chromatogr 46:85–93

    CAS  Google Scholar 

  146. Culberson CF (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. J Chromatogr 72:113–125

    CAS  PubMed  Google Scholar 

  147. Culberson CF, Johnson A (1982) Substitution of methyl tert. butyl ether for diethyl ether in standardized thin-layer chromatographic method for lichen products. J Chromatogr 238:438–487

    Google Scholar 

  148. Lumbsch HT (1998) Taxonomic use of metabolic data in lichen-forming fungi. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 345–385

    Google Scholar 

  149. Filtenborg O, Frisvad JC (1980) A simple screening method for toxigenic fungi in pure cultures. Lebensm Wiss Technol 13:128–130

    CAS  Google Scholar 

  150. Frisvad JC (1981) Physiological criteria and mycotoxin production as aids in identification of common asymmetric penicillia. Appl Environ Microbiol 41:568–579

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Filtenborg O, Frisvad JC, Svendsen JA (1983) Simple screening method for moulds producing intracellular mycotoxins in pure cultures. Appl Envitron Microbiol 45:581–585

    CAS  Google Scholar 

  152. Filtenborg O, Frisvad JC, Thrane U (1990) The significance of yeast extract composition on metabolite production in Penicillium. In: Samson RA, Pitt JI (eds) Modern concepts in Penicillium and Aspergillus classification. Plenum, New York, pp 433–441

    Google Scholar 

  153. Frisvad JC, Thrane U (1987) Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone indices and UV-VIS spectra (diode-array detection). J Chromatogr 404:195–214

    CAS  PubMed  Google Scholar 

  154. Frisvad JC, Thrane U (1993) Liquid column chromatography of mycotoxins. In: Betina V (ed) Chromatography of mycotoxins: techniques and applications. Journal of Chromatography Library 54. Elsevier, Amsterdam, pp 253–372

    Google Scholar 

  155. Frisvad JC (1987) High-performance liquid chromatographic determination of profiles of mycotoxins and other secondary metabolites. J Chromatogr 392:333–347

    CAS  PubMed  Google Scholar 

  156. Smedsgaard J, Frisvad JC (1997) Terverticillate penicillia studied by direct electrospray mass spectrometric profiling of crude extracts: I. Chemosystematics. Biochem Syst Ecol 25:51–64

    CAS  Google Scholar 

  157. Smedsgaard J (1997a) Terverticillate Penicillia studies by direct electrospray mass spectrometric profiling of crude extracts. II. Database and identification. Biochem Syst Ecol 25:65–71

    CAS  Google Scholar 

  158. Smedsgaard J (1997b) Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J Chromatogr A 760:264–270

    CAS  PubMed  Google Scholar 

  159. Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardized liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A 1002:111–136

    CAS  PubMed  Google Scholar 

  160. Nielsen KF, Månsson M, Rank C, Frisvad JC, Larsen TO (2011b) Dereplication of microbial natural products by LC-DAD-TOFMS. J Nat Prod 74:2338–2348

    CAS  PubMed  Google Scholar 

  161. Klitgaard A, Iversen A, Andersen MR, Larsen TO, Frisvad JC, Nielsen KF (2014) Aggressive dereplication using UHPLC-DAD-QTOF—screening extracts for up to 3000 fungal secondary metabolites. Anal Bioanal Chem. doi: 10.1007/s00216-013-7582-x (Published online Jan 18, 2014)

    Google Scholar 

  162. Frisvad JC (1992) Chemometrics and chemotaxonomy: a comparison of multivariate statistical methods for the evaluation of binary fungal secondary metabolite data. Chemom Intel Lab Syst 14:253–269

    CAS  Google Scholar 

  163. Frisvad JC (1994b) Correspondence, principal coordinate, and redundancy analysis used on mixed chemotaxonomical qualitative and quantitative data. Chemom Intel Lab Syst 23:213–229

    CAS  Google Scholar 

  164. Nguyen DD, Wu C-H, Moree WJ, Lamsa A, Medema MH, Zhao X, Gavilan RG, Aparicio M, Atencio L, Jackson C, Ballesteros J, Sanchez J, Watrous JD, Phelan VV, van de Wiel C, Kersten RD, Mehnaz S, De Mot R, Shank EA, Charusanti P, Nagarajan H, Duggan BM, Moore BS, Bandeira N, Palsson B, Pogliano K, Gutiérrez M, Dorrestein P (2013) MS/MS networking guided analysis of molecule and gene cluster families. Proc Nat Acad Sci U S A 110:E2611–E2620

