Skip to main content

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Fungal secondary metabolites play multiple biological roles in development, virulence, defense, adaptation, and stress response. Many of these low-molecular-mass compounds are of intense interest to humankind due to their economic applications (antibiotics and drugs) and/or adverse effects (mycotoxins). Many filamentous fungal secondary metabolites are synthesized by enzymes and related regulator(s) are encoded by clustered genes. Expression of these clusters are governed by various transcription factors and signaling elements. Recent studies have further revealed that fungal secondary metabolite genes are subject to epigenetic regulation. This chapter presents a concise summary of the epigenetic modifications and remodeling of the genes associated with fungal secondary metabolism, focusing on the genetic elements involved in epigenetic regulation, including HepA, (LaeA), complex proteins associated with Set1 (COMPASS) complex, histone deacetylases (HDACs), Spt-Ada-Gcn5-acetyltransferase (SAGA/ADA) complex, and small ubiquitin-like modifier (SUMO). Finally, the current applications of these epigenetic regulators are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48(1):15–22

    CAS  PubMed  Google Scholar 

  2. Brakhage AA, Schuemann J, Bergmann S, Scherlach K, Schroeckh V, Hertweck C (2008) Activation of fungal silent gene clusters: a new avenue to drug discovery. Natural compounds as drugs. Springer, Basel p. 1–12

    Google Scholar 

  3. Howard RJ, Valent B (1996) Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50(1):491–512

    CAS  PubMed  Google Scholar 

  4. Kimura N, Tsuge T (1993) Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. J Bacteriol 175(14):4427–4435

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Tsai H-F, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ (1998) The developmentally regulated alb1 gene of Aspergillus fumigatus: Its role in modulation of conidial morphology and virulence. J Bacteriol 180(12):3031–3038

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Leonard KJ (1977) Virulence, temperature optima, and competitive abilities of isolines of races T and O of Bipolaris maydis. Phytopathology 67(11):1273–1279

    Google Scholar 

  7. Klittich CJR, Bronson CR (1986) Reduced fitness associated with tox1 of Cochliobolus heterostrophus. Phytopathology 76(12):1294–1298

    Google Scholar 

  8. Yim G, Wang HH (2007) Antibiotics as signalling molecules. Philos Trans R Soc B Biol Sci 362(1483):1195–1200

    CAS  Google Scholar 

  9. Yu J-H, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458

    CAS  PubMed  Google Scholar 

  10. Calvo AM, Wilson RA, Bok JW, Keller NP (2002 Sep) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66(3):447–459

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11(6):481–487

    CAS  PubMed  Google Scholar 

  12. Ma L-J, Van Der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464(7287):367–373

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Palmer JM, Keller NP (2010) Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 13(4):431–436

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ et al (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4(4):e1000046

    PubMed Central  PubMed  Google Scholar 

  15. Bouhired S, Weber M, Kempf-Sontag A, Keller NP, Hoffmeister D (2007) Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA. Fungal Genet Biol 44(11):1134–1145

    CAS  PubMed  Google Scholar 

  16. Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP (2006) Genomic mining for Aspergillus natural products. Chem Biol 13(1):31–37

    CAS  PubMed  Google Scholar 

  17. Freitag M, Selker EU (2005) Controlling DNA methylation: many roads to one modification. Curr Opin Genet Dev 15(2):191–199

    CAS  PubMed  Google Scholar 

  18. Selker EU, Jensen BC, Richardson GA (1987) A portable signal causing faithful DNA methylation de novo in Neurospora crassa. Science 238(4823):48–53

    CAS  PubMed  Google Scholar 

  19. Singer MJ, Marcotte BA, Selker EU (1995) DNA methylation associated with repeat-induced point mutation in Neurospora crassa. Mol Cell Biol 15(10):5586–5597

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Miao VPW, Freitag M, Selker EU (2000) Short tpa-rich segments of the ζ-η region induce DNA methylation in Neurospora crassa. J Mol Biol 300(2):249–273

    CAS  PubMed  Google Scholar 

  21. Tamaru H, Selker EU (2003) Synthesis of signals for de novo DNA methylation in Neurospora crassa. Mol Cell Biol 23(7):2379–2394

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Rossignol JL, Faugeron G (1995) Mip: An epigenetic gene silencing process in Ascobolus immersus. Gene silencing in higher plants and related phenomena in other eukaryotes: Springer, Verlag p. 179–191

    Google Scholar 

  23. Barry C, Faugeron G, Rossignol J-L (1993) Methylation induced premeiotically in Ascobolus: coextension with DNA repeat lengths and effect on transcript elongation. Proc Natl Acad Sci 90(10):4557–4561

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Rhounim L, Rossignol J-L, Faugeron G (1992) Epimutation of repeated genes in Ascobolus immersus. EMBO J 11(12):4451

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Faugeron G, Rhounim L, Rossignol J-L (1990) How does the cell count the number of ectopic copies of a gene in the premeiotic inactivation process acting in Ascoborus immersus? Genetics 124(3):585–591

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Jorgensen RA, Que Q, Stam M (1999) Do unintended antisense transcripts contribute to sense cosuppression in plants? Trends Genet 15(1):11–12

    CAS  PubMed  Google Scholar 

  27. Catalanotto C, Azzalin G, Macino G, Cogoni C (2000) Transcription: gene silencing in worms and fungi. Nature 404(6775):245–245

    CAS  PubMed  Google Scholar 

  28. Romano N, Macino G Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6(22):3343–3353

    Google Scholar 

  29. Chen B, Choi GH, Nuss DL (1994) Attenuation of fungal virulence by synthetic infectious hypovirus transcripts. Science 264(5166):1762–1764

    CAS  PubMed  Google Scholar 

  30. Choi GH, Nuss DL (1992) Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science 257(5071):800–803

    CAS  PubMed  Google Scholar 

  31. Nuss DL (2011) Mycoviruses, RNA silencing, and viral RNA recombination. Adv Virus Res 80:25

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Hammond TM, Keller NP (2005) RNA silencing in Aspergillus nidulans is independent of RNA-dependent rna polymerases. Genetics 169(2):607–617

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Aramayo R, Metzenberg RL (1996) Meiotic transvection in fungi. Cell 86(1):103–113

    CAS  PubMed  Google Scholar 

  34. Shiu PKT, Raju NB, Zickler D, Metzenberg RL (2001) Meiotic silencing by unpaired DNA. Cell 107(7):905–916

    CAS  PubMed  Google Scholar 

  35. Keller NP, Hohn TM (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21(1):17–29

    CAS  Google Scholar 

  36. Rosewich UL, Kistler HC (2000) Role of horizontal gene transfer in the evolution of fungi. Annu Rev Phytopathol 38(1):325–363

    CAS  PubMed  Google Scholar 

  37. Khaldi N, Collemare J, Lebrun M-H, Wolfe KH (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol 9(1):R18

    PubMed Central  PubMed  Google Scholar 

  38. Lawrence JG, Roth JR (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143(4):1843–1860

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Lawrence JG (1999) Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol 2(5):519–523

    CAS  PubMed  Google Scholar 

  40. Smith MW, Feng D-F, Doolittle RF (1992) Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem Sci 17(12):489–493

    CAS  PubMed  Google Scholar 

  41. Tudzynski B, Hedden P, Carrera E, Gaskin P (2001) The p450–4 gene of Gibberella fujikuroi encodes ent-kaurene oxidase in the gibberellin biosynthesis pathway. Appl Environ Microbiol 67(8):3514–3522

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Wang X, Sena Filho JG, Hoover AR, King JB, Ellis TK, Powell DR et al (2010) Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an atlantic-forest-soil-derived Penicillium citreonigrum. J Nat Prod 73(5):942–948

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269

    CAS  PubMed  Google Scholar 

  44. Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryotic cell 3(2):527–535

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Nützmann H-W, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A et al (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires saga/ada-mediated histone acetylation. Proc Natl Acad Sci 108(34):14282–14287

    PubMed Central  PubMed  Google Scholar 

  46. Strauss J, Reyes-Dominguez Y (2011) Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet Biol 48(1):62–69

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Szewczyk E, Chiang Y-M, Oakley CE, Davidson AD, Wang CC, Oakley BR (2008) Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans. Appl Environ Microbiol 74(24):7607–7612

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868–871

    CAS  PubMed  Google Scholar 

  49. de la Cruz X, Lois S, Sánchez‐Molina S, Martínez‐Balbás MA (2005) Do protein motifs read the histone code? Bioessays 27(2):164–175

    PubMed  Google Scholar 

  50. Kosalková K, García-Estrada C, Ullán RV, Godio RP, Feltrer R, Teijeira F et al (2009) The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91(2):214–225