    CAS  Google Scholar 

  165. Hansen ME, Andersen B, Smedgaard J (2005) Automated and unbiased classification of chemical profiles from fungi using high performance liquid chromatography. J Microbiol Meth 61:295–304

    CAS  Google Scholar 

  166. Richards TA, Leonard G, Soanes DM, Talbott NJ (2011) Gene transfer into the fungi. Fung Biol Rev 25:98–110

    Google Scholar 

  167. Walton JD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fung Genet Biol 30:167–171

    CAS  Google Scholar 

  168. Schmitt I, Lumbsch TH (2009) Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS ONE 4:e4437

    PubMed Central  PubMed  Google Scholar 

  169. Rank C, Nielsen KF, Larsen TO, Varga J, Samson RA, Frisvad JC (2011) Distribution of sterigmatocystin in filamentous fungi. Fung Biol 115:406–420

    CAS  Google Scholar 

  170. Slot JC, Rokas A (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 21:134–139

    CAS  PubMed  Google Scholar 

  171. Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Thrane U (1990) Grouping Fusarium section Discolor isolates by statistical analysis of quantitative high performance liquid chromatographic data on secondary metabolite production. J Microbiol Meth 12:23–39

    CAS  Google Scholar 

  173. Thrane U, Hansen U (1995) Chemical and physiological charcacterization of taxa in the Fusarium sambucinum complex. Mycopathologia 129:183–190

    CAS  PubMed  Google Scholar 

  174. Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 22:672–695

    CAS  PubMed  Google Scholar 

  175. Korzybski T, Kowszyk-Gindifer Z, Kuryłowicz W (1967) Antibiotics: origin, nature and propereties, vol I, II. Pergamon, Oxford, p 1651

    Google Scholar 

  176. Gottlieb D (1976) The production and role of antibiotics in soil. J Antibiot 29:988–1000

    Google Scholar 

  177. Bills GF, Gloer JB, An Z (2013) Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Curr Opin Microbiol 16:549–565

    CAS  PubMed  Google Scholar 

  178. Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    CAS  Google Scholar 

  179. Strobel GA, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic organisms. J Nat Prod 67:257–268

    CAS  PubMed  Google Scholar 

  180. Wang L-W, Zhang Y-L, Lin, F-C, Hu Y-Z, Zhang C-L (2011) Natural products with antitumor activity from endophytic fungi. Mini Rev Med Chem 11:1056–1074

    Google Scholar 

  181. Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    CAS  PubMed  Google Scholar 

  182. Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:812–887

    Google Scholar 

  183. Blunt JC, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268

    CAS  PubMed  Google Scholar 

  184. Frisvad JC (2008a) Fungi in cold ecosystems. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 137–156

    Google Scholar 

  185. Frisvad JC (2008b) Cold-adapted fungi as a source for valuable metabolites. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 381–387

    Google Scholar 

  186. Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of taxol biosynthesis in fungi. Fung Div 60:161–170

    Google Scholar 

  187. Umezawa H, Tobe H, Shibamoto N, Nakamura F, Nakamura K, Matsuzaki M, Takeuchi T (1975) Isolation of isoflavones inhibiting DOPA decarboxylase from fungi and Streptomyces. J Antibiot 28:947–952

    CAS  PubMed  Google Scholar 

  188. Fukutake M, Takahashi M, Ishida K, Kawamura H, Sugimura T, Wakabayashi K (1996) Quantification of genistein and genistin in soybeans and soybean products. Food Chem Toxicol 34:457–461

    CAS  PubMed  Google Scholar 

  189. Miake Y, Minato K, Fukumoto S, Yamamoto K, Oya-Ito T, Kawakishi S, Osawa T (2003) New potent antioxidative hydroxyflavones produced with Aspergillus saitoi from flavanone glycoside in citrus fruit. Biosci Biotechnol Biochem 67:1443–1450

    Google Scholar 

  190. Esaki H, Watanabe R, Osawa T, Kawasaki S (2004) Transformation of genistein by the spores of Aspergillus spp. Nippon Shokuhin Kagaku Kogaku Kaishi 51:210–213

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens C. Frisvad PhD, Dr.Techn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frisvad, J. (2015). Fungal Chemotaxonomy. In: Zeilinger, S., Martín, JF., García-Estrada, C. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Volume 2. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2531-5_7

Download citation

Publish with us

Policies and ethics