    PubMed  Google Scholar 

  51. Smith KM, Phatale PA, Bredeweg EL, Pomraning KR, Freitag M (2012) Epigenetics of filamentous fungi. In: Meyers RA (ed) Epigenetic regulation and epigenomics (Current Topics from the Encyclopedia of Molecular Cell Biolo). Wiley-VCH Verlag GmbH & Co., pp 1063–1107

    Google Scholar 

  52. Reyes‐Dominguez Y, Bok JW, Berger H, Shwab EK, Basheer A, Gallmetzer A et al (2010) Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol Microbiol 76(6):1376–1386

    PubMed Central  PubMed  Google Scholar 

  53. Wang G, Ma A, Chow C-m, Horsley D, Brown NR, Cowell IG et al. (2000) Conservation of heterochromatin protein 1 function. Mol Cell Biol 20(18):6970–6983

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Cryderman DE, Cuaycong MH, Elgin SC, Wallrath LL (1998) Characterization of sequences associated with position-effect variegation at pericentric sites in Drosophila heterochromatin. Chromosoma 107(5):277–285

    CAS  PubMed  Google Scholar 

  55. Holbert MA, Marmorstein R (2005) Structure and activity of enzymes that remove histone modifications. Curr Opin Struct Biol 15(6):673–680

    CAS  PubMed  Google Scholar 

  56. Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun Z-W, Schmid M et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599

    CAS  PubMed  Google Scholar 

  57. Noma K-i, Allis CD, Grewal SI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293(5532):1150–1155

    CAS  PubMed  Google Scholar 

  58. Fanti L, Pimpinelli S (2008) HP1: a functionally multifaceted protein. Curr Opin Genet Dev 18(2):169–174

    CAS  PubMed  Google Scholar 

  59. Freitag M, Hickey PC, Khlafallah TK, Read ND, Selker EU (2004) HP1 is essential for DNA methylation in Neurospora. Mol Cell 13(3):427–434

    CAS  PubMed  Google Scholar 

  60. Lewis ZA, Honda S, Khlafallah TK, Jeffress JK, Freitag M, Mohn F et al (2009) Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res 19(3):427–437

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Sims RJ III, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. TRENDS Genet 19(11):629–639

    CAS  PubMed  Google Scholar 

  62. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC et al (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124

    CAS  PubMed  Google Scholar 

  63. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120

    CAS  PubMed  Google Scholar 

  64. Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC, Yamada Y et al (2003) Regulated recruitment of hp1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev 17(15):1855–1869

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Li Y, Danzer JR, Alvarez P, Belmont AS, Wallrath LL (2003) Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development 130(9):1817–1824

    CAS  PubMed  Google Scholar 

  66. Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf HU et al (2010) FfVel1 and FfLae1, components of a velvet‐like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 77(4):972–994

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Perrin RM, Fedorova ND, Bok JW, Cramer RA Jr, Wortman JR, Kim HS et al (2007) Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 3(4):e50

    PubMed Central  PubMed  Google Scholar 

  68. Bayram Ö, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O et al (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320(5882):1504–1506

    CAS  PubMed  Google Scholar 

  69. Bok JW, Noordermeer D, Kale SP, Keller NP (2006) Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol Microbiol 61(6):1636–1645

    CAS  PubMed  Google Scholar 

  70. Hoffmeister D, Keller NP. (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Natural Product Reports 24(2):393–416

    CAS  PubMed  Google Scholar 

  71. Kozbial PZ, Mushegian AR (2005) Natural history of s-adenosylmethionine-binding proteins. BMC Struct Biol 5(1):19

    PubMed Central  PubMed  Google Scholar 

  72. Yin W, Keller NP (2011) Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol 49(3):329–339

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Chiou C-H, Miller M, Wilson DL, Trail F, Linz JE (2002) Chromosomal location plays a role in regulation of aflatoxin gene expression in Aspergillus parasiticus. Appl Environ Microbiol 68(1):306–315

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Roze LV, Arthur AE, Hong SY, Chanda A, Linz JE. (2007) The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster. Molecular Microbiol 66(3):713–726

    CAS  Google Scholar 

  75. Smith CA, Woloshuk CP, Robertson D, Payne GA (2007) Silencing of the aflatoxin gene cluster in a diploid strain of Aspergillus flavus is suppressed by ectopic aflR expression. Genetics 176(4):2077–2086

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Smith KM, Kothe GO, Matsen CB, Khlafallah TK, Adhvaryu KK, Hemphill M et al (2008) The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9. Epigenetics Chromatin 1(1):5

    PubMed Central  PubMed  Google Scholar 

  77. Bok JW, Chiang Y-M, Szewczyk E, Reyes-Dominguez Y, Davidson AD, Sanchez JF et al (2009) Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol 5(7):462–464

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Roguev A, Schaft D, Shevchenko A, Pijnappel WWM, Wilm M, Aasland R et al (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20(24):7137–7148

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Krogan NJ, Dover J, Khorrami S, Greenblatt JF, Schneider J, Johnston M et al (2002) Compass, a histone H3 (lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 277(13):10753–10755

    CAS  PubMed  Google Scholar 

  80. Nagy PL, Griesenbeck J, Kornberg RD, Cleary ML (2002) A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc Natl Acad Sci 99(1):90–94

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SYR et al (2001) Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rdna silencing in Saccharomyces cerevisiae. Genes Dev 15(24):3286–3295

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Santos-Rosa H, Bannister AJ, Dehe PM, Géli V, Kouzarides T (2004) Methylation of H3 lysine 4 at euchromatin promotes Sir3p association with heterochromatin. J Biol Chem 279(46):47506–47512

    CAS  PubMed  Google Scholar 

  83. Eissenberg JC, Shilatifard A (2010) Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol 339(2):240–249

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Nedea E, Nalbant D, Xia D, Theoharis NT, Suter B, Richardson CJ et al (2008) The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snorna genes. Mol Cell 29(5):577–587

    CAS  PubMed  Google Scholar 

  85. Dichtl B, Aasland R, Keller W (2004) Functions for S. cerevisiae Swd2p in 3’ end formation of specific mrnas and snornas and global histone 3 lysine 4 methylation. RNA 10(6):965–977

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Cheng H, He X, Moore C (2004) The essential WD repeat protein Swd2 has dual functions in RNA polymerase ii transcription termination and lysine 4 methylation of histone H3. Mol Cell Biol 24(7):2932–2943

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Shilatifard A (2012) The compass family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81:65.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Meyers RA (2012) Epigenetic regulation and epigenomics: advances in molecular biology and medicine. Wiley-Blackwell, Chichester

    Google Scholar 

  89. Mueller JE, Canze M, Bryk M (2006) The requirements for COMPASS and Paf1 transcriptional silencing and methylation of histone H3 in Saccharomyces cerevisiae. Genetics 173(2):557–567

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Nislow C, Ray E, Pillus L (1997) Set1, a yeast member of thetrithorax family, functions in transcriptional silencing and diverse cellular processes. Mol Biol Cell 8(12):2421–2436

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Schneider J, Wood A, Lee J-S, Schuster R, Dueker J, Maguire C et al (2005) Molecular regulation of histone H3 trimethylation by compass and the regulation of gene expression. Mol Cell 19(6):849–856

    CAS  PubMed  Google Scholar 

  92. Palmer JM, Bok JW, Lee S, Dagenais TRT, Andes DR, Kontoyiannis DP et al (2013) Loss of CclA, required for histone 3 lysine 4 methylation, decreases growth but increases secondary metabolite production in Aspergillus fumigatus. PeerJ 1:e4

    PubMed Central  PubMed  Google Scholar 

  93. Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989

    CAS  PubMed  Google Scholar 

  94. Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N et al (2002) Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109(4):437–446

    CAS  PubMed  Google Scholar 

  95. Smith KM, Dobosy JR, Reifsnyder JE, Rountree MR, Anderson DC, Green GR et al (2010) H2B-and H3-specific histone deacetylases are required for DNA methylation in Neurospora crassa Genetics 186(4):1207–1216

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Tribus M, Bauer I, Galehr J, Rieser G, Trojer P, Brosch G et al (2010) A novel motif in fungal class 1 histone deacetylases is essential for growth and development of Aspergillus. Mol Biol Cell 21(2):345–353

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryotic Cell 6(9):1656–1664

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Lee I, Oh J-H, Keats Shwab E, Dagenais TR, Andes D, Keller NP (2009) Hdaa, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet Biol 46(10):782–790

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Baker S, Grant P (2007) The saga continues: Expanding the cellular role of a transcriptional co-activator complex. Oncogene 26(37):5329–5340

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Spröte P, Hynes MJ, Hortschansky P, Shelest E, Scharf DH, Wolke SM et al (2008) Identification of the novel penicillin biosynthesis gene aatB of Aspergillus nidulans and its putative evolutionary relationship to this fungal secondary metabolism gene cluster. Mol Microbiol 70(2):445–461

    PubMed  Google Scholar 

  101. Barrios A, Selleck W, Hnatkovich B, Kramer R, Sermwittayawong D, Tan S (2007) Expression and purification of recombinant yeast Ada2/Ada3/Gcn5 and Piccolo NuA4 histone acetyltransferase complexes. Methods 41(3):271–277

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Marcus GA, Silverman N, Berger SL, Horiuchi J, Guarente L (1994) Functional similarity and physical association between Gcn5 and Ada2: putative transcriptional adaptors. EMBO J 13(20):4807

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R et al (1998) Structure determination of the small ubiquitin-related modifier sumo-1. J Mol Biol 280(2):275–286

    CAS  PubMed  Google Scholar 

  104. Harting R, Bayram Ö, Laubinger K, Valerius O, Braus GH (2013) Interplay of the fungal sumoylation network for control of multicellular development. Mol Microbiol 90(5):1125–1145

    CAS  PubMed  Google Scholar 

  105. Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695(1):55–72 ((BBA)-Molecular Cell Research)

    CAS  PubMed  Google Scholar 

  106. Schwartz DC, Hochstrasser M (2003) A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem Sci 28(6):321–328

    CAS  PubMed  Google Scholar 

  107. Sampson DA, Wang M, Matunis MJ (2001) The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for sumo-1 modification. J Biol Chem 276(24):21664–21669

    CAS  PubMed  Google Scholar 

  108. Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD (2002) Structural basis for E2-mediated sumo conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108(3):345–356

    CAS  PubMed  Google Scholar 

  109. Ohi MD, Vander Kooi CW, Rosenberg JA, Chazin WJ, Gould KL (2003) Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Mol Biol 10(4):250–255

    CAS  Google Scholar 

  110. Swanson R, Locher M, Hochstrasser M (2001) A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation. Genes Dev 15(20):2660–2674

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108(1):109–120

    CAS  PubMed  Google Scholar 

  112. Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proceedings of the National Academy of Sciences 100(23):13225–13230

    CAS  Google Scholar 

  113. Shin JA, Choi ES, Kim HS, Ho JCY, Watts FZ, Park SD et al (2005) SUMO modification is involved in the maintenance of heterochromatin stability in fission yeast. Mol Cell 19(6):817–828

    CAS  PubMed  Google Scholar 

  114. Sterner DE, Nathan D, Reindle A, Johnson ES, Berger SL (2006) Sumoylation of the yeast Gcn5 protein. BioChemistry 45(3):1035–1042

    CAS  PubMed  Google Scholar 

  115. Harting R (2013) The sumoylation and neddylation networks in Aspergillus nidulans development. Dissertation, der Georg-August University

    Google Scholar 

  116. Wong KH, Todd RB, Oakley BR, Oakley CE, Hynes MJ, Davis MA (2008) Sumoylation in Aspergillus nidulans: sumO inactivation, overexpression and live-cell imaging. Fungal Genet Biol 45(5):728–737

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Kobayashi E, Ando K, Nakano H, Iida T, Ohno H, Morimoto M et al (1989) Calphostins (UCN-1028), novel and specific inhibitors of protein kinase CI fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 42(10):1470–1474

    CAS  Google Scholar 

  118. Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Organic Biomol Chem 6(11):1895–1897

    CAS  Google Scholar 

  119. Fisch K, Gillaspy A, Gipson M, Henrikson J, Hoover A, Jackson L et al (2009) Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J Ind Microbiol Biotechnol 36(9):1199–1213

    CAS  PubMed  Google Scholar 

  120. Henrikson JC, Hoover AR, Joyner PM, Cichewicz RH (2009) A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Organic Biomol Chem 7(3):435–438

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ellin Doyle for critically reviewing the manuscript. This work was supported by USDA Hatch (WIS01665) and the Intelligent Synthetic Biology Center of Global Frontier Project (2011-0031955) funded by the Ministry of Education, Science and Technology grants to JHY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hyuk Yu MS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, MY., Yu, JH. (2015). Epigenetics of Fungal Secondary Metabolism Related Genes. In: Zeilinger, S., Martín, JF., García-Estrada, C. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Volume 2. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2531-5_3

Download citation

Publish with us

Policies and ethics